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The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in
equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system,
equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much
interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The
Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements
of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full
profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles
are then modeled using a first principles approach with empirical climatological inputs specifying the state of
the ionosphere. Since the EEF is the primary driver of the low-latitude ionospheric current system, the observed
magnetic measurements can then be inverted for the EEF. This paper details the algorithm for recovering the EEF
from Swarm geomagnetic field measurements. The equatorial electric field estimates are an official Swarm level-
2 product developed within the Swarm SCARF (Satellite Constellation Application Research Facility). They will
be made freely available by ESA after the commissioning phase.
Key words: Equatorial ionosphere, electric fields, space magnetometry, Swarm.

1. Introduction
Electromagnetic fields in the Earth’s ionosphere are re-

sponsible for driving many interesting phenomena. At low
and mid latitudes, neutral winds combine with ionospheric
electric fields to drive the equatorial electrojet (EEJ) and
solar-quiet (Sq) current systems (Sugiura and Poros, 1969;
Richmond, 1973) which produce significant magnetic sig-
natures both on the ground and at low Earth orbiting (LEO)
satellite altitude. Equatorial electric fields are also respon-
sible for driving the equatorial plasma fountain, which lifts
plasma to the upper regions of the ionosphere, where it then
diffuses downward and poleward to form enhanced density
regions near ±15◦ magnetic latitude, known as the equato-
rial ionization anomaly (EIA) (Anderson, 1981). In recent
decades, direct measurements of ionospheric electric fields
have been restricted to a small number of ground-based
radar systems (Hysell et al., 1997; Chau and Woodman,
2004; Chau and Kudeki, 2006) and a few satellite missions
(Fejer et al., 2008; de la Beaujardière and the C/NOFS Sci-
ence Definition Team, 2004). Due to the sparse availabil-
ity of ionospheric electric field measurements, techniques
have been developed over the past decade to indirectly in-
fer electric field values from other sources, in particular at
low-latitudes. Anderson et al. (2004) developed a method
to infer equatorial vertical ion drift velocities from ground-
based magnetometer measurements in Peru using an obser-
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vatory close to the magnetic equator and another several de-
grees higher in latitude. Their method relies on training a
neural network with horizontal magnetic field inputs �H
and known electric field outputs which were provided by
the Jicamarca radar near Lima, Peru. Without a global set
of electric field measurements it is difficult to extend this
technique to other longitudes.

Alken and Maus (2010a) developed a technique to esti-
mate the equatorial electric field (EEF) from a latitudinal
profile of the EEJ current as the CHAMP satellite crossed
the magnetic equator, building upon the earlier work of
Lühr et al. (2004). Alken et al. (2013) then extended this
work to derive EEF estimates in real-time using �H mea-
surements from ground-based magnetometers at any lon-
gitude. This method will be used to produce EEF esti-
mates in near real-time each time a Swarm satellite crosses
the magnetic equator. While parts of this algorithm have
been published before in the previously mentioned papers,
the detailed algorithm has never been published in its en-
tirety. The purpose of this paper is to detail the whole al-
gorithm. This so-called “Swarm SCARF equatorial elec-
tric field inversion chain” is one of more than a dozen pro-
cessing chains developed by the Swarm SCARF (Satellite
Constellation Application Research Facility) to be operated
during the mission (see Olsen et al., 2013), to which IPGP
and NOAA will further contribute via the Swarm SCARF
dedicated ionospheric and lithospheric chains (see Chulliat
et al. (2013) and Thébault et al. (2013)). General informa-
tion about the Swarm mission can otherwise be found in
Friis-Christensen et al. (2006, 2009).
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2. Satellite Data
The primary input to the equatorial electric field chain

will come from the Swarm absolute scalar magnetometer
(ASM) instrument on-board all three satellites (Leger et
al., 2009). The Swarm ASM is expected to provide 1 Hz
scalar magnetic field measurements with an accuracy better
than 0.3 nT (Friis-Christensen et al., 2006). While the
ASM is also capable of measuring the vector field, only the
scalar field data is used for the EEF chain, since the EEJ
signature is clearly observable in scalar field measurements
and the EEF modeling procedure is considerably simpler
with scalar data.

Many of the algorithms in the EEF inversion chain were
developed during the CHAMP satellite mission (Reigber et
al., 2003). The CHAMP satellite (2000–2010) flew in a
near polar orbit (87.3◦ inclination) with an initial altitude of
454 km which decayed to about 250 km by the end of its
mission. CHAMP carried both a scalar Overhauser and a
vector fluxgate magnetometer. Many CHAMP-based stud-
ies of ionospheric electromagnetic fields and currents led to
the development of the algorithms used in the Swarm EEF
inversion chain (Lühr et al., 2004; Alken et al., 2008; Alken
and Maus, 2010a). The CHAMP database also served as the
primary source of input data during the development of the
Swarm EEF processor for the Level 2 processing facility.

3. Coordinate Systems
The Swarm scalar magnetic measurements will contain

contributions from the Earth’s core, lithospheric, iono-
spheric, and magnetospheric fields. An important step in the
processing is to compute scalar magnetic residuals which
represent the ionospheric equatorial electrojet, eliminating
as many other sources of the geomagnetic field as possible.
While this is described in detail in the following section,
here we will discuss the various coordinate systems used
during this analysis. During the data processing, we fit a
model of the Sq (solar-quiet) mid-latitude ionospheric cur-
rent system to the scalar residuals in order to eliminate its
magnetic signature. This model is a standard spherical har-
monic expansion in three dimensions, however we replace
the geocentric colatitude θ with quasi-dipole colatitude, de-
noted θq (Richmond, 1995). Quasi-dipole coordinates are
a generalization of simple dipole coordinates to a general
geomagnetic field. Quasi-dipole latitude is a coordinate
which varies along the geomagnetic field B, but changes
only slightly with altitude. These coordinates are used be-
cause the ionospheric current systems (both Sq and EEJ) are
organized with respect to the geomagnetic field, and using a
coordinate system which exploits this fact reduces the num-
ber of spherical harmonic coefficients needed to model the
Sq magnetic field. Throughout the paper, when we refer to
the “magnetic equator”, we mean the quasi-dipole equator
where the quasi-dipole latitude is 0. The spherical harmonic
model used to filter out Sq is also designed to filter out fields
originating in the magnetosphere. We represent this part
of the model in solar magnetic (SM) coordinates (Russell,
1971). In solar magnetic coordinates, the Z axis is chosen
parallel to the Earth’s magnetic dipole and positive toward
north. The Y axis is chosen perpendicular to the Earth-Sun
line and positive toward dusk. The X axis completes the

right-handed basis set and is positive toward the Sun. Since
most of the magnetospheric field contribution is driven by
solar forcing, using SM coordinates exploits this geometry
to reduce the number of external field coefficients needed
to sufficiently model these effects. Now that we have de-
fined the relevant coordinate systems for our analysis, we
will discuss the processing of the scalar magnetic data in
detail.

4. Preprocessing
The first step in the data processing involves detection of

day-side equatorial crossings. Because the EEJ signal van-
ishes during the night, or is too weak to perform a mean-
ingful inversion, we restrict our analysis to crossings of
the magnetic equator between 06:00 and 18:00 local time.
When such a dayside orbit is detected, it is analyzed from
−65 to +65 degrees quasi-dipole magnetic latitude. This
latitude range is designed to ensure the magnetic signal of
both the ionospheric Sq and EEJ current systems are cap-
tured. Although we are mainly interested in the EEJ signal,
the effect of Sq needs to be carefully separated from the to-
tal signal, since Sq effects can be significant at low latitudes
where the EEJ is flowing. This is further discussed in the
next section.

Next, we remove effects from the core, lithosphere and
magnetosphere along the dayside orbit. The total internal
field is given by

Bint = Bcore + Blithosphere (1)

Initially, the POMME-6 magnetic field model (Maus et al.,
2006) will specify the core and lithospheric fields, however
later in the mission the official Swarm core and lithospheric
field models will be used (Rother et al., 2013; Sabaka et al.,
2013; Thébault et al., 2013). Defining Fint = |Bint|, we then
compute the component of the magnetospheric field and its
induced counterpart along the internal field direction:

d Fext = Bint

Fint
· Bext (2)

where Bext is the magnetospheric field component of
POMME-6, which depends on more than a year of continu-
ous time series inputs of past Dst and F10.7 measurements.
We then compute the magnetic scalar residuals along the
orbit as

F (1) = Fswarm − Fint − d Fext (3)

Here, Fswarm are the Level 1b scalar magnetic data measured
by the ASM instrument on the Swarm satellite. The residu-
als F (1) are primarily a combination of the magnetic signa-
tures of the Sq and EEJ current systems, with some possible
effects not completely removed by the magnetospheric field
model.

5. Sq Removal
The next step in the processing is to remove the Sq signal

as well as other possible fields that are not described by our
magnetospheric model to recover an as clean as possible
magnetic signal of the equatorial electrojet current. This is
done by fitting a spherical harmonic magnetic field model
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comprised of fields of both internal and external origin and
subtracting it from the residuals. The magnetic potential for
current sources below the satellite shell is

Vint(r, θ, φ, gm
n )

= a
NI∑

n=1

1∑
m=−1

gm
n

(a

r

)n+1
Sm

n (cos θ)eimφ (4)

where a is taken to be an Earth radius of 6371.2 km,
Sm

n (cos θ) are the Schmidt-normalized associated Legendre
functions, and gm

n are model coefficients to be determined.
The magnetic potential for current sources above the satel-
lite shell is

Vext(r, θ, φ, qm
n )

= a
NE∑

n=1

1∑
m=−1

qm
n

( r

a

)n
Sm

n (cos θ)eimφ (5)

where the external coefficients qm
n are to be determined.

NI and NE are the highest spherical harmonic degrees for
the internal and external field expansions, and are set to
12 and 2 respectively by the Swarm EEF processor. Only
coefficients with order |m| ≤ 1 are used, since we are
fitting a latitudinal profile sampled over a partial orbit, with
a limited variation of longitude and altitude, and will use
quasi-dipole coordinates (see below) to reduce the number
of required coefficients. The internal and external potential
coefficients gm

n , qm
n are assumed to be time independent for

each orbit, since Swarm will not vary significantly in local-
time over the course of one orbit. The magnetic fields
resulting from the internal and external magnetic potentials
are

M(r, θ, φ, gm
n ) = −∇Vint(r, θ, φ, gm

n ) (6)

K(r, θ, φ, qm
n ) = −∇Vext(r, θ, φ, qm

n ) (7)

The unknown model coefficients are computed by minimiz-
ing the error function

E(gm
n , qm

n ) =
ND∑
i=1

[
F (1)

i − b̂i · (
M(ri , θ

q
i , φi , gm

n )

+K(ri , θ
q,SM
i , φSM

i , qm
n )

)]2

+ h2

[
NI∑

n=1

1∑
m=0

gm
n

2 +
NE∑

n=1

1∑
m=0

qm
n

2

]
(8)

where i is summed over all ND scalar measurements F (1)
i

(typically around 2000 measurements sampled at 1 Hz), b̂i

is a unit vector in the direction of the internal field Bint at
the satellite position i , θ

q
i is the quasi-dipole colatitude of

the measurement location i , and (θ
q,SM
i , φSM

i ) represent the
point (θ

q
i , φi ) transformed into Solar-Magnetic coordinates.

h is a damping factor designed to prevent nonphysically
large model coefficients in the least-squares solution, and
is set by default to 0.001 by the Swarm EEF processor.

After the model coefficients (gm
n , qm

n ) are calculated
through least-squares inversion, the final magnetic scalar

Fig. 1. Top: Sample scalar magnetic field residuals after subtracting
POMME-6 model (solid); Internal and external spherical harmonic
model fitted to mid-latitude data to filter out Sq and other effects
(dashed). Bottom: Same profile after subtracting internal/external
field model to recover equatorial electrojet signature. These data were
recorded by CHAMP during a single orbit on December 12, 2005.

residuals are computed by subtracting the internal and ex-
ternal field models projected onto the main field direction:

F (2)
i = F (1)

i − b̂i · (
M(ri , θ

q
i , φi , gm

n )

+K(ri , θ
q,SM
i , φSM

i , qm
n )

)
(9)

Figure 1 (top) shows a sample magnetic profile of F (1)

residuals (solid) recorded by the CHAMP satellite during
a single orbit on December 12, 2005 along with the fitted
internal and external field model (dashed) as a function of
quasi-dipole latitude. We see here the distinctive depres-
sion of the main field due to the equatorial electrojet cur-
rent at the magnetic equator. The sample profile shows the
magnetic field behavior of the Sq current system at mid-
latitudes during quiet-time, but it is worth noting that the
structure of this profile can change substantially during dis-
turbed conditions. The model described above, however, is
designed to capture much of this external field variability at
mid-latitudes and has proven very robust in accurately esti-
mating the low-latitude EEJ current signature. The bottom
panel of Fig. 1 shows the F (2) residuals of the same profile
after subtracting the model. The equatorial electrojet peak
here is negative since CHAMP is flying well above the cur-
rent, where the magnetic field due to the EEJ opposes the
main field direction.

6. Current Inversion
The result of removing the Sq and other residual fields

from the scalar magnetometer measurements is assumed to
be a clean latitudinal magnetic signature of the equatorial
electrojet current for every orbit on the day-side. Our goal
is to recover the equatorial electric field driving this cur-
rent system, and so the next step is to invert the magnetic



1312 P. ALKEN et al.: EQUATORIAL ELECTRIC FIELD CHAIN

Fig. 2. Current model used for inversion. Currents 1 . . . NC shown follow-
ing lines of constant quasi-dipole latitude, with the satellite crossing the
magnetic equator (shown as current j). Origin O represents the Earth’s
center with vector r jk pointing to linear current segment k of arc current
j , and ri pointing to satellite observation point i . Unit current vector I jk

shown in enlarged region with relevant parameters (see text). Basis vec-
tors φ̂ and θ̂ are shown for use during the modeling step (Section 7).

signature along each track for an estimate of the height-
integrated EEJ current. To do this, we define a simple sheet
current model of NC linear currents flowing longitudinally
eastward along lines of constant quasi-dipole latitude and
an altitude of 110 km. This simple model is designed to
represent the geomagnetically eastward flowing EEJ cur-
rent which peaks in the E-region at about 110 km altitude
(Heelis, 2004). The NC currents are spaced equally within
a 30 degree band in geocentric colatitude, where the colati-
tude direction θ̂ corresponds to magnetic south at the loca-
tion of the magnetic equator crossing (see Fig. 2). This band
is suited to capture the low-latitude current aligned with the
magnetic equator. A more sophisticated model would al-
low for currents flowing at different altitudes, allowing us
to recover the full latitudinal and radial dependence of the
EEJ current system. However, a single latitudinal magnetic
profile as measured by the satellite crossing the magnetic
equator above the EEJ system is not sufficient to uniquely
constrain the altitude dependence of such a model. We are
therefore only able to estimate the height-integrated east-
ward current flowing at a specific latitude. While the true
EEJ system is best represented as a curved current arc at a
constant altitude, for ease of processing we divide each of
the NC currents into 360 segments, where each segment is a
straight-line current spanning 1 degree of geographic longi-
tude, and the endpoints of each segment are located at 110
km altitude. Figure 2 shows a sketch of the geometry of
the current model and other relevant parameters discussed
below.

The unit current vector for longitude segment

k(1 . . . 360) of current j (1 . . . NC) is then given by

I r
jk ≈ 0 (10)

I θ
jk = − cos α jk (11)

I φ

jk = sin α jk (12)

where α jk is the angle between geographic north and the
linear current segment k of current j . The unit current
vector I jk will later be multiplied by a current strength Sj ,
with units of amperes, which is to be determined using the
satellite magnetic residuals. To determine the unknown
current strengths from the scalar magnetic residuals, we
compute the magnetic field at satellite observation point i ,
due to line segment k of arc current j using the Biot-Savart
law:

dBi jk = μ0

4π
δ jk

I jk × (ri − r jk)

|ri − r jk |3 (13)

where δ jk is the distance in meters of segment k of current j ,
ri is the position vector of satellite observation i , and r jk is
the position vector pointing to the midpoint of line segment
k of arc current j . To determine the total unit magnetic field
contribution from arc current j at satellite observation point
i , we can sum over longitudinal segments k:

Bi j =
∑

k

dBi jk (14)

Not all of the 360 longitudinal segments are used in this
sum, since the EEJ current flowing far away from the satel-
lite has less influence on the measured magnetic field. We
therefore include longitudinal segments only within ±30
degrees geographic longitude of the satellite’s crossing of
the magnetic equator in the above sum. Since we are us-
ing only the scalar magnetometer measurements on-board
Swarm, we project Bi j onto the internal field direction us-
ing the POMME model:

Fi j = Bi j · b̂i (15)

Then, the unknown arc current strengths Sj representing
the equatorial electrojet current model can be calculated by
least-squares minimization of the error function

E(S1, . . . , SNC ) =
ND∑
i=1

[
F (2)

i −
NC∑
j=1

Sj Fi j

]2

+ f 2
NC −1∑

j=2

[
Sj−1 − 2Sj + Sj+1

]2
(16)

where the first sum over j represents the fit to the total
scalar field from all NC arc currents in our EEJ model, and
the second term is designed to damp the solution so that
neighboring arc currents do not vary wildly in magnitude.
This helps to ensure a smooth latitudinal current profile
solution. By default, the Swarm EEF processor sets the
damping factor f = 5.

Once the current strengths Sj have been determined, the
total height-integrated eastward current density flowing at
110 km altitude is calculated at each latitude by dividing the
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Fig. 3. Sample height-integrated current density computed from CHAMP
magnetometer measurements on December 12, 2005.

corresponding current strength by the latitudinal distance d
in meters between arc currents:

J SAT
φ (θ j ) = Sj

d
(17)

The Swarm EEF processor defines a latitudinal spacing be-
tween arc currents of 0.5 degrees, leading to a distance
d = 56.6 km. The φ direction of Eq. (17) is the direction
of magnetic east at the location of the satellite crossing the
magnetic equator (see Fig. 2). The height-integrated cur-
rent density has units of A/m. Figure 3 shows an example
height-integrated current profile from the inversion of the
magnetic measurements shown in Fig. 1. We see here the
peak current flow at the magnetic equator as well as some
interesting structure at higher latitudes. The peak at 0 de-
grees quasi-dipole latitude is primarily due to the equatorial
electric field strength, while the higher latitude structure is
primarily due to the neutral wind field (Fambitakoye et al.,
1976, p. 114). In the next section, we will discuss the pro-
cedure for recovering the EEF by modeling these height-
integrated current profiles.

7. Electrodynamic Modeling
The electrostatic fields and currents of the ionosphere are

governed by the equations

∇ × E = 0 (18)

J = σ (E + u × B) (19)

where E is the electric field, J is the current density, σ is
the anisotropic conductivity tensor (Forbes, 1981, eq. 10),
u is the neutral wind velocity field, and B is the ambi-
ent geomagnetic field. Equation (18) is Faraday’s law in
a steady-state magnetic field and Eq. (19) is Ohm’s law de-
scribing the current density driven by the neutral winds and
electric field. We solve these equations in spherical geo-
centric coordinates, however the coordinates are rotated so

that the azimuthal direction φ̂ is tangent to the magnetic
equator at the location of the satellite crossing (see Fig. 2).
This is a first-order correction in order to allow the model-
ing of the currents flowing along lines of constant quasi-
dipole latitude, as we calculated during the satellite data
inversion step (Eq. (17)). To perform a strict comparison
between our modeled current and Eq. (17) would require
solving the electrostatic equations in quasi-dipole coordi-
nates, but this first order correction enables us to use the
simplicity of spherical coordinates and captures most of the
difference between magnetic and geographic east. Next,
we assume that the longitudinal gradients of all terms van-
ish (∂/∂φ = 0). This assumption is known to be incor-
rect on large scales, particularly at the boundaries of the 4-
cell non-migrating ionospheric structure, where gradients in
E × B drift velocities have been reported of up to 3 m/s/deg
(Araujo-Pradere et al., 2011). To fully account for these
effects, we would need to solve the electrostatic equations
in three dimensions. However, previous calculations of
electric fields ignoring longitudinal gradients have demon-
strated remarkable agreement with radar measurements at
Jicamarca (Alken and Maus, 2010a). This assumption, with
the condition ∇ ·J = 0, allows the Jr and Jθ components to
be derived from a single current stream function ψ (Sugiura
and Poros, 1969):

Jr = −1

r2 sin θ

∂ψ

∂θ
(20)

Jθ = 1

r sin θ

∂ψ

∂r
(21)

Equation (18) becomes

∂r (r Eθ ) − ∂θ (Er ) = 0 (22)

∂θ (sin θ Eφ) = 0
∂r (r Eφ) = 0

}
⇒ Eφ = REφ0

r sin θ
(23)

where R is a constant of integration and can be taken as
a reference radius, and Eφ0 is the eastward electric field
at the equator at the radius R. Equation (23) shows that
for a given value of the equatorial eastward electric field
Eφ0 = Eφ(r = R, θ = π/2), Eφ(r, θ) is determined every-
where in the (r, θ) plane. The unknowns to be determined
are therefore Er , Eθ , and ψ . We use empirical models to
supply the conductivity σ , wind field u and geomagnetic
field B. The conductivity requires knowledge of the global
densities and temperatures of the electrons, ions and neu-
trals. For these we use the IRI-2012 (Bilitza et al., 2011)
and NRLMSISE-00 (Picone et al., 2002) models. The equa-
tions for the direct, Pedersen and Hall conductivities are
given in Kelley (1989, appendix B). The neutral wind field u
is supplied by the Horizontal Wind Model (HWM07) (Drob
et al., 2008; Emmert et al., 2008). HWM07 does not pro-
vide vertical wind velocities, and so they are ignored during
this modeling. The geomagnetic field B is specified by the
POMME-6 main field model (Maus et al., 2006).

Eliminating Er and Eθ from Eqs. (19)–(22) yields a sec-
ond order partial differential equation (PDE) for the current
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stream function ψ :

αrσrr∂
2
r ψ + α

σθθ

r
∂2
θ ψ

+ α (σθr + σrθ ) ∂r∂θψ

+
[α

r

(
σθr + r2∂r

σθr

r
+ ∂θσθθ

)
−σθr∂rα − σθθ

r
∂θα

]
∂θψ

+ [α (σrr + r∂rσrr + ∂θσrθ ) − rσrr∂rα − σrθ ∂θα] ∂rψ

= rβ∂rα + γ ∂θα − α (β + r∂rβ + ∂θγ ) (24)

where

α = r sin θ (σrrσθθ − σθrσrθ ) (25)

β = r sin θ
(
σθrσrφ − σrrσθφ

)
Eφ

+ r sin θ (σθr [σ (u × B)]r

−σrr [σ (u × B)]θ ) (26)

γ = r sin θ
(
σθθσrφ − σrθσθφ

)
Eφ

+ r sin θ (σθθ [σ (u × B)]r

−σrθ [σ (u × B)]θ ) (27)

and the conductivity tensor σ is represented in a basis of
spherical coordinates. The components of the conductivity
tensor may be related to the direct, Pedersen, and Hall
conductivities using Richmond (1995, eq. 2.1). The direct,
Pedersen, and Hall conductivities are given in Kelley (1989,
appendix B), and are reproduced below:

σ0 = e2

(
ne

meνe
+

∑
i

ni

miνi

)
(28)

σp = e2

(
neνe

me(ν2
e + �2

e)
+

∑
i

niνi

mi (ν
2
i + �2

i )

)
(29)

σh = e2

(
ne�e

me(ν2
e + �2

e)
−

∑
i

ni�i

mi (ν
2
i + �2

i )

)
(30)

Here, the i sums over all ion species in the ionosphere.
e is the electron charge, ne is the electron density, ni is
the ion density of species i , me and mi are the electron
and ion masses, νe and νi are the electron and ion colli-
sion frequencies, and �e and �i are the electron and ion
gyro-frequencies around the magnetic field lines. Expres-
sions for the collision frequencies νe and νi are given in
Kelley (1989, appendix B). The ionospheric densities and
temperatures are taken from IRI-2012. The neutral density
needed to compute the collision frequencies is taken from
the NRLMSISE-00 model. Previous efforts to model the
equatorial electrojet have found it necessary to increase the
electron collision frequency νe by an empirical factor of 4
during typical day-time eastward electric field conditions,
to account for unmodeled nonlinear instabilities in the elec-
trojet stream (Gagnepain et al., 1977; Ronchi et al., 1990,
1991; Fang et al., 2008; Alken and Maus, 2010a, b). We
adopt this same convention for the Swarm EEF chain when
calculating the conductivities.

The PDE in Eq. (24) is solved on a 2D grid in the (r, θ)

plane, holding φ fixed at the longitude of the satellite cross-
ing of the magnetic equator. The grid ranges from 65 to 500

km altitude in steps of 2.175 km, and −25 to 25 degrees lat-
itude in steps of 0.25 degrees. The boundary conditions im-
posed on the PDE are that the current vanishes at the lower
and upper boundaries (ψ = 0 at r = rmin and rmax), and
there is no radial current flow at the northern and southern
boundaries (∂θψ = 0 at θ = θmin and θmax). We solve the
PDE using finite differencing on the 2D grid with a 9-cell
stencil.

8. EEF Inversion
In Eqs. (26)–(27), the terms β and γ depend on the east-

ward equatorial electric field Eφ0 , which we are seeking
through this modeling process. Our approach will be to
use an initial guess for Eφ0 and then use the satellite-derived
current (Eq. (17)) to refine the guess until the misfit between
the modeled and observed current is minimized. This prob-
lem can be made linear by noting from Eq. (19) that the
current density is linear in E when the wind field u = 0.
Defining the height-integrated eastward current calculated
from our model as

JPDE(θ) =
∑

i

Jφ(ri , θ)δr (31)

where δr is the radial grid spacing, the final eastward elec-
tric field is computed from a least squares inversion of

J SAT
φ (θ) = s JPDE(θ; Eφ0 = 1 mV/m, u = 0)

+ JPDE(θ; Eφ0 = 0, u)

− JDC (32)

In the right hand side of Eq. (32) we have separated the
modeled current solution into two pieces, the first in which
we set the wind field u = 0 and use an initial guess of
1 mV/m for Eφ0 , and the second in which we allow the
wind field and turn off the eastward electric field. The first
term is then linear in Eφ0 , allowing us to solve for a scaling
factor s to minimize the misfit with the satellite-derived
current. Therefore, the PDE in Eq. (24) is solved twice,
once with the eastward electric field turned off, and once
with the winds turned off. The final eastward equatorial
electric field (EEF) is then s·(1 mV/m). JDC is a constant
DC offset to allow for a difference in zero levels between
the modeled and observed current. The parameters s and
JDC are determined by least-squares inversion of Eq. (32),
with the additional constraint that the left and right hand
sides of that equation must agree at the magnetic equator
(θ = π/2). This constraint has been found to yield more
accurate electric fields (Alken and Maus, 2010a), since the
EEF is primarily responsible for current structure near the
magnetic equator, while the winds are primarily responsible
for current structure at higher latitudes (Fambitakoye et al.,
1976).

Figure 4 shows the modeled height-integrated current
density (dashed) derived from the CHAMP current profile
(solid) also shown in Fig. 3. We can see that the two pro-
files agree at the magnetic equator, since this condition was
imposed on the least-squares inversion. The main peak is
modeled fairly well, while the sidelobes exhibit more dis-
agreement. This is fairly typical in this modeling approach
since the sidelobes are primarily determined by the wind
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Fig. 4. Satellite-derived height-integrated current density (solid) with
modeled solution (dashed) for a CHAMP orbit on December 12, 2005.

field at both E and F region altitudes, and the climatologi-
cal Horizontal Wind Model cannot capture the full day-to-
day variability of the winds. Luckily, the main peak size
and shape is primarily determined by the equatorial zonal
electric field (with some possible contribution from E re-
gion vertical winds which are not modeled). Therefore, ac-
curately modeling this peak will produce reliable estimates
of the EEF. In the next section we will discuss validation of
the EEF estimates against independent observations.

9. Validation of EEF Estimates
To obtain an estimate of the error in the EEF calculated

from a given orbit, we use the relative error between the
satellite-derived and modeled current profiles:

RelErr =
∥∥JMODEL

φ − JSAT
φ

∥∥∥∥JSAT
φ

∥∥ (33)

where the components of the vector quantities above corre-
spond to different colatitudes θ , and J MODEL

φ (θ) is the right
hand side of Eq. (32). This relative error value is provided
as an output in the Level 2 Swarm EEF data files, and is an
indication of the quality of the corresponding EEF estimate.
Small (<1.0) values of RelErr indicate good agreement be-
tween the observed and modeled current and therefore more
accurate estimates of the EEF. Large values (>1.0) indi-
cate that the modeling was unable to reproduce important
features of the satellite-derived current. This could be due
to periods of high disturbance which cannot be adequately
captured by climatological modeling, or possibly due to
local-times where the current signal is very weak. We ap-
plied the EEF chain algorithm to all CHAMP satellite data
from May 2001 through June 2007 and found 81.7% of the
dataset had a relative error less than 1, and 18.3% of the
profiles had a value greater than 1.

Fig. 5. Comparison of eastward equatorial electric field estimates from
CHAMP with JULIA radar measurements for the period May 2001
through June 2007. Red points indicate modeled relative error less than
1, blue points indicate modeled relative error greater than 1. y = x line
in green.

A primary independent source of equatorial electric field
measurements comes from the JULIA radar located at the
Jicamarca Radio Observatory near Lima, Peru. JULIA (Ji-
camarca Unattended Long Term Investigations of the At-
mosphere) is a coherent scatter radar which measures the
velocity of upward drifting plasma near 150 km altitude
(Chau and Woodman, 2004; Chau and Kudeki, 2006). This
vertical drift is caused by the eastward equatorial electric
field, and so the vertical drift velocity directly yields the
eastward electric field through the relation E = −v×B. We
compared EEF estimates from direct CHAMP overflights of
Jicamarca with JULIA measurements. A direct overflight
was defined as CHAMP passing within ±10 degrees lon-
gitude of Jicamarca and within 5 minutes of a correspond-
ing JULIA measurement. These data pairs are plotted in
Fig. 5. A total of 162 data pairs were found for the period
May 2001–June 2007. In red are plotted the data corre-
sponding to a relative error less than 1 in the EEF modeling.
The blue points correspond to a relative error greater than
1. While there are only 13 points with a large relative er-
ror, we see that these satellite EEF estimates still agree very
well with JULIA measurements. The correlation between
the satellite-derived EEF and JULIA measurements is 0.80,
with a best fit line of ECHAMP = 1.04 × EJULIA + 0.01
mV/m. The y = x line is shown in green. These results
demonstrate that the use of climatological models in invert-
ing the satellite magnetic measurements does not lead to
a significant suppression of the day-to-day variability. Pe-
riodically throughout the Swarm mission, we plan to vali-
date the Level 2 EEF product against JULIA radar measure-
ments for each satellite to ensure the algorithm continues to
operate accurately under a wide range of solar conditions.
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10. Conclusion
In this paper we have presented in detail the algorithm

for the Swarm Level 2 Equatorial Electric Field inversion
chain. The main inputs to the algorithm are the scalar mag-
netic field measurements from the absolute scalar magne-
tometer (ASM) instrument on-board each Swarm satellite.
The chain then subtracts internal and magnetospheric field
models, filters out the mid-latitude Sq current system, in-
verts the resulting magnetic profile for the E-region height-
integrated current density, and then models this current den-
sity with a combination of first-principles and empirical
modeling to recover the driving zonal electric field at the
time of the satellite crossing of the magnetic equator. This
algorithm has been thoroughly tested against the CHAMP
database, and the resulting EEF estimates have been vali-
dated against independent measurements from the JULIA
radar, with a correlation of 0.80 between the two, a best fit
line with a slope of nearly 1, and a bias close to 0. Valida-
tion against JULIA measurements will be carried out peri-
odically throughout the Swarm mission to ensure the algo-
rithm continues to produce reliable EEF estimates.
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