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S U M M A R Y
Although the use of the first-order Born approximation for the computation of seismic observ-
ables and sensitivity kernels in 3-D earth models shows promise for improving tomographic
modelling, more work is necessary to systematically determine how well such methods for-
ward model realistic seismic data compared with more standard asymptotic methods. Most
work so far has been focused on the analysis of secondary data, such as phase velocity, rather
than time domain waveforms. We here compare synthetic waveforms obtained for simple
models using standard asymptotic approximations that collapse the sensitivity to 3-D structure
on the great circle plane and those obtained using the 3-D linear Born approximation, with
accurate numerical 3-D synthetics. We find, not surprisingly, that 3-D Born more accurately
models the perturbation effects of velocity anomalies that are comparable in wavelength to or
are smaller than the first Fresnel zone. However, larger wavelength and amplitude anomalies
can easily produce large phase delays that cause the first-order (linear) Born approximation
to break down, whereas asymptotic methods that incorporate the effect of heterogeneity in
the phase rather than in the amplitude of the waveform are more robust. Including a path
average phase delay to the Born calculated waveforms significantly improves their accuracy
in the case of long-wavelength structure, while still retaining the ability to correctly model the
effect of shorter-wavelength structure. Tests in random models with structural wavelengths
consistent with existing global seismic models indicate that the linear Born approximation
frequently breaks down in realistic earth models, with worse misfit for first and second orbit
Rayleigh and higher mode surface waveforms than the great-circle based approximations at
all distances tested (>20◦). For fundamental modes, the average misfit for the waveforms
calculated with the linear Born formalism is quite poor, particularly for distances larger than
60◦. The modified Born formalism consistently improves the fit relative to the linear Born
waveforms, but only outperforms the great-circle based approximations for the higher mode
surface waveforms. We note, however, that phase delay kernels for multitaper measurements
of fundamental mode Rayleigh wave phase velocities developed from the Born approximation
do not demonstrate the problems associated with the linear waveform kernels. There is general
agreement with measurements and moderate improvement relative to phase delays predicted
by the path-average approximation.

Key words: Surface waves and free oscillations; Seismic tomography; Theoretical seismol-
ogy; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Progress in our understanding of the seismic structure of the deep
Earth has always relied on companion advances in theory and data.

∗Now at: Department of Geological Sciences, University of Florida,
Gainesville, FL 32605, USA.

In recent years there has been considerable interest in advanc-
ing global and regional scale model resolution, through the use
of ‘finite-frequency’ kernels that move beyond ray theory infinite
frequency approximations to more accurately reflect the 3-D sensi-
tivity of seismic observables (e.g. Ritzwoller et al. 2002; Montelli
et al. 2004, 2006; Yoshizawa & Kennett 2004; Zhou et al. 2006;
Boschi 2006; Takeuchi 2007). The particular theory and data set
used in each of these models vary, but all of these models are
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developed with the idea that using an improved theory should result
in better resolution, particularly at the finer structural scales where
other theories commonly in use are expected to break down.

For large-scale global and regional scale models, most of these
approaches are based on theoretical developments enabling practi-
cal application of either the first-order Born (Dahlen et al. 2000;
Zhao et al. 2000; Zhou et al. 2004) or Rytov approximations
(Spetzler & Snieder 2001). However, similar theoretical approaches
for waveform tomography based upon acoustic theory were applied
earlier and are still in use in more local exploration settings (e.g.
Woodward 1992; Brenders & Pratt 2007). Although still a compu-
tational challenge, related methods based upon adjoint approaches
have also been proposed for global scale work (Tromp et al. 2005;
Liu & Tromp 2006; Tape et al. 2007). There are also models that
incorporate finite-frequency effects in a more computationally ef-
ficient manner by collapsing the 3-D sensitivity to a 2-D sensitiv-
ity along the great circle path between source and receiver (Li &
Romanowicz 1995).

Most of the published global and regional scale finite-frequency
models to date, like many of the tomographic models that pre-
ceded them, have been derived from body wave traveltime data
(Montelli et al. 2004, 2006) and/or multimode surface wave phase
and group delay measurements (Ritzwoller et al. 2002; Yoshizawa
& Kennett 2004; Boschi 2006; Zhou et al. 2006). However, there
are several published whole mantle global models based in whole or
in part upon time-domain waveform inversion methods (e.g. Li &
Romanowicz 1996; Mégnin & Romanowicz 2000; Gu et al. 2003;
Panning & Romanowicz 2006; Takeuchi 2007). The theory used for
the waveform modelling ranges from the computationally efficient
assumption that the waveforms are sensitive only to path-averaged
structure (Woodhouse & Dziewonski 1984) to the somewhat more
computationally expensive technique of reducing finite-frequency
sensitivity to 2-D sensitivity along a plane (Li & Romanowicz 1995)
to fully 3-D kernels based upon the Born approximation and nu-
merical wavefield calculations (Takeuchi 2007).

There are several reasons why a time-domain waveform mod-
elling approach may be preferred over secondary observables such
as surface wave phase delays measured in the frequency domain
or body wave traveltimes measured by picks or cross-correlation.
There is arguably more information contained in the full wave-
forms than in the secondary observables, which act to reduce the
waveform to a smaller set of parameters, such as phase delay or
amplitude perturbation. This is particularly important when dealing
with portions of the seismograms that include interfering phases
(e.g. overtone surface waves and closely arriving body wave phases
such as S and ScS in many distance ranges), where simple phase
delay measurements or cross-correlation traveltimes are more prob-
lematic. However, the challenges of using 3-D implementations of
the Born approximation for time-domain waveform modelling are
not the same as those for other data types, and it is important to
evaluate how well such an approach actually models the waveforms
we can observe.

With that in mind, further systematic evaluation of how well such
approaches are able to model realistic global seismic waveforms is
necessary. In this study, we evaluate some limits of applicability of
the linear 3-D Born approximation for time-domain waveform mod-
elling and see how it compares with other theoretical approaches
and make suggestions for how to extend the applicability of the 3-D
Born waveform kernels without requiring extensive computational
capacity such as for adjoint methods. For comparison to the Born
approximation applied in the context of secondary observables, we
also analyse the effectiveness of 3-D Born phase delay kernels (as

opposed to waveform kernels) for predicting fundamental mode
Rayleigh wave phase delays.

2 B O R N A P P ROX I M AT I O N

The first-order Born approximation is a single scattering approx-
imation, used in seismological applications to approximate the
perturbed wavefield due to a small perturbation of the reference
medium. The simplified derivation that follows illustrates what is
meant by terming it a ‘single scattering’ approach.

Neglecting the effects of gravity, the homogeneous equations of
motion in an elastic medium can be expressed concisely as

ρ∂2
t u0 − ∇ · C .. ε0 = 0, (1)

L0u0 = 0, (2)

where u0 is the displacement field in the reference medium, C is
the fourth order elastic stiffness tensor and ε0 is the strain tensor
in the reference medium. Eq. (2) simply restates eq. (1) using an
integro-differential operatorL0. The elastic response of the medium
can then be determined by placing a forcing term on the right-hand
side.

A small perturbation to the reference medium can be approxi-
mated as a small perturbation to both the operator (L0 → L0 + δL)
and the wavefield (u0 → u0 + δu),

(L0 + δL)(u0 + δu) = 0, (3)

L0δu = −δLu0 + O(δ2), (4)

where eq. (4) defines the first-order Born approximation upon ne-
glecting the higher order perturbation terms. This sets up a method
for calculating the perturbation to the reference wavefield, δu, by
considering forcing terms in the original equations of motion calcu-
lated by considering the effect perturbed medium, δL, operating on
the reference wavefield, u0. We can model the perturbed wavefield
by integrating over the entire perturbed medium considering the
forcing terms δLu0. The meaning of ‘single scattering’ is then that
for each perturbed scattering point in the medium, we only consider
scattering generated by the reference wavefield. This means that
all energy in the scattered wavefield, δu, has interacted with only
one scattering point. Additionally, we neglect the effect of earlier
scatterers on the reference wavefield as recorded at the receiver. Im-
portantly, this second point means that the Born approximation does
not conserve energy, because we assume that we can simply add in
a small scattered wavefield and not change the reference wave-
field. This predicts that the Born approximation will break down
if the scattered wavefield becomes large relative to the reference
wavefield.

There are many approaches in the literature describing techniques
to go from the symbolic definition of the Born approximation in
eq. (4) to practical techniques for modelling waveforms in a per-
turbed earth model. Until recently, most global applications of Born
theory made assumptions to reduce both the types of scattering and
integration volume, such as the path average approximation (PAVA;
Woodhouse & Dziewonski 1984), which reduces the sensitivity of
the waveform to the average of the structure along the great-circle
path, and non-linear asymptotic coupling theory (NACT; Li &
Romanowicz 1995), which includes coupling between mode
branches to account for the heterogeneity of sensitivity along the
great-circle path but uses a stationary phase approximation to ignore
the contribution of sensitivity off the great-circle path, or the scalar
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exponent approximation (SEA; Marquering & Snieder 1995), which
uses approximate methods of treating surface-wave mode coupling
to model along-path sensitivity of waveforms of body wave phases.
In recent years, however, advances in computational power have led
to practical means of computing fully 3-D Born sensitivity kernels
for body waves using paraxial ray theory (Dahlen et al. 2000), for
surface waves using surface wave modes (Meier et al. 1997; Zhou
et al. 2004) and for long-period waveforms and delay times using
normal modes (Capdeville 2005; Zhao & Jordan 2006).

In this paper, we use the methodology described by Capdeville
(2005), which efficiently considers full mode coupling, by using
convolutions of mode wavefields at scattering points rather than ex-
plicit mode coupling analogous to the methods used in adjoint misfit
gradient calculations (e.g. Tromp et al. 2005). With this formalism,
we can define 3-D sensitivity kernels, K(x, t), as expressed by the
integral relationship

δu(t) =
∫

V
K(x, t) · δm(x) dV, (5)

where the integration is over the volume of the Earth and δm is the
model vector describing the perturbations to the elastic coefficients
and density. An example kernel for shear velocity perturbations at
a time point during a fundamental mode Rayleigh wave is shown in
Fig. 1. Although minor differences exist between implementations
of the first-order Born approximation, critical calculations were also
validated using the method of Zhou et al. (2004), based on surface
wave modes, which showed consistent results.

The classical normal mode based expression of the Born ap-
proximation is included as expression A1 in the Appendix. Direct
implementation of this is computationally expensive as it requires
an integration over the volume of the Earth for each possible pair of
coupled modes. Additionally, the expression is non-linear for time
domain waveforms. Indeed, as pointed out in Appendix as well
as previous normal mode work (e.g. Tanimoto 1984; Romanowicz
et al. 2008), this non-linearity is due to an approximation of incor-
porating a secular term that grows unbounded with time into the
exponential of the equation. The term proportional to time is a short

Figure 1. An example waveform sensitivity kernel at a depth of 65 km for a
point in a fundamental mode Rayleigh wave packet recorded on the vertical
component with minimum period of 60 s. The white triangle is the receiver,
and the source mechanism is shown at the source location. The scale shows
the perturbation to the acceleration seismogram (m s−2) integrated over cells
1◦ × 1◦ laterally and 100 km in depth.

time approximation that arises when we derive the first-order Born
approximation as a linear waveform perturbation. This secular term
is a clear indicator of how the Born approximation breaks down if the
model perturbation, and thus, the scattered wavefield and the secular
term itself grows too large relative to the reference waveform. It is
important to point out, however, if we instead derive expressions for
linear frequency perturbations for modes (or equivalently phase de-
lays in the frequency domain for surface waves or cross-correlation
traveltime shifts for body waves), the same problem does not oc-
cur, as the secular term is not required. This difference points out
why we would not necessarily expect the same range of validity for
Born-based modelling of waveform perturbations versus modelling
of phase delays, which we examine more fully in Section 6.

All of current practical approaches for time-domain waveform
modelling use techniques to deal with the two problems of compu-
tational expense and the treatment of the secular term. PAVA and
NACT both use asymptotic approximations to spherical harmonics
and the stationary phase approximations to reduce the integrations
over the whole globe in eq. (A1) to integrations along the path
between the source and receiver. Capdeville (2005) reduces com-
putational cost by a reorganization of expression (A5) that avoids
explicitly coupling every mode. Tanimoto (1984) suggests treating
the secular term by absorbing it into the exponential, analogous to
treating an expression of the form (1 + δωt) exp(iωt) as exp[i(ω +
δω)t]. This basic idea of how to treat the secular term is also incorpo-
rated into PAVA and NACT, as discussed briefly in the Appendix and
more fully in Romanowicz et al. (2008). However, current practical
implementations of the Born approximation for modelling wave-
forms that fully account for 3-D structure (e.g. Capdeville 2005)
do not include any correction to account for the unbounded growth
of the secular term. This potential shortcoming is the primary mo-
tivation for this study to carefully test the validity of time domain
waveform modelling using the first-order 3-D Born approximation.

3 E VA LUAT I N G 3 - D B O R N WAV E F O R M
M O D E L L I N G W I T H S I M P L E M O D E L S

A critical point for evaluating seismic models derived using the Born
approximation in time-domain waveform modelling is to understand
how well the theory performs for forward modelling the effects
of seismic structure. To systematically explore what situations we
expect to gain accuracy using the 3-D Born approximation, and in
what situations the assumptions of the approximation are violated,
we set up a series of synthetic tests with simple source–receiver
geometries and perturbation models.

We calculate numerical traces using a coupled normal-mode
spectral element method code (CSEM, Capdeville et al. 2002;
Chaljub et al. 2003). We treat the numerical traces as ground
truth for evaluating predicted waveforms from 3-D Born ker-
nels, as well as mode-based great-circle approximations PAVA
(Woodhouse & Dziewonski 1984) and NACT (Li & Romanow-
icz 1995), which approximate the seismic sensitivity as an average
of structure along the path, and as a 2-D function of sensitivity
collapsed on the great-circle path, respectively. PAVA is discussed
in more detail in Section 3.2 and NACT in the Appendix. Figs 2–5
also show traces labelled NBORN, which are calculated using an
approach discussed in Section 4. All the seismic traces shown in
Figs 2–5 are acceleration time-series that have been bandpass fil-
tered with a cosine taper with cut-offs at 100 and 1000 s and corners
at 120 and 250 s periods. The models shown all have maximum
velocity anomalies near 220 km depth with the amplitude tapering
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source

Max amp 3.0%

SEM1D
X R1

SEM3D

Differential traces X 2.55 (SEM differential dashed)

PAVA

NACT

BORN

NBORN

Misfit to SEM3D X 2.55

PAVA
NACT
BORN
NBORN

Figure 2. Comparisons of several theories to numerical synthetics. The
model and path geometry is shown at top at a depth of 220 km. The
source is at a depth of 100 km and the receiver is at a distance of 80◦
(∼8800 km). The traces labelled SEM1D and SEM3D are numerical traces
through the reference model and perturbed model, respectively, with a small
vertical offset for clarity. Below are shown predicted differential traces (3-D
predicted trace minus reference trace) in solid for PAVA, NACT, 3-D Born
waveform kernels (BORN) and a modified Born trace (NBORN) overlaying
the numerical differential trace as a dashed line. See Section 4 for a descrip-
tion of NBORN. The scale is magnified relative to the SEM1D and SEM3D
traces by the factor shown above the PAVA trace. The bottom traces show
the misfit for all methods relative to the numerical results at the same scale
as the differential traces. See text in Section 3.1 for further description of the
frequency band and model. R and X label the fundamental mode Rayleigh
wave and overtone wave packets, respectively.

to zero at the surface and at 471 km depth. The radial amplitude of
the structure is defined by a cubic b-spline (Mégnin & Romanow-
icz 2000) with knots at depths of 0, 121, 221, 321 and 471 km.
The background velocity model for all calculations is a simplified
version of PREM (Dziewonski & Anderson 1981) with the crustal
structure and the 220 km discontinuity removed.

3.1 Examples where Born waveform modelling
performs well

As discussed by Spetzler et al. (2001), we expect that methods
accurately taking into account 3-D sensitivity should outperform

source

Max amp 3.0%

SEM1D
X R1

SEM3D

Differential traces X 3.58 (SEM differential dashed)

PAVA

NACT

BORN

NBORN

Misfit to SEM3D X 3.58

PAVA
NACT
BORN
NBORN

Figure 3. Same as Fig. 2 for the source receiver geometry shown at top,
with an epicentral distance of 140◦ (∼15 500 km).

great-circle based approximations when the size of the anomaly
is similar to or smaller than the width of the Fresnel zone for the
surface wave of interest. To verify this numerically, we define a
model with lateral structure defined by a 2-D Gaussian function with
a full width at half maximum of 12◦ (∼1300 km). For the particular
background velocity model chosen here, this is comparable to an
estimate of the width of the first Fresnel zone near the midpoint of
the source–receiver path for the fundamental mode Rayleigh wave
at 120 s, the short-period corner of the passband.

When the source–receiver path goes directly through the anomaly
and the receiver is located close to the anomaly (Fig. 2), the Fres-
nel zone is smaller than this anomaly, and the numerical trace is
similarly well fit by PAVA, NACT and the first-order Born approx-
imation. The last trace shown in Figs 2–5, labelled NBORN, is
explained in Section 4. For the fundamental mode (labelled R1),
all theories do a good job of fitting the differential seismograms
(defined by the predicted trace through the 3-D model minus the
1-D reference trace). This can be expected, as the Fresnel zone
will be smaller than this anomaly near the source and receiver, and
great-circle based approximations should be sufficient. In the por-
tion of the seismogram with overtone surface wave energy, NACT
and Born both show some improvement over PAVA. This shows
that the heterogeneity of sensitivity along the path predicted by
NACT for overtones when cross-branch coupling is included (Li &
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source

Max amp 3.0%

SEM1D
X R1

SEM3D

Differential traces X 4.19 (SEM differential dashed)

PAVA

NACT

BORN

NBORN

Misfit to SEM3D X 4.19

PAVA
NACT
BORN
NBORN

Figure 4. Same as Fig. 2 for the source receiver geometry shown at top
with an epicentral distance of 140◦ (∼15 500 km).

Romanowicz 1995) improves fit, even when PAVA does a good job
for the fundamental mode. The first-order 3-D Born waveform ker-
nels offer further modest improvement over NACT for the overtones
in this case, meaning that the off-path distribution of the anomaly
also plays a role in the predicted waveform here.

When the receiver is farther from the source, so that the anomaly
is near the midpoint of the path (Fig. 3), accurately accounting for
off-path sensitivity becomes more important. In this case, the whole
anomaly is contained within the Fresnel zone, and both PAVA and
NACT overpredict the effect of the anomaly. PAVA and NACT begin
to show signs of failure because the methods assume that structure
is relatively constant over the Fresnel zone, whereas in fact the
anomaly here goes to zero near the edge of the predicted Fresnel
zone, leading to the overprediction. Physically, one can also think
of this as a wavefront healing effect (e.g. Hung et al. 2001) because
paths through scatterers near the edge of the anomaly, which can
still arrive constructively with energy propagating along the great-
circle path, do not see as much structure, thus lessening the total
effect of the anomaly.

Similarly, we see that paths that graze the edge of the anomaly at
this distance (Fig. 4), are also not correctly predicted by great-circle
based approximations. In this case, PAVA and NACT underpredict
the effect of the anomaly because the structure along the path is
quite small in amplitude, whereas that immediately off the path but

source

Max amp 6.5%

SEM1D
X R1

SEM3D

3D traces (SEM trace dashed)

PAVA

NACT

BORN

NBORN

Misfit to SEM3D X 0.64

PAVA
NACT
BORN
NBORN

Figure 5. Same as Fig. 2 for the different model shown at top and for an
epicentral distance of 130◦ (∼14 400 km). See Section 3.2 for more details
of the model. Traces labelled PAVA, NACT, BORN and NBORN are full
3-D traces plotted on the same scale as SEM1D and SEM3D rather than
differential traces.

still contained within the Fresnel zone, is larger and still noteably
affects the resulting seismogram.

3.2 Example where first-order Born waveform modelling
performs poorly

Section 3.1 demonstrates the potential first-order Born waveform
kernels present for improving resolution of shorter wavelength
structure in global models. If great-circle based theories overpre-
dict the effect of short wavelength structure, then models derived
using these approaches may underpredict the amplitudes of such
structure, producing artificially smooth models. However, it is also
worthwhile to consider the predictions for long-wavelength struc-
ture, for which the great-circle based methods were designed. Do
first-order Born kernels perform as well for this type of structure as
the great circle methods?

To test this case, we assume a model with the same depth dis-
tribution as before, but the anomaly now has a full width at half
maximum of 60◦, which is much larger than the Fresnel zone
for these surface waves. Additionally, the strength of the anomaly
was increased from a peak of 3 per cent used in Section 3.1 to
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6.5 per cent. For a path directly through this large anomaly (Fig. 5),
the relative performance of the different methods is quite different
from before. For a large, high-amplitude anomaly, the effect on the
seismogram should be much larger than in Section 3.1. When com-
paring the SEM1D reference trace to the SEM3D numerical trace,
it is obvious that a large phase delay of a quarter cycle or more is
introduced in the fundamental mode. Despite this large difference,
the predicted seismograms (shown here as the full seismograms,
rather than the differential seismograms) are well matched by both
PAVA and NACT. Recalling the expression of the first-order Born
approximation for time domain waveforms in Appendix, this would
mean that the resulting secular term is larger and potentially more
problematic. Indeed, the Born seismogram is more poorly matched
in phase and significantly overpredicts the amplitude of the 3-D
waveform, leading to a much greater misfit than for PAVA and
NACT.

The breakdown of the first-order Born approximation in this case
can be explained by the growth of the secular term, which is a
function of the assumptions inherent in the method. As discussed in
Section 2, the first-order Born approximation defined in eq. (4) does
not conserve energy. When the scattered wavefield is comparable to
the amplitude of the reference wavefield, it is no longer appropriate
to neglect the higher order terms in eq. (4). For δu to be large enough
to produce an apparent phase shift of more than a quarter cycle, it
is clear that it must have an amplitude similar to the reference trace,
and thus the Born approximation breaks down. Mathematically, this
is expressed by the unbounded growth of the secular term. From the
physical point of view of neglecting energy conservation, we can see
that we are adding energy into the wavefield beyond that supplied
by the source, and thus we greatly overpredict the amplitude of the
resulting waveform.

PAVA and NACT do not suffer the same breakdown because they
incorporate this secular term as a linear phase perturbation inside
the exponential rather than a linear waveform perturbation. This
sort of expression is valid at long times, and, as discussed below,
also includes some contribution from multiple scattering along the
great circle (e.g. Friederich et al. 1993, appendix).

It is worthwhile to consider in more detail how this phase pertur-
bation is implemented in PAVA, and why this leads to the better fit
for model perturbations such as that shown in Fig. 5. The reference
1-D seismogram can be written as a sum of normal modes

u0(t) =
N∑

k=0

uk(t), (6)

where N is the number of normal modes in the frequency band of
interest, and uk is defined as

uk(�, t) = Ak(�) cos(ωk t), (7)

where � is the epicentral distance, ωk is the eigenfrequency of the
mode in the reference model and Ak is an excitation and phase term
related to the eigenfunctions at the source and receiver depths and
generalized associated Legendre functions (Phinney & Burridge
1973) of the epicentral distance (see eq. A11).

The PAVA approximation, as introduced by Woodhouse &
Dziewonski (1984) for waveform modelling, is expressed as

uPAVA(t) =
∑

k

Ak(� + δ�) cos(ω̂k t), (8)

where

ω̂k = ωk + δω̂, (9)

δ� = �

Uk

(
l + 1

2

) (δω̂ − δω̃k), (10)

δω̂k = 1

2π

∫ 2π

0
δωlocal(φ

′) dφ′, (11)

δω̃k = 1

�

∫ �

0
δωlocal(φ

′) dφ′, (12)

where U k is group velocity of the kth mode, δω local is the local fre-
quency as defined by Jordan (1978), δω̂k is the great-circle average
of the frequency shift and δω̃k is the minor arc average. The variable
φ′ refers to the set of coordinates (θ , φ) along the great-circle path
defined by the source and receiver. This expression was initially pro-
posed as an ad hoc approach to waveform modelling (Woodhouse
& Dziewonski 1984) but was later shown (Romanowicz 1987) to be
equivalent to incorporating the secular term as a frequency shift in
the exponential, as proposed by Tanimoto (1984), but only evaluat-
ing the contribution from coupling between modes along a single
dispersion branch and collapsing the integrals to the great-circle
path using asymptotic expansions of spherical harmonics and the
stationary phase approximation.

The combination of frequency shift and apparent epicentral dis-
tance shift produces the appropriate phase shift with sensitivity
limited to the propagation path for both minor and major arc, as
well as multiple orbit phases. Conveniently for practical implemen-
tation, there is no need to track the orbit number of the phase, and
wave packets containing both fundamental and overtone energy that
may be from different orbit numbers are handled correctly. Because
the structural effect is implemented as a phase shift rather than a
simple addition of a scattered wavefield δu, the energy conservation
problem is partially avoided as a linear phase shift simply displaces
energy in time in a wavefield. Although not a rigorous proof, one
can intuitively think about this by comparing a linear waveform
perturbation definition to a sine wave, u = sin t + δφ cos t , to the
equivalent linear phase perturbation, u = sin (t + δφ). As the per-
turbation δφ goes to infinity, the total energy in the wave,

∫ ∞
−∞ u2 dt ,

grows unbounded for the waveform perturbation while remaining
unchanged for the phase perturbation. Romanowicz (1987) showed
that the PAVA expressions are equivalent to standard measurements
of phase velocities of surface waves for long-wavelength structure,
and the numerical results shown in Fig. 5 convincingly show this
to be the case. This excellent data fit can be further understood
by considering that the PAVA solution approximates the contribu-
tion of multiple forward scattering to the perturbed wavefield. As
has been shown by studying multiple scattering of surface waves
(Friederich et al. 1993, appendix), the contribution of the multiply
scattered wavefield (including all forward scattering, but neglecting
backscattering and surface wave mode coupling) for a band hetero-
geneity of length a along the path and infinite extent perpendicular
to the path with a constant perturbation to the local wavenumber,
�k, is a simple phase shift a�k. Given that result, the PAVA ex-
pression then correctly includes multiple forward scattering within
the approximation that anomalies that vary smoothly along the path
are well modelled by a path-averaged anomaly, and that the lateral
extent of the anomalies are greater than the width of the Fresnel
zone. NACT also does an equally good job in this case as it is im-
plemented as a PAVA expression with additional asymptotic terms
related to coupling between modes across dispersion branches.

It is important to note that this breakdown of the linear Born
approximation results whenever the accumulated phase delay in
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radians is great enough. The particular model used to demonstrate
this problem in Fig. 5 may be somewhat unrealistic, but is chosen
to demonstrate the effect for the very long-period data shown here
(dominant period greater than 120 s) for a relatively short path.
However, for shorter periods and/or longer paths, it is quite reason-
able to obtain phase delays of greater than π /2 for more modest
velocity anomalies. For example, a mean velocity perturbation of
only 0.5 per cent is sufficient to get such a delay for a minor arc 60 s
surface wave propagating a distance of 120◦. As a rule of thumb, the
first-order Born prediction starts to noteably diverge from numeri-
cal predictions when the accumulated phase delay exceeds a quarter
period. Given that, a very rough estimate to determine whether the
linear Born approximation will begin to breakdown for prediction
of surface waveforms at a desired frequency through a given model
can then be obtained by considering whether the quantity〈
δc

c

〉
ωt >

π

2
, (13)

where 〈δc/c〉 is the path-averaged phase velocity perturbation at fre-
quency ω and t is the arrival time of the particular surface wave mode
considered. This demonstrates why more modest velocity anoma-
lies than that shown in the simple example above may be sufficient
to violate the assumptions of the first-order Born approximation for
longer paths and/or higher frequencies.

4 M O D I F I C AT I O N T O B O R N
WAV E F O R M M O D E L L I N G

For the simple models described above, it is clear that modelling
based upon the linear 3-D Born approximation is preferable for some
geometries but performs poorly in others. This is not an ideal case
for implementation in a tomographic inversion. It is not generally
feasible to pick and choose which approach to use for each seismic
trace in the database, and clearly many real source–receiver geome-
tries in the real Earth will incorporate elements of more than one
of the simple cases demonstrated above. We would desire to have a
single expression for modelling the waveforms that performs well
for the geometries described in both Sections 3.1 and 3.2.

We look to define such an expression in a similar fashion as the
derivation of NACT (Li & Romanowicz 1995). In the Appendix, we
discuss how to apply the first-order Born approximation in a nor-
mal mode formalism, and briefly describe how such an approach
is modified to extend the range of validity, as in NACT. Eq. (A9),
which is the Born approximation linearized with respect to a set
of modes with frequencies modified as predicted by path-averaged
structure rather than the frequencies in the initial 1-D model, would
be an excellent candidate for our desired expression that acts as
a compromise between PAVA and first-order 3-D Born theory. It
effectively linearizes the problem using modes that better reflect the
1-D structure between source and receiver, analogous to a method
suggested by Meier et al. (1997), which advocated using non-linear
inversion to use the best 1-D model for each path before applying
first-order Born kernels. The expression gains longer time stability
by using the higher order terms from a PAVA phase shift, but re-
placing its linear contribution with that accurately calculated from
considering all mode coupling in the volume. There are, however,
significant computational hurdles to using this equation directly in
a model inversion. Because efficient implementations that consider
full 3-D integration (e.g. Capdeville 2005) do not explicitly consider
individual mode coupling, expression (A9) cannot be implemented
directly. Additionally, we would require an expensive recomputation
of the 3-D Born kernels for each path after each model iteration, as

the definition of δω̃ depends on the previous model iteration. Fur-
thermore, implementation of PAVA as in (A9), using only frequency
shifts requires careful orbit tracking to determine precisely the path
over which to integrate δω local, which becomes complicated when
waveforms include overlapping energy from fundamental modes
and higher modes from different orbits. This is not required when
the apparent epicentral shift is used as in eq. (8).

To balance these computational concerns, we propose an ap-
proach that incorporates the PAVA phase shift in the exponential
but restores the original Born sum of eq. (A4), as

u(t) = uPAVA(t) + δuBorn(t) − δuPAVA(t), (14)

where uPAVA is defined as in eq. (8), and δuBorn is defined as in
eq. (A5). We want an expression δuPAVA, so that we can write the
linear expression

uPAVA(t) ≈ u0(t) + δuPAVA(t), (15)

correct for short times and small values of δω. Such an expres-
sion can be defined by extracting two terms, δuPAVA = δu(1)

PAVA +
δu(2)

PAVA, which we compute asymptotically to order zero, as derived
by Romanowicz (1987); See also Romanowicz et al. (2008):

δu(1)
PAVA = Re

[∑
k

Akδω̂k it exp(iωk t)

]
,

δu(2)
PAVA = Re

[∑
k

δ�A′
k(�) exp(iωk t)

]
, (16)

where δ� and δω̂k are defined as in eqs (10) and (11), respectively,
and A′

k = dAk/d� is the derivative of the excitation terms with
respect to � (not derived here). δu(1)

PAVA arises from self-coupling
(i.e. coupling of modes within a multiplet), whereas δu(2)

PAVA arises
from consideration of coupling of modes along a dispersion branch.
Adding these terms to u0 gives us the desired expression

uPAVA ≈ Re

{ ∑
k

[Ak(�) + Ak(�)δω̂k it + δ�A′
k(�)] × exp(iωk t)

}

≈ Ak(�) cos(ωk t) + δ�A′
k(�) cos(ωk t)

− tδω̂kAk(�) sin(ωk t).
(17)

Substituting the definitions of uPAVA and δuPAVA into eq. (15), we
obtain

u(t) =
∑

k

[Ak(� + δ�) cos(ω̂k t) − δ�A′
k(�) cos(ωk t)

+ tδω̂kAk(�) sin(ωk t)] + δuBorn(t). (18)

This expression is correct to the same level of approximation in δω

as the original Born expression for time domain waveforms.
Intuitively, we can think of eq. (18) as simply taking the PAVA

expression and removing the linear portions of the PAVA phase
shift and replacing them with those predicted from the 3-D Born
approximation. The two terms of δuPAVA can then be considered
equivalently as the linear terms arising from a Taylor expansion of
the PAVA expression around the reference frequency and epicentral
distance. We can express the linearized version of PAVA from eq. (8)
by taking the partial derivatives of eq. (7) with respect to � and ω,

∂

∂�
uk = A′

k(�) cos(ωk t), (19)

∂

∂ω
uk = −tAk(�) sin(ωk t). (20)
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We can use these to expand PAVA in a Taylor series around the
reference frequency and epicentral distance to remove the linearized
contribution of the frequency shift and apparent epicentral distance
shift. We then obtain

uk(�, t) = [
Ak(�) + δ�A′

k(�) + O(δ�2)
]

× [
cos(ωk t) − tδω̂k sin(ωk t) + O

(
δω̂2

k

)]
≈ Ak(�) cos(ωk t) + δ�A′

k(�) cos(ωk t)

− tδω̂kAk(�) sin(ωk t), (21)

which is equivalent to eq. (17).
If we then remove the linearized PAVA contribution from the

full linear mode coupling term, δuBorn, we would once again obtain
eq. (18), which shows that equation can be considered as correcting
the linear terms of the expression for uPAVA with the more accurate
3-D Born terms. Note that if the path-averaged model perturbations
are small enough so that the PAVA phase shift is small, and the
waveform perturbations are well modelled by just the linear terms,
u0 − δuPAVA is simply the reference trace, u0, and we have the
simple first-order Born approximation. However, if the PAVA phase
delay is large, the higher order terms become more important and
act as a correction to the first-order Born expression.

Eq. (18) does a remarkable job for the simple cases discussed in
Sections 3.1 and 3.2, with negligible additional computation with
respect to the standard first-order 3-D Born kernels. As can be
seen in the traces labelled NBORN in Figs 2–5, the misfit for this
approach is comparable to that of whichever method had performed
best. Although there may be a slight increase in misfit relative to the
best trace in each case, it clearly avoids both the breakdowns that
plague the great-circle approximation for small anomalies, as well
as those that affect the Born approximation for large phase delays.

Of course, the ultimate goal of these expressions is to improve the
resulting tomographic models. The modified Born approximation
derived here changes the inversion process in two ways. As shown
for simple models in Sections 3.1 and 3.2 and for more complicated
models in the following Section 5, it improves the forward mod-
elling. This is an important component for iterative inversions when
starting from a non-zero model. Second, the partial derivatives with
respect to model parameters that are non-zero along the great-circle
path will be modified based on the non-zero starting model.

We’ll consider a model parametrized as

δm(r, θ, φ) =
∑

p

cph p(r, θ, φ), (22)

where m and cp are vectors to allow for multiple physical parameters
(e.g. VP , VS , and ρ) and hp(r , θ , φ) represents the set of spatial
basis functions. Then we can write the partial derivatives based on
expression (18) as

∂u

∂cp
= ∂u1

∂cp
+ K(Born)

p , (23)

where K(Born)
p is the Born kernel as calculated by Capdeville (2005),

integrated over the basis function h p(r , θ , φ). Sensitivity to model
structure enters u1 through δω̂ and δω̃, as defined in eqs (11) and
(12). Using those expressions and eq. (A3), we can then write

∂u1

∂cp
= ∂u1

∂δω̂

∂δω̂

∂cp
+ ∂u1

∂δω̃

∂δω̃

∂cp
(24)

= �

Uk(l + 1
2 )

[A′
k(� + δ�) cos(ω̂k t) − A′

k(�) cos(ωk t)]

×
(

∂δω̂

∂cp
− ∂δω̃

∂cp

)

− t [Ak(� + δ�) sin(ω̂k t) − Ak(�) sin(ωk t)]
∂δω̂

∂cp
, (25)

where

∂δω̂

∂cp
= 1

2π

∫ 2π

0

∫ a

0
Mkk(r )h p(r, φ′) dr dφ′, (26)

∂δω̃

∂cp
= 1

�

∫ �

0

∫ a

0
Mkk(r )h p(r, φ′) dr dφ′ (27)

and Mkk(r ) are the radial sensitivity kernels used in eq. (A3).
The expressions in square brackets in eq. (25) demonstrate that

this term is a modification to the Born partial derivatives that goes
to zero unless there is a non-zero starting model (i.e. δ�, δω̂ and δω̃

are non-zero). Eq. (27) shows that this modification is applied only
for model parameters with a spatial basis function that is non-zero
along the great-circle path between source and receiver.

This modification of the partial derivatives based on the starting
model means that the inversion is non-linear in the sense that the
partial derivatives depend on the starting model. However, the un-
derlying calculation of the eigenfunctions, used to define both the
Born kernels and the PAVA modifications to the forward calculation,
and partial derivatives is based on the original 1-D reference model.
Although this is not the same as a fully non-linear inversion with
all derivatives calculated from a 3-D starting model, it allows for
approximate corrections to the forward calculation and derivatives
for the starting 3-D structure without the computational expense of
numerical approaches.

5 E VA LUAT I O N O F P E R F O R M A N C E
I N E A RT H - L I K E M O D E L S

While evaluating performance in simple models is informative for
determining specific strengths and weaknesses of different methods,
it is not clear how to extrapolate such results to realistic earth
models. To truly evaluate the forward calculation performance of
these methods, we would want to compare the misfits for many
paths through the real Earth to determine which method performs
the best in a statistical sense. However, the structure of the real Earth
is not known, and simulating many paths for many events in these
different methods can become computationally expensive. To get
some sort of measure of the methods in realistic earth models in a
computationally efficient manner, we simulated paths with multiple
distances and azimuths from a single event in several random ‘Earth-
like’ models. We choose to use several random models rather than
any specific existing tomographic model to allow us to simulate
many paths from events in different portions of the Earth, using a
single event location in the calculation of the numerical traces and
theoretical predictions. Otherwise our results could be biased by
strong structure near the repeated source.

Of course, we do not know precisely what the Earth looks like,
and so, we have to make a decision as to what the characteristics are
that define an ‘Earth-like’ model. We choose to define random mod-
els that have shear velocity structure characteristic wavelengths and
amplitudes similar to that of the global model SAW24B16 (Mégnin
& Romanowicz 2000). We generated three random upper-mantle
velocity models with spherical harmonic power spectra and radial
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correlation fixed to that of SAW24B16 (Mégnin & Romanowicz
2000, figs 6 and 15), with the exception of the degree 0 (spherically
symmetric) term, which is set to zero for the random models. For the
long-wavelength structure, this model is similar spectrally to other
global models and is a reasonable estimate of the type of spher-
ical harmonic power expected in long-wavelength structure. We
then calculated seismograms through the second orbit fundamen-
tal mode Rayleigh wave at six different azimuths at four distances
(e.g. Fig. 6a). However, SAW24B16, like other global models, in-
cludes smoothing that will tend to bias shorter wavelength structure
to zero. For this reason, we made another set of three models with
the same spectral power as SAW24B16 to degree 12 but with a
white spectrum extended out to degree 24 with power set to the
mean power in degrees 8-12 in SAW24B16. This class of models
appears somewhat more spotty and has somewhat higher overall
amplitudes than the SAW24B16-like models (e.g. Fig. 6b).

For all models, we calculated 24 vertical component seismograms
to 10 000 s. These were bandpass filtered with cut-off frequencies
at 80 and 1000 s, and corners at 100 and 250 s period. These were
calculated with CSEM, as well as PAVA, NACT, Born kernels and
the modified Born approximation. With this data, we can systemat-
ically compare misfits as a function of distance and methodology,
treating the CSEM synthetics as ground truth. We calculated misfits
for each trace for windows centered on the first and second orbit

Figure 6. Example slices at a depth of 200 km for (a) a random model with
the same wavelength characteristics of SAW24B16 and (b) a random model
with a whitened spectrum at spherical harmonic degree 13–24. The source
location used in the simulations is shown with a star, and the six azimuths
on which traces were calculated are shown as solid lines. The colour scale
shows S velocity perturbation (per cent).

Table 1. RMS misfit normalized by rms amplitude of 3-D SEM trace.

PAVA NACT BORN NBORN

Distance Models R X R X R X R X

All 0.14 0.15 0.14 0.14 0.28 0.27 0.21 0.22
20 SAW 0.14 0.15 0.14 0.14 0.26 0.27 0.21 0.21

Whitened 0.14 0.15 0.14 0.14 0.29 0.27 0.22 0.22

All 0.17 0.19 0.16 0.15 0.74 0.36 0.26 0.17
60 SAW 0.17 0.19 0.16 0.14 0.82 0.40 0.27 0.18

Whitened 0.17 0.18 0.16 0.15 0.64 0.32 0.26 0.17

All 0.29 0.26 0.29 0.22 1.10 0.41 0.42 0.23
100 SAW 0.26 0.25 0.26 0.21 1.21 0.46 0.43 0.23

Whitened 0.32 0.27 0.32 0.24 1.00 0.37 0.41 0.23

All 0.67 0.38 0.66 0.40 1.69 0.41 1.00 0.31
150 SAW 0.56 0.35 0.55 0.33 1.57 0.35 0.85 0.24

Whitened 0.78 0.42 0.78 0.46 1.82 0.47 1.15 0.38

All 0.87 0.62 0.87 0.61 2.17 0.85 1.06 0.58
210 SAW 0.75 0.55 0.75 0.53 2.27 0.82 1.09 0.54

Whitened 1.00 0.69 1.00 0.70 2.07 0.88 1.03 0.63

All 0.55 0.42 0.55 0.39 1.69 0.57 0.60 0.38
260 SAW 0.43 0.38 0.42 0.34 1.82 0.54 0.56 0.34

Whitened 0.68 0.46 0.68 0.44 1.55 0.60 0.64 0.43

All 0.60 0.44 0.59 0.42 1.70 0.48 0.75 0.39
300 SAW 0.50 0.40 0.49 0.33 1.40 0.39 0.63 0.30

Whitened 0.70 0.49 0.70 0.50 2.00 0.58 0.87 0.47

All 0.91 0.66 0.91 0.66 2.10 0.61 1.27 0.51
340 SAW 0.79 0.64 0.79 0.61 1.88 0.59 1.17 0.48

Whitened 1.03 0.69 1.04 0.71 2.32 0.62 1.37 0.54

Note: R and X are wave packets with the fundamental and overtone phases,
respectively.

fundamental mode Rayleigh waves, as well as the first and second
orbit higher mode surface waves (Table 1 and Figs 7 and 8).

The misfit values reported in Table 1 and Figs 7 and 8 are defined
by the root mean squared (rms)residual (predicted value - ground
truth) normalized by the rms amplitude of the 3-D CSEM trace for
each wave packet. Analysing these results leads to several surprising
results.

For nearly all distances and wave packets, the linear Born seismo-
grams provided the worst fit. In fact, for the fundamental modes at
most distances, on average most wave packets were fit quite poorly
by the first-order Born approximation, with a mean normalized mis-
fit greater than 1. A normalized misfit of 1 can arise, for example,
when a seismogram is in phase, but has an amplitude either a factor
of 2 too large or nearly zero. Alternatively, a misfit of 1 can mean
the amplitude is correct, but the phase is off by approximately a
quarter cycle. Both of these situations would likely be characterized
as a poor fit upon visual inspection.

For the fundamental modes for both classes of models (Fig. 7a),
there was minimal performance difference between PAVA and
NACT, as might be expected since the cross-branch coupling terms
added by NACT are expected to be small for the fundamental mode
compared with overtone wave packets, which contain energy from
several mode branches arriving simultaneously. The modified Born
approximation (NBORN) shows a large improvement over the poor
fit of the linear Born traces; however, in general they show some
degradation in fit relative to the PAVA and NACT traces.

Considering all models for the overtone wave packets (Fig. 8a), all
theories show a better fit than for the fundamental modes. Physically,
this can be explained by the deeper sensitivity of the overtones,

C© 2009 The Authors, GJI, 177, 161–178

Journal compilation C© 2009 RAS



170 M. P. Panning, Y. Capdeville and B. A. Romanowicz

0.01

0.1

1

10

0.01

0.1

1

10

a

Fundamental mode

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

N
o

rm
a

liz
e

d
 m

is
fi
t

0.01

0.1

1

10

b

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0.01

0.1

1

10

0 60 120 180 240 300 360

Distance (degrees)

0.01

0.1

1

10

0 60 120 180 240 300 360

c

0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360
0.01

0.1

1

10

0 60 120 180 240 300 360

PAVA

NACT

BORN

NBORN

Figure 7. Normalized misfits for wave packets containing fundamental
mode Rayleigh waves as a function of distance for the PAVA (black), NACT
(green), linear Born (blue) and modified Born (red). All are evaluated at the
same set of distances but are offset for clarity. Small dots show individual
misfits, whereas the mean misfit at each distance is plotted as a larger
diamond. Top panel shows the results from all models, middle panel shows
only SAW24B16-like models and bottom panel shows models with whitened
spectrum at degrees 13–24.
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Figure 8. Same as Fig. 7 but for wave packets containing higher mode
surface waveforms.
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combined with the lower amplitude of structure at greater depths
in these models. This means that the overtones differ less from the
reference 1-D trace and thus are easier to fit for all theories. There is
a little more differentiation between PAVA and NACT, with NACT
showing a moderate improvement in most distance ranges. The lin-
ear Born remains the worst fit, but there is less difference from the
great-circle based approximations than in the fundamental mode
case. This is likely a combination of two factors. The lower ampli-
tude structure leads to less accumulated phase delay, which means
that fewer traces will lead to a breakdown of the linear Born approxi-
mation. However, it is also likely partially because coupling between
modes across dispersion branches, accounted for asymptotically in
NACT but more fully in the first-order Born approximation, is more
important for the overtones, which consist of many simultaneously
arriving modes. When the NBORN modification is taken into ac-
count to reduce the effect of the large phase delays, NBORN is
comparable with NACT for distances up to 100◦ and the best fit for
greater distances.

It is also interesting to break down the comparisons to only in-
clude the SAW24B16-like models (Figs 7b and 8b) and only the
whitened spectrum models (Figs 7c and 8c). For both fundamental
and overtone phases, the difference in misfit between the linear Born
traces and the other theories is decreased for the whitened spectrum
models relative to the SAW24B16-like models. By inspecting the
values in Table 1, we can see that there is a consistently worse fit
for PAVA and NACT for the whitened spectrum models than for the
SAW24B16-like models, whereas the first-order Born traces do not
show a consistent difference between the two classes of models.

What is the explanation for the poor performance of the first-
order Born approximation? To understand whether the poor misfits
are arising more from mismatches in phase or amplitude, we also
calculated correlation coefficient values for each fundamental mode
(Fig. 9a) and overtone wave packet (Fig. 9b). If the normalized mis-
fit is close to 1 and the correlation is positive, that is, an indication
that the mismatch is primarily in amplitude, whereas if the correla-
tion is near zero or negative, the mismatch is primarily in phase. If
the normalized misfit is much greater than 1, the waveform match is
poor enough, so that the correlation coefficient is less informative.
For the fundamental mode, there are clearly some traces that have
poor enough fits, so that the correlation is also quite poor. However,
for most traces, including many with poor misfit values, the corre-
lation remains strongly positive, indicating that the misfit values are
more indicative of amplitude mismatch than phase mismatch. This
is what we would expect if the breakdown of the first-order Born
traces is due to a problem related to the growth of the secular term,
as discussed in Sections 2 and 3.2. The paths through the models
accumulate large phase delays, but the linear Born implementation
of these delays leads to a breakdown due to non-conservation of
energy, and the amplitudes are thus greatly overpredicted. Since the
Born fits do not vary strongly between the SAW24B16-like models
and the whitened models, it is apparent that the problematic phase
delays are accumulated chiefly due to long wavelength structure.

6 C O M PA R I N G WAV E F O R M
A N D P H A S E D E L AY K E R N E L S

The evaluations from the previous sections are all performed specif-
ically for time domain waveform modelling. However, in many
applications of 3-D finite frequency theory to surface waves, the
data are secondary observables, such as phase or group delays (e.g.
Ritzwoller et al. 2002; Yoshizawa & Kennett 2004; Zhou et al.
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Figure 9. Same as Fig. 7 but displaying correlation coefficient rather than
misfit for (a) the fundamental mode wave packets and (b) the higher mode
wave packets.

2006). Although the results of Section 5 clearly indicate that at least
for some frequency bands and classes of models the first-order 3-D
Born time domain waveform kernels do not correctly model the
waveform data, there is reason to expect that the situation will be
less problematic for phase delay modelling. It is already apparent
that the surface wave data maintain linearity in phase for a larger
range in model parameters because PAVA waveform fits, which are
implemented as linear phase perturbations, are consistently better
than the 3-D Born waveform fits.

Although first-order 3-D Born phase delay kernels can be derived
from the Born approximation of waveform perturbation (e.g. Zhou
et al. 2004), it is important to note that there are differences in the two
approaches. The results of tests of waveform studies as described
above cannot be applied blindly to phase delay based approaches.
The phase delay kernels are based upon the effective phase shift of
an infinitesimal waveform perturbation, where the first-order Born
approximation is valid by definition, and then assuming that phase
delay is a linear function of model perturbation. Once again, this is
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analogous to comparing a perturbed sine wave defined by sin t +
δφ cos t to one defined by sin(t + δφ). For small perturbations,
the two are equivalent, but the results will diverge in both apparent
phase and amplitude as the perturbation δφ becomes large.

It is possible to use the data set from Section 5 to evaluate the
performance of Born phase delay kernels. We use a multitaper
method (Laske & Masters 1996) to measure relative phase delays
between the 3-D CSEM traces and the 1-D reference traces. We
can then convert the Born waveform kernels developed using the
methodology of Capdeville (2005) to phase delay kernels appro-
priate for multitaper measurements using the expressions of Zhou
et al. (2004).

We choose to evaluate Born phase delay kernels only for fun-
damental mode measurements. Because the overtones are not well
isolated in time and the waveforms are an interference of several
higher modes arriving simultaneously, more processing is required
both to make the mode phase measurements as well as defining the
kernels. This introduces several possible sources of error, which
make our simple testing proposed here less informative.

We measure the phase delays on the CSEM traces through the
3-D models relative to the 1-D reference traces using the multi-taper
method described by Laske & Masters (1996). We use the first five
2.5π prolate spheroidal tapers with a window length defined by
the interval between the predicted arrival of phases with 3.5 and
4.4 km s−1 group velocities. This window isolates the fundamental
mode well for the passband used here and the simplified PREM
background model. We use these tapers to get five independent
estimates of the complex transfer function between the 1-D and 3-D
traces as a function of frequency, T (ω). If agreement with the 1-D
trace were perfect, then T (ω) = 1, whereas a small perturbation
leads to T (ω) = 1 + δT (ω). If we assume that the 3-D trace is
sufficiently close to the reference trace (i.e. δT is small), then we
can write

δT (ω) ≈ ln T (ω) = δ ln A(ω) − iδφ(ω), (28)

where δφ(ω) is the phase delay, and δln A(ω) is the relative ampli-
tude anomaly. We can then measure δφ by

δφ(ω) = −Im(ln(T (ω))), (29)

and we choose to use the mean of the independent taper estimates
for our measured δφ.

Following Zhou et al. (2004), we can then convert our 3-D Born
time-domain waveform kernels, K(x, t), to kernels appropriate for
the multitaper measurements using the expression

Kφ(x, ω) = −Im

(∑
j K j (x, ω)s∗

j (ω)∑
j s j (ω)s∗

j (ω)

)
, (30)

where j is an index of the time domain tapers used, s j (ω) is the jth
windowed 1-D reference trace transformed to the Fourier domain
and K j is the jth windowed waveform kernel transformed to the
Fourier domain. The predicted phase delay is then

δφ(pre)(ω) =
∫

Kφ(x, ω)δm(x) dx, (31)

where δm(x) is the shear velocity perturbation model. The phase
delay is then converted from radians to seconds.

Because the corner periods of the passband for this data are 100
and 250 s, we choose to report the results for 120, 160 and 200 s
(Fig. 10). To minimize the effects of cycle skip, we assume that the
phase delay is less than ±π radians at a frequency of 3.5 mHz and
then unwrap the phase to higher frequencies from that point.
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Figure 10. Fundamental mode Rayleigh wave phase delays (s) measured
from 3-D CSEM traces plotted versus predictions from linear 3-D Born
phase delay kernels at periods of (a) 120, (b) 160 and (c) 200 s.
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Table 2. Born and PAVA phase delay statistics.

Period Born PAVA

120 s Slope 0.88 0.83
R2 0.82 0.78

RMS error (s) 12.1 12.8
χ2/N 1217.1 611.2

160 s Slope 0.96 0.68
R2 0.88 0.73

RMS error (s) 9.8 12.9
χ2/N 1034.9 2698.7

200 s Slope 0.89 0.48
R2 0.88 0.66

RMS error (s) 9.8 15.9
χ2/N 71.8 193.0

Note: For each period, the slope and R2 of the least-squares
linear regression between observed phase delays and those
predicted by Born kernels and by PAVA are shown, as well as
the rms misfit and reduced χ2 statistic describing the fit of the
predictions to the data.

There is general agreement between the measurement and predic-
tion at all three periods, and there does not appear to be significant
bias. The slopes of the best fit lines through the plots of observed
versus predicted phase delay are slightly less than unity at all three
periods (Table 2), suggesting a slight but likely insignificant de-
gree of underprediction. The relationship is well-approximated by
a line with R2 values greater than 0.8 for all three periods. There
is slightly more scatter at 120 s, with a rms prediction error of
12.1 s, compared with rms error of 9.8 s at both 160 and 200 s, but
the agreement is fairly good for all three periods.

Using the multitaper method, we can obtain independent esti-
mates of the measurement error of the transfer function using a
jackknife method (Thomson & Chave 1991; Laske & Masters 1996).
This approach gives a complex valued estimate of the variance of
the transfer function, σ 2

T (ω). We convert this to a phase delay mea-
surement error by making the conservative assumption that the error
in transfer function estimate is distributed in a circular region in the
complex plane. We also make the conservative assumption for er-
ror propagation that Im(ln(T )) ≈ Im(T ), which is an overestimate
for larger phase delays. We then estimate the real-valued error on
the phase delay measurement by σδφ(ω) =

√
|σ 2

T (ω)|. If this is an
accurate estimate of the measurement error, and the Born phase
delay predictions are accurate within measurement error, then we
would expect a value near unity for the reduced χ 2 statistic of the
measurement error

χ 2

N
= 1

N

N∑
i=1

[(
δφ

(pre)
i − δφi

)2

σ 2
δφ,i

]
, (32)

where N is the number of measurements of δφ and σ δφ,i is the
estimated error of the ith measurement.

For this data set we obtain very large values of χ 2/N of 1217.1,
1034.9 and 71.8 at 120, 160 and 200 s, respectively (Table 2).
There are two possible explanations for these large values. The
measurement error may be significantly underestimated by a factor
of

√
χ 2/N (34.9, 32.2 and 8.5 for 120, 160 and 200 s), or the theory

is incapable of matching the measurements within measurement
error, particularly as we move to higher frequencies. It is possible
that this estimate of error may be a significant underestimate, as
it only considers the error caused by the multitaper method itself.
In particular, this includes spectral leakage and inconsistencies in
the effective phase delays in different portions of the time domain

window chosen, as might be expected in a multimode waveform
or in the presence of noise (which is not included here). Laske &
Masters (1996) found that the jackknife errors were an underesti-
mate in their real data set and had to be multiplied by a factor of 2
for self-consistency. Real data, of course, would also include noise
not present in this synthetic data as well as other potential sources
of error such as errors in instrument response and the choice of
method for computing reference traces in an unknown model, and
thus we could expect significantly higher measurement error than
in the case of the noiseless synthetics considered. These factors
may be sufficient to explain the large reduced χ 2 statistics simply
as an underestimate of the true variance value that should go in the
denominator of the statistic for this synthetic case with a known
model. However, based on this data set, there is justification for
further study of how well Born phase delay kernels are able to fit
data at shorter periods within measurement error.

We can also compare the performance of the Born phase delay
predictions with those from PAVA. We explicitly express the PAVA
predictions of phase delay for a particular mode, in seconds, for the
minor and major arc phases using the frequency perturbations from
eqs (11) and (12) as

δφ
(PAVA)
1 = �

Ukωk
δω̃k, (33)

δφ
(PAVA)
2 = 1

Ukωk
(2πδω̂k − �δω̃k), (34)

where, as before, U k is group velocity of the mode, in radians per
second, and the subscripts 1 and 2 refer to minor and major arc,
respectively. For the set of paths used here, the relation between
observed phase delays on the synthetic seismograms and the PAVA
predictions are shown in Fig. 11. For the predictions shown here, we
took an additional step to make the phase delay predictions directly
comparable with the multitaper measurements. Since the PAVA pre-
dictions assume the only effect of the model on the seismogram
is a phase perturbation, the transfer function is simply T (ω) =
exp(−iδφ(PAVA)). To account for the smoothing in the spectral do-
main of the multi-taper estimation of the spectrum, we convolve this
transfer function with the frequency domain tapers used in the mea-
surement. Because the PAVA predicted phase delays are a smooth
function of frequency, however, this step has little effect on the fi-
nal prediction, except near the edges of the frequency band, where
spectral leakage makes the measurements unreliable anyway.

The PAVA predictions also have generally good agreement with
the measurements, although not quite as good as the Born pre-
dictions. There appears to be some increasing underprediction at
longer frequencies, as the best fit lines through the data of Fig. 11
have slopes progressively less than 1 as we move to longer period
(Table 2). The least-squares linear regressions of the predictions to
the observations are also somewhat less well fit, with R2 values less
than those for Born at equivalent periods. The rms misfit is similar
to Born at 120 s, but worse as we move to longer periods. When we
take into account the measurement error and consider the normal-
ized χ 2 statistic, we obtain slightly better statistics compared with
Born for the shortest period. At longer periods, however, the fit is
slightly worse than Born. This may be somewhat unexpected, as we
showed for the waveforms that PAVA performed better than Born for
long wavelength structure, and so we might expect that to mean that
PAVA would also perform better at matching the lower frequency
data. However, the breakdown in Born was not specifically due to
the wavelength of the structure, but was actually due to the larger
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Figure 11. Same as Fig. 10 but for PAVA predictions.

cumulative phase delays due to longer wavelength structure causing
a breakdown in the linearly perturbed waveforms. Converting the
Born kernels to phase delay kernels avoids this shortcoming. The
improved performance relative to PAVA at longer periods can likely

be explained by the larger contribution of off-path structure for the
longest period data.

We do not compare phase delay predictions for NACT or the
modified Born approach here. This decision was made because
both methods are hybrid compromises between approaches that as-
sume linear waveform perturbations, such as the first-order Born
approximation to perturbed waveforms, and methods like PAVA
that assume linear phase perturbations. This makes the conversion
to pure phase delay predictions a non-trivial problem. We also have
little reason to suspect that NACT and NBORN would offer signif-
icant improvement in terms of a phase-delay prediction over PAVA
and Born phase delay kernels, respectively, as both approaches are
designed specifically to improve waveform mismatches.

7 D I S C U S S I O N

As can be predicted from the assumptions that go into the method,
waveform modelling based on a 3-D Born approximation performs
impressively for models with small deviations from the reference
model, matching numerical predictions nearly exactly. However, it
is clear that the assumptions going into the approximation can be
violated for realistic Earth data when starting from a 1-D reference
model. It appears that for surface waveforms at periods near 100 s
at least, the fit from the forward application of 3-D Born waveform
modelling is either not sufficient for improving global mantle ve-
locity models or requires great care in selection of the data used in
the inversion.

This in no way means that 3-D Born waveform modelling does
not have potential for advancing global scale modelling. The sim-
ple geometries discussed here showed that 3-D Born-based kernels
offer significant improvements in accurately modelling the effect of
shorter wavelength structure. The simple and computationally ef-
ficient PAVA-based non-linear modification discussed in Section 4
greatly improves the performance of the linear Born approximation
by improving the modelling of the effects of the large wavelength
structure, which can generate larger phase delays, and has great po-
tential for use in global modelling in combination with very careful
data selection to avoid paths where the theory breaks down. This sort
of careful data selection was used in the Born waveform modelling
performed by Takeuchi (2007), who used purely linear kernels. An
attempt was made to reduce the potential bias introduced by discard-
ing all data exhibiting larger phase delays by using data in multiple
frequency bands. This allowed the inclusion of paths with signifi-
cant accumulated structure at least for longer period data, where the
total phase delay in radians is less. Even more data could be accu-
rately modelled if a correction as in Section 4 is used, particularly
for higher mode data. This is very important, as there is reason to ar-
gue that waveform modelling, which accurately treats higher mode
waveforms as the interference pattern of several modes with similar
group velocities, is a preferable method to the greater amount of
pre-processing and potential error sources required to use higher
mode phase and group delays.

This also does not directly address the gains to be made by Born-
based modelling of other seismic observables, such as body-wave
cross-correlation traveltimes and surface wave group and phase
delays. Section 6 suggests that the Born phase delay kernels per-
form better than the waveform kernels, although there may still be
potentially significant errors in measurement fit. For the fundamen-
tal mode Rayleigh wave in the frequencies studied here, the Born
phase delay kernels generally outperformed the predictions from the
path average approximation. This merits further systematic studies
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comparing the forward performance of Born theory with other the-
oretical approaches to modelling phase delay measurements, such
as a JWKB approximation (e.g. Dahlen & Tromp 1998, chapter 16).

Another avenue for improving the waveform modelling using
Born-based kernels is to find some way to bring the reference model
closer to the real model. Based on the poor waveform fits in the
realistic earth models where the average 1-D structure was known
exactly, it appears that a single 1-D reference model is not sufficient
for the direct application of linear Born kernels. The most straight-
forward way to do this is to use numerical approaches to utilize a
3-D starting model, which has been proposed for Born-based the-
ories for various seismic observables on the global scale using an
adjoint wavefield method (Tromp 2005; Liu & Tromp 2006; Tape
et al. 2007) and on a regional scale using a more traditional matrix
inversion technique (Chen et al. 2007). This, however, remains a
computationally expensive option. Another option is to use a Born-
based approximation calculated relative to a non-linearly modelled
1-D model for each path (Meier et al. 1997). For large regional and
near-teleseismic modelling, there have also been proposals to move
beyond the single scattering approximation by using an algorithm
to incorporate multiple forward scattering (Friederich et al. 1993;
Friederich 1999). This algorithm is somewhat more computation-
ally intensive than the approach described in this study and requires
careful reparametrization and discretization of the model for each
event used, but does an excellent job of avoiding the pitfalls of
the first-order Born approximation. Finally, it may also be possi-
ble to implement a Born approximation using regionalized mode
calculations, analogous to non-linear crustal corrections applied in
regional and global waveform modelling (Panning & Romanowicz
2006; Marone & Romanowicz 2007).

Finally, the greater range of validity of PAVA and NACT are ex-
plained by the implementation of linear phase rather than amplitude
perturbations. This suggests that a method based on the Rytov ap-
proximation, which explicitly develops 3-D kernels based on linear
phase rather than amplitude perturbations, may be a fruitful avenue.
At this point, however, no Rytov-based method has been developed
for a multimode setting, with attention being restricted to isolated
modes like the fundamental mode surface wave (Spetzler & Snieder
2001) and first-arriving P waves, using acoustics (e.g. Woodward
1992). For practical modelling of much of the seismic waveform, a
Rytov-based theory needs to be able to handle multimode settings
and correctly model mode conversions, such as P to S conversions,
and scattering between higher mode surface wave branches, which
may be outside the scope of the theory.

It is important for each application of linear Born kernels, though,
that some effort is made in making sure that the addition of a
more computationally expensive approach is leading to actual im-
provement in data modelling. This study demonstrates that a blind
application of the theory may lead to undesirable performance in
comparison with simpler theories.

8 C O N C LU S I O N S

Although 3-D time domain waveform modelling based on the Born
approximation shows promise for improving large scale seismic
velocity models, it is important to carefully validate the method with
numerical results. Based on simple tests comparing with waveforms
calculated with coupled normal mode and spectral element method
(Capdeville et al. 2002), we show that 3-D Born waveform kernels
do improve modelling of waveforms perturbed by anomalies with
wavelengths comparable to the first Fresnel zone compared with
great-circle based approximations. However, larger wavelength and

amplitude anomalies can produce large phase delays that cause the
linear Born approximation to breakdown in frequency ranges of
interest for global seismic modelling, whereas great-circle based
methods can fit the data by perturbing the phase rather than the
amplitude of the waveform.

Born-modelled waveforms can be improved by adding in higher
order terms based on phase delay predicted by PAVA (Woodhouse
& Dziewonski 1984). With the simple numerical tests, we show
that such a modification significantly improves the modelling of
waveforms perturbed by large phase delays from long-wavelength
structure, while still modelling the 3-D sensitivity effects important
to correctly model the effect of shorter-wavelength structure.

We also tested all of the methods in random models with
structural wavelengths consistent with the global S-velocity model
SAW24B16 (Mégnin & Romanowicz 2000), as well as those with
enhanced structure at shorter wavelengths. We observed that wave-
forms calculated with the linear Born approximation had worse
misfit for first- and second-orbit Rayleigh and higher mode sur-
face waveforms than the great-circle based approximations at all
distances tested greater than 20◦. This was particularly true for fun-
damental modes, where the average misfit for linear Born kernels
was quite poor, with rms misfits normalized by the rms amplitude
of the numerical traces greater than 1 for distances larger than 60◦.
Our proposed modification to the linear Born waveform modelling,
however, consistently improved the fit relative to the linear Born
waveforms and produced the best waveform fits of the methods
tested for the higher mode surface waveforms.

Whereas the above tests only strictly apply to time domain wave-
form kernels, we also tested 3-D Born phase delay kernels for mul-
titaper measurements of fundamental mode Rayleigh waves (Zhou
et al. 2004), which have been applied for global S-velocity mod-
elling (Zhou et al. 2006). These appear to be much less problematic
than the linear waveform kernels, as predictions generally agree
with measurements on the numerical data and offer some improve-
ment relative to predictions from the path average approximation.
These predictions, however, still do not appear to match observa-
tions within measurement error. Further numerical testing of such
phase delay kernels is warranted to determine what gains are to be
made over other approaches, and how best to select data that are
well modelled by the theory.

A C K N OW L E D G M E N T S

All figures were made using GMT (Wessel & Smith 1998). Figs 2–5
produced with help from Yuancheng Gung (Gung 2003). This work
benefitted from discussions with F.A. Dahlen and Guust Nolet and
from the comments of two anonymous reviewers. MPP was sup-
ported through funding by Princeton University Council of Science
and Technology and NSF grants EAR 0308750, EAR 0309298 and
EAR 0105387. This is BSL contribution 08-12.

R E F E R E N C E S

Boschi, L., 2006. Global multiresolution models of surface wave propaga-
tion: comparing equivalently regularized born and ray theoretical solu-
tions, Geophys. J. Int., 167, 238–252.

Brenders, A. & Pratt, R., 2007. Efficient waveform tomography for litho-
spheric imaging: implications for realistic two-dimensional acquisition
geometries and low-frequency data, Geophys. J. Int., 168, 152–170.

Capdeville, Y., 2005. An efficient Born normal mode method to compute
sensitivity kernels and synthetic seismograms in the earth, Geophys. J.
Int., 163(2), 639–646.

C© 2009 The Authors, GJI, 177, 161–178

Journal compilation C© 2009 RAS



176 M. P. Panning, Y. Capdeville and B. A. Romanowicz

Capdeville, Y., Chaljub, E., Vilotte, J.-P. & Montagner, J.-P., 2002. Cou-
pling the spectral element method with a modal solution for elastic wave
propagation in global Earth models, Geophys. J. Int., 152, 34–66.

Chaljub, E., Capdeville, Y. & Vilotte, J.-P., 2003. Solving elastodynamics
in a fluid-solid heterogeneous sphere: a parallel spectral element approx-
imation on non-conforming grids, J. Comp. Phys., 187, 457–491.

Chen, P., Jordan, T. & Zhao, L., 2007. Full three-dimensional tomogra-
phy: a comparison between the scattering-integral and adjoint-wavefield
methods, Geophys. J. Int., 170, 175–181.

Dahlen, F. & Tromp, J., 1998. Theoretical Global Seismology, Princeton
University Press, Princeton, NJ.

Dahlen, F., Hung, S.-H. & Nolet, G., 2000. Frechet kernels for finite-
frequency traveltimes – I. Theory, Geophys. J. Int., 141, 157–174.

Dziewonski, A. & Anderson, D., 1981. Preliminary reference earth model,
Phys. Earth planet. Inter., 25, 297–356.

Friederich, W., 1999. Propagation of seismic shear and surface waves in a
laterally heterogeneous mantle by multiple forward scattering, Geophys.
J. Int., 136, 180–204.

Friederich, W., Wielandt, E. & Strange, S., 1993. Multiple forward scattering
of surface waves: comparison with an exact solution and Born single-
scatternig methods, Geophys. J. Int., 112, 264–275.

Gu, Y., Dziewonski, A. & Ekström, G., 2003. Simultaneous inversion for
mantle shear velocity and topography of transition zone discontinuities,
Geophys. J. Int., 154, 559–583.

Gung, Y., 2003. Lateral variations in attenuation and anisotropy of the upper
mantle from seismic waveform tomography, PhD thesis, University of
California at Berkeley, Berkeley, CA.

Hung, S.-H., Dahlen, F. & Nolet, G., 2001. Wavefront healing: a banana-
doughnut perspective, Geophys. J. Int., 146, 289–312.

Jordan, T., 1978. Procedure for estimating lateral variations from low-
frequency eigen-spectra data, Geophys. J. R. astr. Soc., 52(3), 441–
455.

Laske, G. & Masters, G., 1996. Constraints on global phase velocity maps
from long-period polarization data, J. geophys. Res., 101(B7), 16 059–
16 075.

Li, X.-D. & Romanowicz, B., 1995. Comparison of global waveform inver-
sions with and without considering cross-branch modal coupling, Geo-
phys. J. Int., 121, 695–709.

Li, X.-D. & Romanowicz, B., 1996. Global mantle shear velocity model
developed using nonlinear asymptotic coupling theory, J. geophys. Res.,
101(B10), 22 245–22 272.

Li, X.-D. & Tanimoto, T., 1993. Waveforms of long-period body waves in a
slightly aspherical earth model, Geophys. J. Int., 112, 92–102.

Liu, Q. & Tromp, J., 2006. Finite-frequency kernels based upon adjoint
methods, Bull. seism. Soc. Am., 96, 2383–2397.

Manquering, H. & Snieder, R., 1995. Surface-wave mode coupling for
efficient forward modelling and inversion of body-wave phases, Geophys.
J. Int., 120, 186–208.

Marone, F. & Romanowicz, B., 2007. Non-linear crustal correction in
high-resolution regional waveform seismic tomography, Geophys. J. Int.,
170(1), 460–467.

Meier, T., Lebedev, S., Nolet, G. & Dahlen, F., 1997. Diffraction tomography
using multimode surface waves, J. geophys. Res., 102(B4), 8255–8267.
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A P P E N D I X : B O R N A P P ROX I M AT I O N
I N N O R M A L M O D E F O R M A L I S M

We consider how to describe the first-order Born approximation in a
normal mode formalism. The normal modes, or free oscillations of
the Earth, are the solutions to the eigenproblem defined by eq. (1). In
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a spherically symmetric reference model, where the Earth’s rotation
and ellipticity are neglected, these solutions turn out to be an infinite
series of modes described by three integers: (n, l, m), where n is
the radial order, l is the angular order and m is the azimuthal order
(−l ≤ m ≤ l). In the spherically symmetric Earth, the modes are
degenerate for a given combination of l and n, and we can choose to
combine them into a single index k. For each multiplet k, there are
2l + 1 singlets corresponding to different values of m, all having
the same frequency ωk . These are the modes used in the definition
of the reference seismogram in eq. (7).

Using first-order perturbation theory (e.g. Woodhouse 1980;
Tanimoto 1984), a small perturbation to the reference model in-
troduces coupling between the different modes, and following Li
& Tanimoto (1993), we can write the perturbed seismogram for a
particular component of motion using a splitting matrix notation as

u(t) = Re
∑

i j

Ri exp

{
it

[
ωiδi j + Zi j

(ωi + ω j )

]}
Sj , (A1)

where i and j are mode indices combining multiplet index k and
singlet index m, respectively, and δ i j is the Kronecker delta. S j and
Ri are the source and receiver vectors for singlet j and i, respectively,
as defined in terms of linear combinations of mode eigenfunctions
and moment tensor elements and generalized spherical harmonics
(Phinney & Burridge 1973) by Woodhouse & Girnius (1982). Z i j

is the splitting matrix defining the coupling of the modes caused by
the model perturbation.

The splitting matrix elements can be approximated (e.g.
Woodhouse 1980; Romanowicz 1987; Li & Tanimoto 1993) by
the integral

Zi j = Zmm′
kk′ = 2ωkk′

∫


δωkk′ (θ, φ)Y m∗
l (θ, φ)Y m′

l ′ (θ, φ) d, (A2)

where the integral is over the unit sphere, ωkk′ = (ωk + ωk′ )/2, Y m
l

is a fully normalized spherical harmonic of angular order l and
azimuthal order m and the asterisk represents complex conjugation.
The perturbations to the spherically symmetric reference model
parameters enter the expression through δωkk′ , given by

δωkk′ (θ, φ) = 1

2ωkk′

[ ∫ a

0
δm(r, θ, φ) · Mkk′ (r )r 2 dr

−
∑

d

r 2
d hd (θ, φ)H d

kk′

]
, (A3)

where a is the radius of the Earth, δm represents volumetric per-
turbations to the density and elastic coefficients, r d and hd are
the radius and perturbation, respectively, of the dth internal dis-
continuity and Mkk′ and H d

kk′ are the appropriate sensitivity ker-
nels for volumetric and discontinuity perturbations, respectively.
These kernels are defined for isotropic perturbations by Woodhouse
(1980), for radially anisotropy by Li & Romanowicz (1996) and can
also be defined for more general anisotropy (e.g. Mochizuki 1986;
Romanowicz & Snieder 1988). For the case k = k ′, the above ex-
pression defines δω local, as used in expressions (11) and (12).

Eq. (A1) is an expression of the Born approximation, but ex-
amination quickly shows that the linear perturbation is contained
within the exponential expression and therefore will not be linear
for the perturbations to the time domain waveforms. Additionally,
eqs (A2) and (A3) show that implementing this expression directly
requires integration over the volume of the Earth for each possible
mode combination. This makes implementation of eq. (A1) in in-
verse approaches problematic for time domain waveform inversion
and computationally challenging for any application.

Because (A1) has the splitting matrix inside the exponential term,
it acts like a phase perturbation and produces a non-linear effect on
u(t). To define the first-order linear Born approximation appropriate
for time-domain waveforms, we must return to linearized version
of eq. (A1) and thus remove Z i j from the exponential as

u(t) = u0(t) + δuBorn(t), (A4)

where u0 is the reference trace from eq. (7), and

δuBorn(t) = Re
∑
kk′

Akk′
exp(iωk t) − exp(iωk′ t)

ω2
k − ω2

k′
, (A5)

where

Akk′ =
∑
mm′

Rm
k Zmm′

kk′ Sm′
k′ . (A6)

Using this expression, we can explicitly see that this is indeed
a short-time approximation (t � 2π/||Z i j/(ω i + ω j )||). This is
because a secular term must be introduced into the time dependence
term on the right-hand side of eq. (A5) when we consider coupling
of modes with the same frequency (e.g. within a multiplet). This
arises because we must consider the limit as ωk → ωk′ , leading
to an expression proportional to [it exp(iωk t)]/(2ωk). This term
will grow unbounded for large times, with breakdown occurring
earlier as the magnitude of Z i j increases. This describes exactly
why PAVA outperformed the first-order Born approximation in the
case discussed in Section 3.2, as PAVA keeps the perturbation term
in the exponential rather than performing the linearization, which
produces the secular term requiring the short time approximation.

In the development of NACT, Li & Romanowicz (1995) proposed
to increase the validity range of eq. (A4) by applying a frequency
shift to each mode in eq. (A1) prior to the linearization step in such
a way as to reduce the magnitude of the perturbations in Z i j . As an
example, we could consider a waveform made up of surface waves
and higher mode waveforms arriving after propagating along the
minor arc. The appropriate frequency shift in this case would be
the minor arc frequency shift δω̃, and we can make the following
substitutions into eq. (A1),

ω̃i = ωi + δω̃i , (A7)

Z̃i j = Zi j − 2ωiδω̃iδi j , (A8)

which leaves eq. (A1) unchanged, because we are simply removing
a term from the diagonal of the splitting matrix and adding it to the
reference frequency.

Upon performing the linearization using this approach, we obtain

u(t) = Re

[∑
k

Ak exp(i ω̃k t) + δu2

]
, (A9)

δu2 =
∑

k

[
− itδω̃k Ak exp iω̃k t

+
∑
k′∈�k

Akk′
exp(iω̃k t) − exp(iω̃k′ t)

(ωk + ωk′ )(ω̃k − ω̃k′ )

]
, (A10)

where �k is the subset of modes with frequency greater than or
equal to ωk , and

Ak =
∑

m

Rm
k Sm

k . (A11)

For NACT, further steps are then taken to limit the calculation
of Akk′ to the great circle path using asymptotic expansions of the
associated Legendre functions in the spherical harmonics and the
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stationary phase approximation. Romanowicz et al. (2008) discuss
PAVA and NACT, as well as higher-order asymptotic approxima-
tions in more detail and numerically evaluate their performance.
Eq. (A9), however, shows the important points that lead to an im-
provement over the first-order Born approximation. The first term
on the right-hand side of eq. (A9) is equivalent to the PAVA expres-
sion (eq. 8) for a minor arc phase expressed with only a frequency

shift, rather than a great circle average frequency shift and an ap-
parent epicentral distance shift. The last term in eq. (A10) is nearly
equivalent to the standard Born approximation (eq. A4) but evalu-
ated with perturbed mode frequencies. The first term in δu2 results
from the modification term going from Z i j to Z̃i j , and we can see
that it functions to remove the linearized contribution of the PAVA
frequency shift from the linear Born term.
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