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S U M M A R Y
The spectral element method, which provides an accurate solution of the elastodynamic prob-
lem in heterogeneous media, is implemented in a code, called RegSEM, to compute seismic
wave propagation at the regional scale. By regional scale we here mean distances ranging from
about 1 km (local scale) to 90◦ (continental scale). The advantage of RegSEM resides in its
ability to accurately take into account 3-D discontinuities such as the sediment-rock interface
and the Moho. For this purpose, one version of the code handles local unstructured meshes and
another version manages continental structured meshes. The wave equation can be solved in
any velocity model, including anisotropy and intrinsic attenuation in the continental version.
To validate the code, results from RegSEM are compared to analytical and semi-analytical
solutions available in simple cases (e.g. explosion in PREM, plane wave in a hemispherical
basin). In addition, realistic simulations of an earthquake in different tomographic models of
Europe are performed. All these simulations show the great flexibility of the code and point
out the large influence of the shallow layers on the propagation of seismic waves at the regional
scale.

RegSEM is written in Fortran 90 but it also contains a couple of C routines. It is an open-
source software which runs on distributed memory architectures. It can give rise to interesting
applications, such as testing regional tomographic models, developing tomography using either
passive (i.e. noise correlations) or active (i.e. earthquakes) data, or improving our knowledge
on effects linked with sedimentary basins.
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1 I N T RO D U C T I O N

Solving the wave equation in realistic geological media is a cru-
cial issue to properly model and study the propagation of seismic
waves. At large scale, the effect of both crust and upper mantle 3-D
structures on seismograms has been known for a long time (e.g.
Montagner & Tanimoto 1991). At local scale, geological site condi-
tions are now recognized as one of the dominant factors controlling
the variations in ground motion (e.g. Olsen 2000). The accurate in-
corporation of geological structures in wave propagation modelling
would therefore greatly improve the knowledge in fields such as
tomography and site effects estimation.

Numerous techniques, like ray tracing or normal mode sum-
mation, have been developed for decades to compute synthetic

∗Now at: ETH, Institut für Geophysik, 8092 Zürich, Switzerland.
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seismograms. Ray tracing assumes that the seismic wavefield can
be modelled as a large number of very narrow beams (e.g. Cervený
2001). For many purposes, this technique is very convenient, but
it relies on a high frequency approximation, which means that it
is only valid when seismic wavelength is much smaller than the
scale of heterogeneity. In the case of low-frequency waves with
large Fresnel zones, the ray theory no longer holds. The normal
mode summation technique (e.g. Gilbert 1971), in addition with
a high-order perturbation theory (Lognonné & Romanowicz 1990;
Lognonné 1991; Clévédé & Lognonné 1996), is able to model waves
with large Fresnel zones in 3-D Earth models, but the computation
cost of such a technique is quickly prohibitive as the number of
modes to couple increases with frequency. Moreover, normal mode
perturbation methods are limited to weak lateral heterogeneities.

Direct numerical solutions have also been investigated to solve
the wave equation. Finite differences have been applied (e.g.
Alterman & Kara 1968; Boore 1972; Kelly et al. 1976; Virieux
1984, 1986; Olsen & Archuleta 1996; Moczo et al. 2007) but they
present intrinsic problems in dealing with strong and deformed in-
terfaces like basin edges, the Moho, the free surface and solid-fluid
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discontinuities. Such limitations do not exist in finite element meth-
ods, but the low polynomial order classically used in this kind of
approaches make them inaccurate and dispersive when applied to
elastodynamic problems (Lysmer & Drake 1972; Dupond 1973;
Backer 1976; Marfurt 1984; Toshinawa & Ohmachi 1992). Since
the 1990s, efforts have been focused on developing higher-order
numerical modelling of seismic wave propagation. An important
result from these efforts is the discontinuous Galerkin method (e.g.
Dumbser & Käser 2006). Another major result, which is used all
along this paper, is the spectral element method (SEM). Initially
introduced in fluid mechanics (Patera 1984; Maday & Patera 1989),
this method has been successfully applied to elastodynamics with
the increasing concern of developing numerical techniques ensur-
ing both a great precision and a reasonable numerical cost (Seriani
& Priolo 1994; Faccioli et al. 1997; Komatitsch & Vilotte 1998;
Seriani 1998; Komatitsch & Tromp 1999). The SEM was first
applied at the global scale (Chaljub 2000; Komatitsch & Tromp
2002a,b; Komatitsch et al. 2002; Capdeville et al. 2003; Chaljub
et al. 2003; Chaljub & Valette 2004). In the more recent years, ap-
plications to local (Komatitsch et al. 2004; Delavaud et al. 2006;
Lee et al. 2008; Stupazzini et al. 2009; Chaljub et al. 2010; Peter
et al. 2011) and continental scales (Chen et al. 2007a; Fichtner et al.
2009a) appeared. Such applications of the SEM proved that a great
precision and a weak numerical dispersion can be obtained.

The SEM is a major contribution to seismology because it al-
lows to compute the whole seismic wavefield propagating in a 3-D
Earth model with no approximation on the wave equation (except
minor numerical approximations). In the recent years, it was used to
solve the inverse problem and get images of the Earth interior: Tape
et al. (2009) and Tape et al. (2010) developed a model in south-
ern California by inverting traveltime measurements down to 2 s
period; Fichtner et al. (2009b) and Fichtner et al. (2010) obtained
a model of the Australian region using a full waveform inversion
down to 30 s period. To avoid the large number of simulations clas-
sically required to compute all the Fréchet derivatives, these authors
implemented the adjoint technique (Tarantola 1984; Tromp et al.
2005; Fichtner et al. 2006a,b). This makes the computation of the
gradient of the misfit function independent of the number of sta-
tions and parameters of the model. When dealing with a large set
of sources, an alternative to the adjoint technique is the scattering-
integral approach (Chen et al. 2007b). In any case, with the current
computational power, one cannot solve the inverse problem using
the SEM with a classic procedure.

In this paper, we focus our attention on the forward modelling.
When using the SEM to compute 3-D seismic wave propagation,
the main practical issue consists in meshing the medium using hex-
ahedra. Indeed, the mesh has to honour the discontinuities of the
geological model under study to fully benefit from the accuracy of
the method and properly model effects associated with these dis-
continuities such as wave diffraction. Because realistic models of
the Earth often have complex geometry, lots of efforts and time are
usually needed to build an appropriate mesh. Casarotti et al. (2008b)
developed automatic procedures to create 3-D unstructured hexahe-
dral meshes, but it is still not possible to generate in a fully automatic
way meshes that would honour detailed geological discontinuities
such as realistic sediment-rock interfaces. The goal of this paper is
to promote a code, RegSEM, that can accurately take into account
3-D discontinuities in regional meshes and then compute seismic
waves within them using the SEM. More precisely, RegSEM has
two versions: a continental version which is able to generate struc-
tured meshes of crustal and mantle structures separated by a 3-D
Moho in spherical geometry, and a local version which uses an

external mesh generator, CUBIT (http://cubit.sandia.gov), to pro-
duce 3-D unstructured meshes essentially designed to study the
seismic response of sedimentary basins.

In a first part, RegSEM’s features are described, including the
different kinds of meshes the code can provide and/or handle.
In a second part, waveforms computed with RegSEM in simple
elastic models are compared to analytical or semi-analytical so-
lutions. These comparisons allow to validate the code. The last
part presents simulations of a real earthquake in different tomo-
graphic models of Europe. A comparison between synthetic seis-
mograms and real data enables to investigate the improvement of
the fit when using 3-D models and point out the great influence of
the shallow layers. The large number of simulations shown in this
work serves as a set of examples to put in evidence the capability
and the great versatility of RegSEM. The code sources, in addi-
tion with a manual and several examples, can be downloaded at
www.ipgp.fr/∼paulcup/RegSEM.html.

2 R E G S E M ’ S F E AT U R E S

2.1 The spectral element method

The SEM was developed in fluid dynamics in the 1980s (Patera
1984; Maday & Patera 1989) and was adapted to elastodynamics in
the 1990s (Seriani & Priolo 1994; Faccioli et al. 1997; Komatitsch &
Vilotte 1998; Seriani 1998; Komatitsch & Tromp 1999). The SEM is
similar to a finite element method. It is based on a primal variational
formulation of the equations of motion. This formulation enables to
naturally take into account both interface and free boundary surface
conditions, allowing a good resolution of evanescent interface and
surface waves.

The discretization process implies the decomposition of the spa-
tial domain into non-overlapping elements. Classical implementa-
tions of the SEM in computational seismology are based on hex-
ahedral elements to benefit from advantageous properties of ten-
sorization. Although hexahedra are less favourable than tetrahedra
for meshing geometrically complex structures, a certain flexibil-
ity is ensured by a local geometrical transformation from a refer-
ence element (unit cube) to any deformed element, as detailed in
Section 2.2.1. Unstructured meshes offer additional possibilities, as
seen in Section 2.2.2.

Associated with the domain decomposition, the functional dis-
cretization is based on a piecewise high-order polynomial approx-
imation. The specificity of the SEM holds in the choice of basis
functions intimately related to the Gauss–Lobatto–Legendre (GLL)
quadrature used to evaluate the integrals in the variational formu-
lation. The basis is obtained from the orthogonal Lagrange polyno-
mials associated with (N + 1) interpolation nodes (where N is the
polynomial order). These nodes are chosen to be the nodes of the
GLL quadrature. Such nodes define a tensor product grid where the
displacement, its spatial derivatives and products encountered in the
variational formulation are evaluated. The choice of a Lagrangian
interpolation associated with the GLL nodes gives the SEM a very
interesting convergence property: an increase of the polynomial or-
der leads to an exponential diminution of the aliasing error. This
property, called spectral precision, gives its name to the method.

Inserting the polynomial interpolation and quadrature rules into
the variational form of the equations of elastodynamics leads to a
system of ordinary differential equations governing the evolution at
the global nodal position, which can be written as follows:

MV̇ = F
ext − F

int (U) + F
trac (T ) (1)
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RegSEM: a regional spectral element code 1205

U̇ = V, (2)

where U, V and T are vectors containing the components of the
displacement, velocity and traction at the global nodes, respectively.
M is the mass matrix. The vectors F

ext and F
int contain the exter-

nal and internal forces, respectively, and F
trac corresponds to the

traction forces. The use of an orthogonal basis defined as the La-
grangian functions associated with the GLL nodes leads to a second
interesting characteristic of the hexahedral version of the SEM: the
mass matrix is diagonal. This property enables to use an explicit
time stepping in which the inverse mass matrix M

−1 can be exactly
computed. In RegSEM, like in most of the SEM implementations,
this time stepping is a second-order finite difference scheme.

2.2 Meshing a chunk of the Earth with hexahedra

When using the SEM for 3-D complex geological models, the main
difficulty consists in meshing the model under study. Indeed, to
benefit from the high accuracy of the method and properly model
the effects linked with the geology, the mesh has to adapt the velocity
structure of the model, in particular the zeroth-order discontinuities
such as the Moho and the sediment-rock interface. This task often
requires significant efforts and time.

In this section, we describe two kinds of meshes in which
RegSEM can simulate seismic wave propagation. The first kind
corresponds to regular meshes of crustal and mantle structures in
spherical geometry. These meshes are suitable to compute seismic
waves for source–receiver distances ranging from 1 to 90◦. RegSEM
not only handles such meshes but it can also create them in a ver-
satile way: the size and the location of the chunk, the spherical
discontinuities and possible 3-D Moho and 3-D free surface can
be defined by the user. The second kind of meshes requires more
efforts from the user because it has to be generated externally. It cor-
responds to unstructured meshes. Such meshes can deal with more
complex geometries. In the following, they are used to study the
seismic response of sedimentary basins, but they could be designed
for other applications.

Before giving more details on the capabilities of RegSEM, it
must be pointed out two important conditions that all meshes have
to fulfill to make the SEM accurate and stable:

(i) In classical applications of the SEM, 4 ≤ N ≤ 8. For such
values of N , at least five GLL nodes per wavelength are needed
everywhere in the region to properly describe the seismic wavefield
(e.g. Komatitsch & Vilotte 1998). This means that the size of the
elements d and the polynomial order N are both constrained by the
shortest wavelength λmin propagated in the medium. This condition
can be summarized by the following relation:

d ≤ N

5
λmin. (3)

(ii) To ensure the stability of the time-marching, the time
step �t of the finite difference scheme has to verify the
Courant–Friedrichs–Lewy (CFL) condition:

�t ≤ C

[
�x

α

]
min

, (4)

where C denotes the Courant number, usually chosen between 0.3
and 0.4, and

[
�x
α

]
min

the minimum ratio of grid spacing �x (distance
between two GLL nodes) and P-wave speed α.

2.2.1 Regular meshes of crustal and mantle structures

RegSEM can provide a regular mesh of any chunk of the Earth
whose lateral size is smaller than 90◦. To do so, the code uses
the so-called cubed sphere mapping (Sadourny 1972; Ronchi et al.
1996). For each element, this mapping allows to define the Cartesian
coordinates of 27 control points. Using the Lagrange polynomials
of degree 2 associated with these control points, the unit cube can be
deformed and the shape and position of each element in the chunk
can be defined. Such a classical procedure enables to easily design a
structured and conformal mesh for any section of the Earth (Fig. 1).
Moreover, ellipticity can be taken into account using the Clairaut’s
equation (Dahlen & Tromp 1998).

As mentioned above, the seismic discontinuities in the velocity
model have to be honoured by the mesh. If all the discontinuities
are spherical, then RegSEM is quite versatile: one just needs to
introduce the radius of each discontinuity, and then the code fills the
seismic layers with the appropriate number of elements. Of course,
this number depends on the vertical size of the elements. This size
is first equal to the horizontal size dh introduced by the user, and
then it is adjusted in each seismic layer to fit the thickness of the
layer. In the case of PREM (Dziewonski & Anderson 1981), there
is one more level of sophistication because not only the thickness
of the layers but also the seismic velocities in the layers are used by
the code to constrain and optimize the vertical size of the elements.
Fig. 2 shows an example of a mesh of PREM. Some elements
within this mesh appear to have a large aspect ratio (up to 5). In
the context of the SEM, this is not a problem: accuracy is preserved
thanks to the high spatial degree of the method (Oliveira & Seriani
2011) and stability is kept up because the shear deformation of the
elements is small. Examples of simulations in PREM are shown in
Section 3.2.

RegSEM can also mesh any surface and Moho topography
(Fig. 3). This is an important feature because the crust has sig-
nificant effects on surface waves (Montagner & Tanimoto 1991;
Curtis et al. 1998; Komatitsch et al. 2002; Shapiro & Ritzwoller
2002; Marone & Romanowicz 2007; Ferreira et al. 2010), even at
relatively long period (up to about 60 s). The capability to consider
any model with a realistic crust is therefore a major benefit. To do
so, the code uses only one layer of elements in the crust. This means
that discontinuities within the crust, such as the sediment-rock in-
terface and the upper-lower crust interface, cannot be taken into
account. Moreover, the fact that only one layer of elements is used
to mesh the crust limits the frequency content that the simulation
can handle. For example, when performing a simulation in Tibet
(where the crust is more than 70 km thick) with a polynomial order
N = 8, the highest frequency to be propagated will be approximately
0.1 Hz. Examples of simulations in 3-D crustal models are shown
in Section 4.

Realistic models of the Earth all have thin shallow layers. This is
the case in Figs 2 and 3. Because of the CFL condition 4, these thin
layers imply a very small time step, which makes the computation
cost high:

(i) The mesh shown in Fig. 2 is designed to propagate a wavefield
with a minimum wavelength λmin = 60 km using a polynomial
order N = 4. The Earth model is PREM. In this case, ratio �x

α
is

minimum in a thin layer defined by two discontinuities at 15 and
24.4 km depth. Indeed, the elements used to mesh this layer have a
vertical size of 9.4 km, which is very small compared to the size of
the other elements. The layer has a P-wave speed α = 6.8 km s−1,
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1206 P. Cupillard et al.

Figure 1. A chunk of the Earth meshed by hexahedral elements. It is 20◦ × 40◦ large and 1400 km thick. The elements are gathered under different colours.
Each colour represents a subdomain. Here, the chunk is divided in eight subdomains. The star and the triangle correspond to the source and the station used in
Section 3.1.

Figure 2. A mesh for PREM. The shallowest fluid layer has been replaced by the underlying solid. The chunk is 20◦ × 40◦ large and 1400 km thick. The
horizontal size of the elements is dh = 0.44◦. This allows the propagation of a 20 s period wavefield using a polynomial order N = 4. The S-wave speed at
each GLL node on the vertical border of the domain is plotted. A zoom into the upper part of the model shows the discontinuities. The star and the triangle
correspond to the source and the station used in Section 3.2.
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RegSEM: a regional spectral element code 1207

Figure 3. A mesh for CUB in the Atlantic–European region. The chunk is 30◦ × 70◦ large and 1500 km thick. The horizontal size of the elements is dh =
0.35◦. This allows the propagation of a 20 s period wavefield using a polynomial order N = 4. The S-wave speed at each GLL node on the border of the domain
is plotted. A zoom into the upper part of the southern side of the chunk shows the discontinuities. The transition between a thin oceanic crust and a thick
continental crust is visible. A map of the Moho corresponding to the present chunk is shown in Fig. 12.

so we find[
�x

α

]
min

= 9.4/γN

6.8
s, (5)

where γ N is a coefficient which depends on N and which comes
from the fact that the GLL nodes are non-evenly spaced in an
element. For N = 4, γ N � 6. Combining eqs 4 and 5 and taking
C = 0.35, we obtain �t ≤ 0.080637 s, which is small and makes the
computation cost high. Note that in practice, RegSEM computes
the time step automatically: it first finds

[
�x
α

]
min

by a grid search
and then determines �t using 4 with C = 0.35.

(ii) The mesh shown in Fig. 3 is designed to propagate a wavefield
with a minimum wavelength λmin = 50 km using a polynomial order
N = 4. The region under study is the Atlantic ocean and Europe.
The velocity model is CUB (Shapiro & Ritzwoller 2002), which has
a realistic crust. Such a crust is thin below the ocean: the minimum
thickness is about 7 km, so there are some elements that have a very
small vertical size compared to the size of the other elements. Ratio
�x
α

is minimum in these elements. Assuming a P-wave velocity
α = 5 km s−1 in the oceanic crust, we find the following condition
on the time step: �t ≤ 0.081667 s.

To avoid the small time step induced by a thin layer, recent
works developed techniques to replace the layer by a thicker effec-
tive medium (Capdeville & Marigo 2008; Fichtner & Igel 2008;

Lekić et al. 2010). These techniques yield a new layer with a large
and constant thickness at the top of the Earth. Although this kind
of effective layers is easy to mesh, we do not show examples of
computation in such media in this work.

2.2.2 Unstructured meshes of sedimentary basins

Basin effects are characterized by scattering, focusing and basin-
edge induced surface waves which are closely associated with the
geometry of the basin. These effects are recognized to be respon-
sible for a long duration of the seismic signal in the basin and
especially for large local amplifications. To accurately model and
study these effects, especially at high frequencies, it is important
that the sediment-rock interface is honoured. Considering the com-
plexity of most of these discontinuities, 3-D unstructured meshes
are necessary to achieve this goal. The local version of RegSEM
has the ability to handle such unstructured meshes where topol-
ogy is totally arbitrary. To do so, the code is written according to
a strategy of independence against the Cartesian coordinates. This
enables to handle the random orientation of the four different ob-
jects (elements, faces, edges and vertices) which compose the mesh.
Defining such objects allows to assign specific actions to each of
them, such as Neumann conditions (Section 2.5).

C© 2012 The Authors, GJI, 188, 1203–1220
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1208 P. Cupillard et al.

Figure 4. Detail of a subdomain as part of the inner outline of the Caracas basin. The volume was meshed from the projection of the 2-D triangular front mesh.

The creation of the mesh is not performed by RegSEM; it
is done externally using the CUBIT mesh generation tool kit
(http://cubit.sandia.gov). Input mesh files for RegSEM are then cre-
ated from export CUBIT mesh files. Considering the limited choice
of commercial and non-commercial codes dealing with hexahedra
compared to the case of tetrahedra, we think that this tool kit offers
the best alternative. However, the CUBIT mesh generation for 3-D
complex structures is not totally automatic and requires many steps
and user interventions. Automatic procedures have been developed
by Casarotti et al. (2008b) to generate meshes according to different
strategies. Embedded in a parallel Message Passing Interface (MPI)
environment, they can fast create simple 3-D unstructured meshes.
However, in the case of a complex basin, the outcrop is generally
not honoured when this one exhibits too many variations. In this
case, a robust fully 3-D unstructured algorithm for hexahedra is still
not available.

The meshing technique we use in this paper has been success-
fully applied to the valley of Grenoble by Stupazzini et al. (2009).
It consists in building a conform mesh of the model from separately
meshed subdomains, to better control the size and shape of the
elements. This work requires a pre-process with a CAO software
which can handle NURBS (Non-Uniformal Rational B-Splines) ge-
ometries. From the digital terrain model data, this software creates
NURBS curves which define the interfaces of the 3-D model, the
topography, the basin basement and the numerical boundaries. The
total volume is then partitioned into subdomains which are also
defined by a group of curves and exported in an Initial Graphics
Exchange Specification format readable by CUBIT. These subdo-
mains are independently reconstructed by CUBIT which assembles
them in a conform way to form the whole domain. Each subdomain
can then be individually meshed. A more detailed description of
this meshing process can be found in Delavaud (2007) and in the
manual of the code. The advantage of this procedure holds in the
possibility of associating to each subdomain different element sizes

and types of meshing while the mesh remains conform. The number
of subdomains can be substantial, depending on the complexity of
the structures which have to be meshed. In the presence of a basin,
this partitioning is mainly controlled by its outline in surface which
needs to be isolated to correctly mesh the bend and the shape of the
edge. Fig. 4 shows one of the subdomains which defines the inner
outline belt of the Caracas basin. One of the triangular surface at
the ends of the subdomain is first meshed with a meshing scheme
called ‘triprimitive’ which applies to three side surfaces. The size
of the elements is inherited from an interval size assigned to the
edges. The total volume is then meshed by a projection (sweep) of
the two dimension mesh along the edges towards the opposite trian-
gular surface. As one can see, the element at the edge is particularly
deformed and introduces a very small minimum distance between
the GLL nodes. The variation of the free surface topography also
influences the cutting into subdomains needed to ensure a homo-
geneous mesh in depth. The meshing strategy remains the same as
the one described for the outline of the basin: the free surface is
first meshed with an unstructured meshing scheme, then a sweep is
applied in the vertical direction. Therefore, the mesh is unstructured
only in two directions (in depth for the interior outline belt of the
basin, and horizontally for the other parts). As an example, the case
of a simple hemispherical basin is presented in Fig. 5.

Meshes which honour geological discontinuities might present
highly deformed elements, especially at the edges. To assess the
quality of a mesh and identify such elements, CUBIT offers different
metrics. Skewness, distortion or shear associated with the Jacobian
of each element are possible quality measurements. In the case of the
SEM, the effect of deformed elements on precision and efficiency
is fortunately limited by the high degree of the method (Oliveira &
Seriani 2011).

A recent study by Pelties et al. (2010) compares the method that
interpolates the outline of a basin by Lagrange polynomials (e.g.
Komatitsch et al. 2004; Casarotti et al. 2008b; Lee et al. 2008)
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RegSEM: a regional spectral element code 1209

Figure 5. Mesh of a quarter of a half space containing a hemispherical basin. The model is cut into four quarters independently meshed using CUBIT and
then reassembled. The basin (yellow) is meshed first, then the free surface, and finally the volume. The blue elements correspond to the PML.

with a meshing that fully honours it (e.g. Stupazzini et al. 2009).
From tests performed at different frequencies in different velocity
contrasts, this study provides empirical rules to ensure the relia-
bility of Lagrange interpolation. In the case of 3-D simulations in
the Grenoble valley, Casarotti et al. (2008a) observed differences
in amplitude and phase of the order of 15 per cent between the two
methods above 1 Hz. At lower frequencies, the detail of the basin
shape has less, or even no, influence. Although it is not the scope of
this paper to present a comprehensive study about the differences
between honouring and not honouring interfaces, we briefly show
some comparisons based on a 2-D profile of the Caracas basin.
The effects of three meshing strategies on spectral ratios are pre-
sented. Spectral ratios are amplification factors with respect to the
spectrum of the incident plane wave. We compute them for fre-
quencies up to 5 Hz and for each receiver along the free surface.
In Fig. 6, on the left panel, the ratios are shown for a mesh that
respects the corners of the basin. These corners are critical because
they generate diffracted surface waves responsible for large amplifi-
cations. Bi-dimensional effects are characterized by amplifications

at frequencies higher than the fundamental frequency (0.5 Hz), es-
pecially above the thicker part of the basin at 1.5 Hz, 2.5 Hz and
3.5 Hz. We also consider a regular mesh in which the discontinuity
is interpolated at the GLL nodes (Fig. 6, mid panel). In this case,
we show the ratio in logarithmic scale of the spectra recorded at
the free surface of the regular mesh and those recorded at the free
surface of the honouring mesh. Up to 2 Hz, the spectra are almost
similar. At higher frequencies, large discrepancies appear, with ratio
of the order of 2. A third meshing strategy consists in respecting the
interface until a depth of 60 m, about 50 per cent of the minimum
propagated wavelength, and to interpolate the discontinuity in the
elements at the edges of the basin (Fig. 6, right panel). The spectra
obtained in this case are very similar to the fully honouring case up
to 2.5 Hz. Above this frequency, large but localized discrepancies
appear, also of the order of 2. This example put in evidence that the
entire rock-sediment interface, especially the edge of the basin,
should be respected for high frequency simulations (>2.5 Hz).
For shorter frequencies, the direct discretization of the interface
at the GLL nodes down to a reasonable depth seems appropriate.
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y. Advantages and drawbacks of these strategies in terms of precision
and implementation complexity could be discussed in more detail
based on the analysis conducted by Maday & Rønquist (1990).

2.3 Introduction of the elastic parameters

As RegSEM is able to handle a large set of meshes, it has to be
versatile in introducing elastic models as well. In the continental
version of the code, this is achieved thanks to a Fortran module that
the user can change by himself and which is conceived to provide the
elastic parameters at any location (radius, latitude and longitude) in
the Earth. Both radial and azimuthal anisotropies are implemented.
Moreover, the anelastic structure can be taken into account using a
series of standard linear solids, as suggested by Emmerich & Korn
(1987) and Komatitsch & Tromp (1999). The unstructured version
of the code is limited to lossless isotropic media.

Rotation and self-gravitation, which involve non-neglectible ef-
fects at the global scale and very long periods (Komatitsch & Tromp
2002b; Chaljub & Valette 2004), are not included. Propagation in
fluid has not been implemented, so the waves either from the outer
core or from the oceans cannot be simulated. Nevertheless, follow-
ing Komatitsch & Tromp (2002b), the mass of the oceans can be
taken into account when a bathymetry is used at the surface of the
Earth.

2.4 Absorbing boundary conditions

To avoid artificial reflections at the border of the chunk, it is
necessary to implement efficient absorbing boundary conditions.
RegSEM uses the velocity-stress formulation of the so-called
Perfectly Matched Layers (hereafter PML; see Festa & Vilotte
2005). This formulation requires an unphysical splitting of the field
variables along the directions of normal and parallel derivatives with
respect to the interface PML volume. This means that in practice,
the splitting directions have to be known at every GLL node belong-
ing to the PML, which is not obvious when working with Cartesian
coordinates in a deformed layer (such as the lowermost layer of
the chunks presented in Figs 1–3). Therefore, we here make an as-
sumption: for all the GLL nodes of a given element, the splitting
directions defined at the centre of the element are used. The effect of
such an assumption on the stability and accuracy of the PML is not
clear. Furthermore, our PML are isotropic, so spurious reflections
can be created when considering anisotropic media. Examples in
the following parts of the paper will show that our implementation
of the PML however provides satisfactory results.

Note that the SEM does not require to use the same polynomial
order for all directions. Our code takes advantage of this flexibility:
in the PML, it is possible to use a different polynomial order in the
damping directions. In the following, we will always use N = 8 in
these directions.

2.5 Sources

Force-vector and moment-tensor point-sources can be placed at
any location in the chunk. Four different functions are provided to
describe the time signal at the sources: a Gaussian, its derivative
(i.e. a Ricker wavelet), its antiderivative (i.e. an error function) or
the Fourier transform of a frequency band defined by a cosine taper.

More interestingly, in particular for basin response modelling,
an incident wavefield can be introduced in the unstructured ver-
sion of RegSEM. The method developed for that purpose is based
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RegSEM: a regional spectral element code 1211

on a decomposition technique and exploits the natural presence
of the traction in the SEM formulation, that is the F

trac term in
eq. 1. The wavefield is introduced on an interface in the domain, for
example, the sediment-rock interface, by its action on the traction
forces (Neumann condition). Similar ideas had been introduced by
Bielak & Christiano (1984) in the context of finite elements for
the problem of soil–structure interaction. The main interest of this
method consists in avoiding the propagation of the incident field,
which is known analytically or numerically, as long as it has not
reached any discontinuity with which it will interact by reflection,
transmission or diffraction. This type of introduction is compatible
with any boundary conditions, including PML. Moreover, diffrac-
tion problems for non-vertical incidences are prevented. Finally, the
computational domain does not have to be large to hold the incident
wave. We refer to the manual of the code for more details about the
implementation of this method.

2.6 Parallel implementation

The SEM can be easily implemented on distributed memory archi-
tectures. Given a number n of CPUs, the computational domain has
to be divided into n subdomains. To do so, we use the software li-
brary METIS (http://glaros.dtc.umn.edu/gkhome/views/metis) that
ensures an efficient partitioning which minimizes the communi-
cations between the subdomains. These communications occur at
every time step of the time-marching scheme. To perform them, we
use the MPI. Fig. 1 shows an example of a chunk partitioned by
METIS. Fig. 7 shows the good scalability of our parallel implemen-
tation in the case of the experiment described in Section 3.1.

3 VA L I DAT I O N

In this part, a series of numerical experiments are carried out to
validate our code. We start with the simple case of a homogeneous
medium, then we consider a layered medium (PREM) and we finally
study the case of a hemispherical basin. For all these experiments,
a reference solution is known.

Figure 7. Scalability of the RegSEM parallel implementation. The simula-
tion used to do this test is the one described in Section 3.1. The points are
almost aligned, showing that the computation time goes like the inverse of
the number of CPUs.

3.1 Simulation in a homogeneous medium

We first consider a homogeneous medium in spherical geometry.
In such a context, the normal mode summation technique provides
a quasi-analytical solution (Capdeville 2000). The P-wave speed,
S-wave speed and density of the medium are α = 8 km s−1, β =
5 km s−1 and ρ = 3000 kg m−3, respectively. The chunk used in the
SEM simulation is shown in Fig. 1. The elements are 1.3◦ large.
This enables to use a 50 mHz cut-off frequency with a polynomial
order N = 8. The source is an explosion located at 10 km depth.
The receiver is on the free surface. The epicentral distance is 20◦.
On three Intel Xeon 2.5 GHz quad-core dual-processor nodes (i.e.
24 CPUs), it takes about 16 min to compute 1200 s. In Fig. 7,
the computation time for other numbers of CPUs is shown. The
scalability of our parallel implementation is seen to be good.

Fig. 8 shows the comparison between the SEM result and the
normal mode solution. All the seismograms are normalized with
respect to the amplitude of the vertical component obtained with
the SEM, so the relative amplitudes are preserved. Because the

Figure 8. Comparison of the SEM solution (dashed black) with the normal
mode solution (red) obtained in a homogeneous medium (α = 8 km s−1, β =
5 km s−1, ρ = 3000 kg m−3). The epicentral distance is 20◦. The residual
multiplied by 10 is plotted in green.
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1212 P. Cupillard et al.

source is an explosion, there is no SH energy and the waves only
lie on the vertical and radial components. On these components,
the traces obtained from the two methods are indistinguishable.
The plot of the residual multiplied by 10 shows that the maximum
error is around 2 per cent. This small error is essentially due to
the finite difference time-scheme whose order is only 2. On the
transverse component (whose y-axis is 100 times larger than the
other components), the SEM solution is not exactly zero: around
650 s, the residual multiplied by 10 reveals a spurious reflection
coming from the bottom of the chunk. This signal is extremely
small and is hardly seen on the radial and vertical components,
meaning that our PML are good.

3.2 Simulation in PREM

We use PREM to perform a second validation test. The thin fluid
layer which lies on the top of this model is replaced by the underlying
solid. The chunk used in the SEM simulation is shown in Fig. 2.
The elements are 0.44◦ large. This enables to use a 50 mHz cut-
off frequency with a polynomial order N = 4. The source-receiver
configuration is the same as in the previous test.

3.2.1 With no attenuation

We first do not take into account the anelastic structure of PREM. In
this case, the normal mode summation gives a good reference solu-
tion. Fig. 9 shows a comparison between this solution and our SEM
result. Again, the two waveforms are indistinguishable on both verti-
cal and radial components. Nevertheless, on the radial component,
the residual shows significant amplitudes after the main phases,
which was not the case in the test performed in the homogeneous
medium. This is explained by two reasons. First, our chunk is cut at
depth, so the phases reflected at the core–mantle boundary, such as
the PcS and ScS phases, are missing. Second, a spurious reflection
from the PML on the vertical sides of the chunk is detected. This
signal appears here because PREM is anisotropic. The magnitude of
this spurious reflection is similar to the error due to the finite differ-
ence time-scheme, so eventhough they are not perfect, our PML are
satisfactory. On the transverse component, a tiny reflection coming
from the bottom of the chunk is observed, as it was the case in the
homogeneous medium. This reflection arrives earlier here because
PREM velocities increase with depth.

3.2.2 With attenuation

When introducing the anelastic structure, the comparison between
the SEM and the normal mode solutions (Fig. 10) does not change
a lot. The main difference with the lossless case is a large residual
value (5–10 per cent) for the body waves and the beginning part
of surface wavetrain. This large value is probably due to the fact
that the normal mode result in an attenuating medium relies on a
first-order approximation. Nevertheless, we can conclude that the
attenuation is well taken into account in RegSEM because the SEM
and normal mode summation waveforms are very similar to each
other and are both very different from the lossless case.

3.3 Plane wave on a hemispherical basin

To validate our code with an unstructured mesh, we now consider the
half space containing the hemispherical basin of radius R (Fig. 5).
For such a simple shape, the boundary element method developed

Figure 9. Comparison of the SEM solution (dashed black) with the normal
mode solution (red) obtained in PREM with no attenuation. The epicentral
distance is 20◦. The residual multiplied by 10 is plotted in green.

by Sánchez-Sesma (1983) provides a semi-analytical solution of the
diffracted wavefield in the frequency domain. The parameters of the
material are summarized in Table 1. They respect the conditions on
the shear modulus μ, density ρ and Poisson coefficient ν described
by Sánchez-Sesma (1983): μR/μE = 0.3, ρR/ρE = 0.6, νR = 0.3
and νE = 0.25, where the exponents R and E correspond to the basin
and the rest of the half-space, respectively. The model is excited by
a plane P-wave with a vertical incidence. The results are presented
for a normalized frequency ηP = 2R


P
, where 
P is the wavelength

of the incident plane P wave. This normalized frequency determines
the central frequency f P of the Ricker pulse which defines the time
function of the incident plane wave. For the normalized frequency
ηP = 0.5 considered by Sánchez-Sesma (1983), f P = 5.76 Hz.

In the SEM simulation, a polynomial order N = 4 is chosen in the
elastic medium. The signal is recorded at the free surface, along the
line [Ox), where O is the centre of the basin and x a horizontal axis.
We are interested in the transfer function, which is the ratio between
the spectrum of the signal recorded at each receiver along this line
and the spectrum of the incident plane wave. Fig. 11 shows the
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RegSEM: a regional spectral element code 1213

Figure 10. Comparison of the SEM solution (dashed black) with the normal
mode solution (red) obtained in PREM with attenuation. The epicentral
distance is 20◦. The residual multiplied by 10 is plotted in green.

transfer functions, for the SEM and the semi-analytical solution,
of the vertical and horizontal components of the displacement at
the normalized frequency ηP = 0.5 as a function of the normalized
distance x/R at t = 5 s. These transfer functions are also represented
at the normalized frequency ηP = 0.7 which corresponds to the
frequency f P = 8 Hz. As a result, the two methods provides the
same behaviour. Small differences of 2 per cent can be observed,
which is comparable to the numerical dispersion of the SEM and
the magnitude of the PML reflections.

A variability of the behaviour according to the frequency is ob-
served, knowing that the 1-D resonance frequency of the basin

equals αR/4R = 4.4 Hz. At 5.76 Hz, the curve is close to the
1-D case, with a maximum amplification at the centre of the basin,
about 175 per cent of the amplitude obtained in the case of a homo-
geneous medium. The amplitude decreases when approaching the
basin border and then keeps the state of a homogeneous medium.
The horizontal component, on the contrary, exhibits a null ampli-
tude at the centre of the basin, due to the symmetry, and reaches
its maximum at x/R = 0.5. Then it converges to a stable ampli-
tude. At 8 Hz, an important wave conversion appears around x/R =
0.35 where the horizontal component reaches its maximum and the
vertical component its minimum. Outside the sphere, the two com-
ponents tend to the same stable state as at 5.76 Hz. The maximum
amplification at the centre of the basin is reached for a normalized
frequency ηP = 0.61 (f P = 7 Hz), 1.6 times the 1-D resonance fre-
quency. These results underline the influence of the basin effects,
even in a simple and symmetric case.

4 S I M U L AT I O N S I N 3 - D M O D E L S
O F E U RO P E

In this part, we point out the influence of the shallow structures
(crust and uppermost mantle) on a regional wavefield. RegSEM’s
flexibility is used to generate structured meshes and simulate an
event in two 3-D models of the European region. The models are
Crust2.0 (Bassin et al. 2000) over the 1-D model PREM, and the
crustal and upper mantle model CUB (Shapiro & Ritzwoller 2002).
The corresponding synthetic seismograms are compared with the
normal mode solution in PREM, and above all with the real data
seismograms.

4.1 Models

Crust2.0 (Bassin et al. 2000) was obtained by compiling seismic
studies and tectonic, geological settings. The model is defined as
cells on a 2 × 2◦ geographical grid. In each cell, we average over
the different layers (there are up to seven layers, including ice or
water, sedimentary layers and layers in the bedrock) to get homoge-
neous seismic velocities and density. Then, a 2-D Gaussian filter is
applied horizontally to set up the seismic parameters at every GLL
nodes. Below the 3-D Moho, PREM is used to represent the deeper
Earth.

CUB (Shapiro & Ritzwoller 2002) is a radially anisotropic model
obtained by surface wave tomography. The model is derived from
the inversion of group and phase dispersion data of the fundamental
mode of both Rayleigh and Love waves in the 16–200 s period
range. It is defined on a 2 × 2◦ geographical grid. It is characterized
by a vertical block parametrization for the crust, a 3-D Moho and
a spline parametrization for the upper mantle. We actually use a
smoothed version of the CUB crust: the fluid and low-velocity
(β ≤ 2.4 km s−1) shallow layers are replaced by the underlying
material, and a vertical smoothing is applied within the crust using
the intrinsic interpolation law of the SEM. Moreover, because the
resolution of CUB is poor deeper than 250 km, a linear transition

Table 1. Parameters of the half-space containing the hemispherical basin used in Section 3.3. α, β and
ρ correspond to the P-wave velocity, S-wave velocity and density, respectively. Exponent R refers to the
basin and exponent E refers to the rest of the half-space. ηP is the normalized frequency.

αE βE ρE αR βR ρR R ηP

1730 m s−1 1000 m s−1 2000 kg m−3 1320 m s−1 710 m s−1 1200 kg m−3 75 m 0.5
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1214 P. Cupillard et al.

Figure 11. Transfer functions of the vertical and horizontal components of the displacement as a function of the normalized distance x/R at t = 5 s. We compare
the SEM (stars) and a semi-analytical solution (circles) based on an expansion of Bessel functions (Sánchez-Sesma 1983) in the case of a hemispherical basin,
for two frequencies: 5.76 Hz (ηP = 0.5) on the left and 8 Hz (ηP = 0.7) on the right.

Figure 12. Map of the Moho of model CUB (Shapiro & Ritzwoller 2002) in the Atlantic–European region. The source–receiver configuration used in
Section 4.3 is also shown.

towards PREM is imposed down to the transition zone. Again, we
use a Gaussian filter in the horizontal directions. The resulting model
in the Atlantic–European region is shown in Fig. 3. A map of the
Moho is shown in Fig. 12.

4.2 Data

The earthquake we consider has been recorded at 16 receivers on the
continental Europe. All data come from broad-band stations oper-
ated by the GSN, GEOSCOPE, GEOFON and MEDNET networks.
Both vertical and horizontal components on the BH channels are

selected. To be compared to the data, the synthetic seismograms are
convolved with the instrumental transfer function. This avoids the
deconvolution of the response on the data.

The comparison between data and synthetics is performed in four
period bands: 100–200 s, 50–100 s, 30–50 s and 20–30 s. To obtain
a quantitative estimate of the misfit between data and synthetics, we
apply a systematic cross-correlation between the two using a group
velocity criterion. Two parameters of the cross-correlograms are
extracted: the delay δt of the main peak and the amplitude ratio RA

between the main peak and the autocorrelation of the data. A perfect
matching therefore yields δt = 0 s and RA = 1. Our comparison is
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mainly based on the vertical component. The signal-to-noise ratio
in the radial and transverse components is often poor, so a more
severe data selection would actually be necessary to include more
horizontal components in our study. Note that the seismograms in
the 100–200 s period band are not presented because they show the
same behaviour as those in the 50–100 s period band. Furthermore,
in the shortest period band (20–30 s), waveforms are complex and
some correlation parameters therefore do not make sense.

4.3 Results

The event we investigate occurred along the Mid-Atlantic Ridge on
2010 May 25, at latitude 35.41◦N and longitude 35.93◦W. Its depth
has been estimated to 10 km and its USGS CMT solution provides
a moment magnitude of 6.3. The regional chunk used for the SEM
simulations of this event is shown in Fig. 3. A map view of the
chunk can be found in Fig. 12, representing also the source–receiver
configuration. The seismograms obtained at four relevant stations
are shown in Fig. 13. The correlation parameters for these stations

and the mean of the parameters over all the stations are presented
in Table 2.

In the long-period bands (100–200 s, 50–100 s), the synthetic
waveforms are similar to the data with a correct amplitude. However,
at every station, a systematic positive delay is observed between the
data and the synthetics computed in PREM or in Crust2.0. This
delay increases with the epicentral distance. CUB shows a much
better fit: for example, at station KIEV, models PREM and Crust
2.0 present a large delay (δt = 20 s and δt = 34 s, respectively)
whereas CUB shows a short delay (δt = −6 s). In the medium band
(30–50 s), the waveforms are still similar and the amplitude is still
correct. The CUB model improves the fitting to the data in compar-
ison with what PREM and Crust2.0 do. However, when increasing
the epicentral distance, the trends of the last two models differ. On
stations SSB and ECH (short paths), PREM and Crust2.0 both show
the same large positive delay. On stations AQU and KIEV (longer
paths), the Crust2.0 model presents an increasing delay (δt = 95 s)
while PREM model presents a decreasing delay (δt = 7.8 s). In
the short-period band (20–30 s), the waveforms significantly differ,

Figure 13. Waveforms induced by the mid-Atlantic ridge earthquake at four stations in Europe for three different period bands. We compare the real data
(grey) with the waveforms obtained in three different Earth models (PREM in blue, PREM+Crust2.0 in red and CUB in green).
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Table 2. Parameters (time delay δt in s and amplitude ratio RA) of cross-correlations between data and waveforms
obtained from a mid-Atlantic ridge earthquake in three different Earth models (PREM, Crust2.0 and CUB) at
four different stations for three different period bands. The average μall of the two parameters over all the stations
is also shown.

50–100 s � RA [PREM] δt [PREM] RA [Crust2.0] δt [Crust2.0] RA [CUB] δt [CUB]

SSB 3563.69 1.2104 19.9 1.0324 18.5 1.0454 −1.4
ECH 3791.79 1.4728 21.0 1.3104 23.3 1.2127 −2.2
AQU 4280.63 0.8988 19.1 0.7514 20.7 0.8565 1.9
KIEV 5378.05 1.1814 20.0 1.1647 34.0 1.2336 −6.0
μall 4498.27 0.4574 14.7 0.9828 19.7 1.2894 −6.0

30–50 s � RA [PREM] δt [PREM] RA [Crust2.0] δt [Crust2.0] RA [CUB] δt [CUB]

SSB 3563.69 1.4931 33.5 1.3292 51.8 1.3599 0.4
ECH 3791.79 1.5459 37.0 1.2138 62.9 1.2559 1.7
AQU 4280.63 0.8002 7.4 0.6084 38.8 0.8187 −18.0
KIEV 5378.05 0.9071 7.8 0.8694 94.7 0.9530 −6.5
μall 4498.27 0.6797 12.5 1.0752 60.0 1.4994 −9.3

20–30 s � RA [PREM] δt [PREM] RA [Crust2.0] δt [Crust2.0] RA [CUB] δt [CUB]

SSB 3563.69 2.0489 63.1 0.9551 96.2 1.8675 0.3
ECH 3791.79 2.4523 57.0 1.5337 135.1 2.1946 −3.7
AQU 4280.63 1.0182 30.7 0.6072 125.8 1.2822 −28.5
KIEV 5378.05 1.3895 −3.8 1.1147 165.1 1.0200 −27.6
μall 4498.27 0.9749 12.8 0.9433 124.6 1.8047 −33.2

in particular when increasing the epicentral distance. The Crust2.0
model always shows the worst waveforms and sometimes have non-
sense delays (δt = 165 s at KIEV) due to the strong coda wavetrain.
At short epicentral distance (SSB for example), the CUB model
presents very good fits (δt = 0.3 s) and is better than PREM (δt =
63 s). At longer epicentral distance (KIEV for example), situation
is reversed: PREM is better (δt = −3.8 s vs. δt = −28 s).

In the short-period range, the effect of the crust on delay times is
predominant. For oceanic paths, PREM has a too thick crust (slow
velocity compared to fast velocity in the underlying lithosphere)
which tends to induce positive delay times. The situation is reversed
in continents, which are characterized by a thick crust and fast
lithospheric velocities. Consequently, when only the effect of the
crust is taken into account in the numerical simulations, the delay
time tends to increase compared to what PREM does. That is exactly
what we observe: for Crust2.0, the fit to the data is always poor when
the path is dominantly oceanic or continental. The success of the
CUB model in almost all numerical simulations is due to the fact that
both crust and upper mantle 3-D structures are taken into account.
For some specific paths, the right balance in the mixing of oceanic
and continental paths can provide very good fits with PREM.

4.4 Conclusion

The comparison of seismograms computed in different Earth mod-
els clearly shows that the effect of the crust is large and non-linear.
For pure oceanic paths or pure continental paths, the account of
the crust tends to increase the residual delay times computed in
PREM. This effect is well known (Montagner & Tanimoto 1991).
When incorporating both crust and upper mantle 3-D structures,
the time residuals are significantly improved, particularly at periods
larger than 30 s. At short periods, the strong scattering effect of the
crust gives rise to long coda waves which often makes our simple
cross-correlation technique inefficient.

Our brief analysis puts in evidence how important the account for
the shallow structures is to correctly model the seismic wave prop-
agation at the regional scale. Previous studies (Komatitsch et al.

2002; Bozdag & Trampert 2008) used the SEM at the global scale
and already noted the great influence of the shallow parts, but they
did not honour the topography of the Moho. Because the compu-
tation cost is less important at the regional scale and because of
the ability of RegSEM to take into account any Moho topography,
this is overcome here. To exhibit the importance of honouring the
Moho, we compare two seismograms computed at the same station
(ANTO) in two different meshes of the CUB model (Fig. 14). In
the first mesh, the Moho is fully honoured. In the second mesh, the
elements at the top of the chunk are all 50 km thick, so the Moho
is not honoured at all. The differences between the two traces are
clear: a shift of half a period appears in the high frequency part of
the signals (20–30 s), in addition with large discrepancies in ampli-
tude (up to a factor of 2). At the global scale, similar differences are
observed by Capdeville & Marigo (2008). These results illustrate
the influence of the Moho on surface wavetrains and point out how
crucial meshing its topography is to get accurate seismograms.

Thanks to its flexibility, RegSEM is a suitable tool to assess the
quality of regional tomographic models, as done at the global scale
by Qin et al. (2009) and Bozdag & Trampert (2010). Nevertheless,
the simulations presented here do not give precise conclusions on
the quality of the CUB and Crust2.0 models. First, Crust2.0 is
used with PREM although they might not be compatible as these
two models have been obtained from two different data set and
techniques. Second, the brutal smoothing applied to Crust2.0 and
the CUB crust probably changes the effective elastic properties of
the two models. A more rigorous smoothing technique, such as the
one suggested by Capdeville et al. (2010) and Guillot et al. (2010),
should be used to precisely assess the models.

5 D I S C U S S I O N

We showed that RegSEM is an efficient tool to compute seismic
wavefields in geological media with possible complex geometries.
Two particular cases are preferentially investigated. At the local
scale, unstructured meshes of sedimentary basins (externally gen-
erated by CUBIT following the procedure suggested by Stupazzini
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Figure 14. Rayleigh wave (vertical component) computed at station ANTO from two different simulations of a mid-Atlantic ridge earthquake in model CUB.
In one simulation, the Moho is fully honoured (black line). In the other simulation, the Moho is interpolated by Lagrange polynomials of degree 4 defined in
50 km thick elements (red dashed line). The period range of the signals is 20–200 s.

et al. 2009) can be handled to study site effects. At longer scales (up
to 90◦), the influence on wave propagation of crustal and mantle 3-D
structures with a possible Moho topography can be simulated using
structured meshes generated by an internal routine. In both cases,
the shallow structures yield important non-linear effects, even at
wavelengths larger than the size of the heterogeneities. We showed
that meshing these shallow structures is a crucial issue for a proper
modelling of realistic wavefields.

In this work, the use of the SEM is limited to forward modelling.
As mentioned in Section 1, the method can also be used to solve the
inverse problem. A now classical and popular technique to achieve
this goal consists in computing sensitivity kernels using the ad-
joint method (Tarantola 1984; Tromp et al. 2005; Fichtner et al.
2006a,b). This can be done with RegSEM, which provides kernels
by simultaneously computing the adjoint wavefield and reconstruct-
ing the regular wavefield from time-reversed seismograms recorded
at the boundaries (Gauthier et al. 1986). This process prevents from
storing the whole regular wavefield, but it is rigorously valid in non-
dissipative media only. Nevertheless, an artificial amplification can
be introduced when reconstructing the regular wavefield in dissi-
pative media (Tarantola 1988). Performing tomographic inversions
using RegSEM is kept for future papers.

Another interesting application of our code is the computation of
synthetic microseismic noise correlations. These data were intro-
duced in seismology by Shapiro & Campillo (2004). Because most
of the microseismic energy is contained in the 5–20 s period range
and propagates as surface waves (Longuet-Higgins 1950), noise
correlations are very sensitive to the shallow structure. Therefore,
RegSEM is a suitable tool to perform realistic simulations (i.e. in-
cluding the full complexity of wave propagation in 3-D media) of
correlation waveforms. As discussed by Tromp et al. (2010), this is
crucial to go beyond the ray theory classically used when inverting
noise-correlation data. To mimick noise sources, the code imposes a
random traction at the free surface of the chunk using the F

trac term

in eq. 1. First correlations computed with RegSEM can be found in
Stehly et al. (2011).

Eventhough RegSEM is a well advanced code, improvements
are considered. First, there are simple options that could be easily
added, such as introducing two layers of elements in thick crusts and
allowing for external source time functions. Second, the creation of
a realistic 3-D unstructured hexahedral mesh still remains a long
and little flexible process. Moreover, the computation cost can be
significantly high due to small or deformed elements resulting from
the meshing of the interfaces. A de-refinement in depth could be
set up to decrease the computation cost. Indeed, seismic velocities
increase with depth so the wavelengths in the deeper part of the
chunk are larger than in the shallow part. Therefore, keeping the
same horizontal size of the elements everywhere in the medium
yields an oversampling of the wavefield in the deeper part. This is
particularly obvious in PREM (Fig. 2) when going into the lower
mantle (i.e. crossing the 670 km discontinuity). To partially solve
the problems associated with the mesh generation, we could think
of a performant coupling between a tetrahedral SEM (Mercerat
et al. 2006) for complex geometries and a classical hexahedral
SEM for the rest of the domain. Refinement and de-refinement
not only in space but also in time could also greatly help for the
reduction in computation cost. More promising alternatives for the
modelling of complex heterogeneities can be found in the field of
mechanics. Homogeneization techniques, originally developed in
material mechanics for the static case, have been recently applied
to the propagation of seismic waves (Capdeville et al. 2010; Guillot
et al. 2010). We plan to adapt RegSEM to this new technique in
the future. Third, the PML could be improved. Figs 9 and 10 show
the presence of a spurious wave in the medium. The amplitude of
this wave is small but it could be even smaller if using filtering
PML (Festa et al. 2005) or implementing the unsplit convolutional
PML suggested by Martin & Komatitsch (2009). Finally, fluid could
be incorporated in the code, using either a normal mode coupling
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(Capdeville et al. 2003) or the acoustic version of the SEM. All
these improvements are in progress and will be available in future
versions.
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bugs. The experience of Geneviève Moguilny and Patrick Stoclet
from the SCP (Service de Calcul Parallèle) of the IPGP has also
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