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SUMMARY 
We show that a knowledge of either the signed or the unsigned direction of a potential 
field on a given smooth surface S,  which separates the space into a volume containing 
the sources and a volume free of sources, sometimes gives enough information for the 
whole field to be recovered within the free volume, except for a constant multiplier 
(positive, for the signed case). We show that the best parameter to be considered on 
the surface S is the number n of loci where the field is known to be either zero 
(no direction) or normal to the surface. In the case of sources lying outside S (‘external- 
sources’ directional problem) we prove that the dimension of the space of solutions is 
no larger than n - 1. This implies uniqueness for the external-sources directional 
problem when n = 2. In the case of sources lying inside S (‘internal-sources’ directional 
problem), we distinguish fields with monopole sources (such as the gravitational field) 
from those without monopole sources (such as the magnetic field). For gravitational 
fields, we show that the dimension of the space of solutions cannot exceed n. We note 
that the only situation of interest is the one for which n = 1, which implies in practice 
that the surface S is an isopotential and that the problem has a unique solution. For 
magnetic fields, we show that the dimension of the space of solutions cannot exceed 
n - 1. It follows that the problem has a unique solution when n = 2. This shows in 
particular that a geomagnetic field with only two poles (south and north magnetic 
poles) can be recovered, except for a constant multiplier (positive, for the signed case) 
from directional data gathered at the Earth’s surface. Finally, we note that our results 
are not restricted to the 3-D space and can readily be extended to two dimensions and 
higher dimensions. 

Key words: archaeomagnetism, geomagnetism, gravity. 

1 INTRODUCTION 

Recovering the Earth’s internal magnetic field B from measure- 
ments that can only be carried out on a surface (such as the 
Earth’s surface or slightly above) is possible in many ideal 
circumstances. Having all its sources within a bounded surface 
S,  this field is divergence-free and curl-free outside S. It is 
therefore derived from a scalar potential U(B= - V U )  that 
satisfies the Laplace equation V2 U = 0 and is completely 
defined if we have a complete set of measurements of either 
the whole field B(S), its horizontal component BH(S) (assuming 
there are no magnetic monopoles), or even only its radial 
component B,(S)  on the surface S. These well-known results 
are of obvious practical use as they ensure that the deter- 
mination of B is then only limited by the accuracy and finite 
number of measurements and not by some fundamental non- 

uniqueness (see e.g. Langel 1987). Unfortunately in several 
other circumstances encountered in practice, such as when 
only declination information is available, such a fundamental 
non-uniqueness exists. A review of our current knowledge of 
this problem and the way it can sometimes be avoided by 
adding a possibly small but well-chosen set of measurements 
has recently been given by Lowes, De Santis & Duka (1995), 
to which the reader is referred. It appears that in two cases of 
great importance for geomagnetism, the nature and extent of 
the non-uniqueness problem is still not completely assessed, 
mainly because it arises in a rather counter-intuitive manner. 

The first and best-known case is the one for which only the 
intensity B ( S )  on the surface S is assumed to be known. Backus 
(1970) showed with the help of an ad hoc counter-example 
that, at least in one theoretical case, uniqueness of the recovered 
field (to within a global sign, of course) could not be guaranteed, 
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but Backus (1968) also pointed out that there exist situations 
for which uniqueness can be guaranteed, such as when S is a 
sphere and the field is a priori known to be a finite sum of 
spherical harmonics, or when S is convex and the field has a 
non-zero monopole contribution (which is a case only relevant 
to gravitational fields). The exact circumstances leading to 
non-uniqueness, the extent of this non-uniqueness and the 
status of the Earth’s magnetic field with respect to this problem 
therefore remain to be assessed. The only thing we know for 
sure is that the problem does lead to some practical non- 
negligible errors (the so-called ‘Backus effect’) when only a 
finite number of data is available (e.g. Stern & Bredekamp 
1975). 

The second case of interest arises when only the direction 
[inclination I ( S )  and declination D(S)]  on the surface S is 
assumed to be known. We will refer to this problem as the 
directional problem. Apart from the obvious non-uniqueness 
linked to the fact that any solution can be multiplied by a 
constant positive value and yet remain a solution, further, 
much more subtle non-uniqueness seems to be possible in at 
least a number of circumstances. The situation here is quite 
similar to that encountered in the previous case. Proctor & 
Gubbins (1990) displayed an ad hoc counter-example for which 
uniqueness of the recovered field could not be guaranteed (to 
within a positive constant factor, of course, as will also usually 
be implicitly assumed hereafter). However, in the same paper 
they also argued (although without a formal proof) that when 
the field is a priori known to be a finite sum of spherical 
harmonics, uniqueness would probably be ensured. Hence 
various circumstances seemingly exist under which uniqueness 
would, or would not, be ensured. 

2 PREVIOUS RESULTS CONCERNING THE 
DIRECTIONAL PROBLEM 

We now wish to consider the possibility of proving that the 
Earth’s internal magnetic field belongs to a class of fields for 
which uniqueness of the solution can formally be established 
for the directional problem. Although to our knowledge this 
question has not yet received any definitive answer, it has 
already been addressed by several authors, mainly by Kono 
(1976) and Proctor & Gubbins (1990). Defined in precise 
terms, we will state the problem as follows. 

Let S be a closed bounded surface satisfying the following 
condition (which amounts to requiring S to be smooth). 
Condition 0: For each point P of S,  there exists outside S a 
solid sphere that has P as a boundary point. 

Then, let M be a continuous vector field defined on S, and 
G the space of functions U defined on and outside S,  regular 
at infinity and assumed to satisfy the following conditions. 
Condition 1: U is harmonic outside S, V’ U = 0; 
Condition 2: The field B = -V U is also defined and 
continuous on S; 
Condition 3: There exists a function g > 0 such that B = gM 
on S. 

The question we then want to answer is simply: if the space 
G is assumed not empty, what kind of special additional 
assumption could possibly ensure that G reduces to a 1-D 
space (that is, to make sure that any function U satisfying 
conditions 1, 2 and 3 would be uniquely determined to within 
a constant positive factor, if it exists)? 

Kono ( 1976) believed that no additional assumption was 

required and thought he had succeeded in proving it. This 
claim was not questioned for some time, probably because 
problems linked to some possible non-uniqueness never arose 
in practice. It was only 10 years later that it was felt by 
Bloxham (1985) and Gubbins (1986) that under certain 
(unspecified) circumstances the problem could get trickier. 
This, however, was not formalized until Proctor & Gubbins 
(1990) produced their counter-example. Since then, the general 
belief (e.g. Lowes et al. 1995) has been that, because of this 
counter-example, Kono (1976) appears to be in error. In fact, 
we have noted two successive loopholes in Kono’s proof, which 
we briefly describe in Appendix A (see also Bloxham 1985). 

The next serious attempt to understand the condition 
under which G reduces to a 1-D space was that by Proctor & 
Gubbins (1990). They produced the 3-D counter-example 
mentioned above, conjectured that uniqueness should be 
ensured if the field is a finite sum of spherical harmonics, 
but could not reach any additional analytical conclusion 
concerning the 3-D problem. 

From a practical point of view, however, they showed how 
the uniqueness of an already known solution could actually 
be ‘tested’ numerically by searching the zero eigenvalues of a 
properly constructed matrix. This approach, however, has a 
number of limitations, linked to the fact that it is numerical 
and that it can only deal with models described by a finite 
number of parameters. In fact Proctor & Gubbins only tested 
fields that were finite sums of spherical harmonics and for 
which, as already mentioned, we expect theoretical uniqueness. 
Not surprisingly, their numerical tests always revealed one and 
only one ‘true’ (that is, within numerical accuracy) zero eigen- 
value (that related to the possibility of multiplying the solution 
by a constant positive value). When they illustrated their 
method by ‘checking’ the non-uniqueness associated with a 
truncated version of their counter-example, they actually only 
checked the existence of an additional very small but non- 
zero (within numerical accuracy) eigenvalue. This revealed a 
tendency towards non-uniqueness of the tested truncated 
version of their counter-example but did not prove the non- 
uniqueness of the complete field. This means that the test 
proposed by Proctor & Gubbins (1990) can only suggest 
whether or not a given numerical model of the field behaves 
as a truncated version of a non-unique solution. It does not 
allow the direct testing of the theoretical solution of the 
problem. Eventually, and before turning to this formal aspect 
of the problem, it should be noted that the test of Proctor & 
Gubbins only amounts to testing the numerical stability of the 
linearized procedure used to invert the directional data (e.g. 
Barraclough & Malin 1971). The existence of stable solutions 
for historical data (e.g. Bloxham 1986) therefore ensured 
beforehand that these models would pass the test. Indeed, 
Proctor & Gubbins (1990) verified that historical models 
derived from sound directional data always passed the test. 

The previous results nevertheless have two interesting 
consequences. First, they confirm that recovering Earth-like 
fields from directional data does not lead in practice to spurious 
effects akin to the ‘Backus effect’. Second, they suggest that 
Earth-like fields do belong to a class of fields for which G 
reduces to a 1-D space. What kind of class could this be? 
Some hint can be found from the study of the equivalent 2-D 
case studied in some mathematical detail by Proctor & 
Gubbins (1990). S was then a circle, and an important con- 
clusion was that if on S the field was of dipolar form (in some 
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mathematical sense that need not be detailed here), uniqueness 
of the field recovered from directional data on S could be 
guaranteed. This conclusion was reached with the help of 
complex-variables methods that can only be used in two 
dimensions. The purpose of the present study is to show that 
this result can be extended to three dimensions (and in fact to  
any dimension k > 1) with the help of an entirely different and 
quite straightforward approach. 

3 PUTTING A B O U N D  ON THE 
DIMENSION O F  THE SPACE OF 
SOLUTIONS FOR SPECIAL CLASSES 
OF FIELDS 

Let us first note the important property that the space of 
solutions G is an open cone (any non-zero positive linear 
combination of solutions is a solution). Cones are mathematical 
objects that are not always easy to handle, but they always lie 
in a linear space. In the present case, one such space is the 
space of all linear combinations of solutions in G, regardless 
of the sign of the coefficients involved in the combination. 
Elements of this space will not in general satisfy condition 3. 
They will, however, always satisfy the more general condition 3’, 
which is as follows. 
Condition 3’: There exists a function g such that B = gM 
on S. 

This suggests that together with the directional problem 
defined by conditions 0, 1, 2 and 3, we should also consider 
the problem defined by conditions 0, 1, 2 and 3’. This second 
problem will be referred to as the ‘unsigned’ directional 
problem. It corresponds to the practical situation where the 
direction of the field is known everywhere on the surface S but 
not its sign. 

Let us define H ,  the space of the solutions of the unsigned 
directional problem associated with the directional problem. 
This space is linear and clearly contains G. Hence we may 
claim the following. 
Theorem 0: The space of solutions G of the directional 
problem is a cone entirely included in the linear space of 
solutions H of the unsigned directional problem. 

It follows that if we can put some upper bound on the 
dimension of the space H ,  the same bound would apply to G. 
On the contrary, any lower bound applying to the dimension 
of G would also apply to the dimension of H.  In this respect, 
we can then conclude from the previous section that neither 
the cone G, nor the space H ,  will in general be 1-D. 

In order to reduce the dimension of H and hence G, we will 
now impose the following condition on the vector field M. 
Condition 4: The field M is never zero or  normal to  S, except 
on a discrete set of disconnected loci (each locus being made 
of arcwise connected points) L = (L, ,  . . . , L,,), where M is either 
zero or normal to S. 

In the following, condition 4 will be assumed, and the 
corresponding cone and space of solutions for the two problems 
will be called G, and H ,  in order to avoid any confusion with 
the more general case. The interesting point, then, is that a 
number of simple theorems can be derived concerning H,. As 
G,  is included in H , ,  many straightforward conclusions can 
then be drawn about G,. The logical path we will now follow 
is quite similar to the one introduced by several mathematicians 
in the past 30 years when dealing with the so-called ‘slant- 
derivative’ (or ‘oblique-derivative’) problem (e.g. Egorov & 

Kondratjev 1969; Winze11 1977, 1979; and especially Bicadze 
1963). 
Theorem 1: Each solution U of H ,  (and hence of G,) takes a 
constant value U ( L i )  on each locus L,  of L. 
Proof: Since from condition 4 we know that on each locus Li 
of L the field M is either zero or normal to S, it follows that 
the tangential component of both M and B (because of 
condition 3’) is zero. As a result, each arcwise locus Li, lying 
on the surface S,  is an isopotential U ( L , )  for each solution U 
of H ,  or G,. 

Because of Theorem 1, we can now state that to each 
solution U of H ,  (or G,) there corresponds a set of n values 
[U(L , ) ,  ... , U(L,)] .  This in turn raises the question whether 
this set of values completely defines a solution U of H ,  (or GJ. 
The answer is yes. 
Lemma 1: If a function U different from a constant is harmonic 
in an open domain D, is continuous together with its first- 
order partial derivatives up to the boundary aD (satisfying 
condition 0) and assumes a maximum (minimum) at  some 
point P lying on aD, then one obtains V U = an for some a > 0 
(a < O), where n is the normal to a D  pointing out of D. 
Proof: This lemma is mentioned by Bicadze (1963) in a slightly 
different form, but Bicadze provided neither a proof nor a 
reference, and simply attributed the lemma to Zaremba. 
Therefore, we first provided a proof of our own, but Georges 
Backus pointed out that a proof could be found in Bers, John 
& Schechter (1954; theorem 111, pp. 151-152), in a slightly 
different form and for the case where D is a bounded domain 
(this version of the lemma was first derived by Hopf 1931). 
There is no problem in deriving a similar proof for the case 
where D is an open domain. 
Lemma 2: A solution U of H ,  (or G,) has all its extrema 
either a t  infinity or on L. 
Proof: From the extremum principle (in its classical form, see 
e.g. Kellogg 1953) U has its extrema either at infinity or on S. 
However, from Lemma 1 any extremum at some point P on 
S is such that at this point V U = an for some a # 0. It then 
follows from condition 3’ that at P,  M is either zero or normal 
to S. Thus P belongs to L, and U has all its extrema either at 
infinity or on L. 
Lemma 3: A solution U of H ,  (or G,) that is zero everywhere 
on L is zero everywhere on and outside S. 
Proof: Consider a solution of H ,  that is zero everywhere on 
L. Since U is assumed regular a t  infinity, this means from 
Lemma 2 that all extrema of U are 0. Thus U is zero 
everywhere on and outside S. 
Theorem 2: Two solutions U ,  and Uz of H ,  (or G,) that share 
common values on L are identical. 
Proof: Consider two solutions of H ,  that share common values 
on L. Define U as the difference between the two solutions. 
Obviously U is a solution of H ,  that is zero everywhere on L. 
It then follows from Lemma 3 that U is zero everywhere on 
and outside S, hence the two solutions are identical. 

Theorem 2 shows that the set of n values [U(L,) ,  .. . , U(L,)]  
that a solution U of H ,  (or G,) takes on L completely defines 
U. We can also make more formal statements, as follows. 
Lemma 4: If there exist n linearly independent solutions U j  
in H ,  (or in G,), then the matrix M,= U j ( i )  formed of the n 
values each solution takes on  the n loci Li is invertible. 
Proof: Assume M i j  is not invertible; there then exists a set of 
n values l j  not all equal to  zero and such that 

n n 1 M i j A j =  1 l j U j ( i )  = O .  
j = l  j = l  
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Then, CJ=,  AjUj  is a solution of H ,  that takes zero values 
everywhere on L. From Lemma 3, this means that this linear 
combination must be identically zero. This contradicts the 
assumption that the U j  are independent. It follows that Mi, is 
invertible. 
Theorem 3: There cannot be more than n linearly independent 
solutions in the space of solutions H ,  (or in the cone of 
solution G,,). 
Proof: Assume there are n + 1 independent solutions in H,. 
The first n of them then define a matrix M i j  = Uj( i ) ,  which we 
know from Lemma 4 is invertible. It follows that there exists 
a set of n values / z j ,  not all zeros, and such that 

c ljuj(i)= u"+l(i). 
j = l  

This states that the two solutions C A j U j  and U,,,, of H ,  
would share common values on L, and would therefore be 
identical (Theorem 2). This contradicts the assumption that 
the ( n  + 1) U j  be independent. 

4 CONSEQUENCES FOR GRAVITATIONAL 
FIELDS 

In the case n =  1, we know from Theorem 3 that H, and GI 
are either empty or 1-D. This implies uniqueness of the solution 
(if it exists) for both (unsigned or not) directional problems, 
but to what practical situation does the assumption n = 1, for 
which there is only one locus of poles on the surface S,  
correspond? 
Theorem 4: Assume there is only one locus L,  (i.e. n = 1). 
If L1 # S, then there are no solutions in HI satisfying B # 0 
everywhere on S - L,, and G, is empty. 
If L ,  = S and if condition 0 is extended so that for each point 
P of S there also exists inside S a solid sphere that has P as a 
boundary point, then H ,  and G ,  are both 1-D. 
Proof: Assume L ,  # S. Consider a solution U of H ,  satisfying 
B # 0 everywhere on S - L,. U defines a surface function Us 
on S. At any point P where U s  takes a (surface) maximum or 
minimum value on S, the surface derivatives must be zero. If 
P is not on L,, then B#O and B is normal to S. From 
condition 3' this means that P must lie on L ,  anyway, hence 
U s ,  and therefore, U ,  take a constant value Uo on S. This in 
turn implies that L,  = S,  which contradicts our assumption, 
thus no such solution U of H ,  can exist. It also follows that 
Gl must be empty (since solutions of G, are solutions of H1 
satisfying B # 0 everywhere on S - Ll). Now assume L1 = S 
and extend condition 0 so that for each point P of S there also 
exists inside S a solid sphere that has P as a boundary point. 
We then know that S is an equipotential U,, and that the 
solution of the corresponding Dirichlet problem exists (e.g. 
Kellogg 1953, p. 284). This solution is also a solution of our 
problem. H ,  and G1 are then both 1-D. 

It follows from Theorem 4 that the only physical situation 
corresponding to n = 1 is one for which the surface S itself is 
an isopotential. Furthermore, using the Gauss theorem applied 
on S,  we immediately see that this is a situation that would 
require a non-zero monopole contribution from the sources. 
It follows that it can be encountered only when one deals with 
gravitational fields (and not when one considers magnetic fields). 
Theorem 4, then, is simply the statement that knowing the 
shape of the geoid (and knowing that the masses lie inside it) 
completely defines the gravitational field to within a constant 

positive multiplier. Interestingly, we note that a situation for 
which S would slightly depart from the geoid would not lead 
to a similar conclusion. If, for instance, one considers the case 
of an ellipsoidal geoid and of a spherical surface S (sharing 
the same axis of symmetry), then there are three loci Li (one 
at each geographical pole and the geographic equator), and 
the uniqueness of the field cannot be guaranteed. In a more 
realistic situation where S would be the surface of the Earth, 
which fluctuates about the geoid on very small length scales, 
and for which the number n of loci would be very large, the 
situation would be even worse. Obviously, using directional 
data measured at the Earth's surface does not seem to be the 
safest way to recover the gravitational field of the Earth. 
Fortunately, this is not the way people usually proceed. 

5 CONSEQUENCES FOR MAGNETIC 
FIELDS 

The cases directly relevant to magnetic fields are those for 
which n is larger than 1. Although it seems at first glance that 
we lose the uniqueness property we could claim for n = 1 and 
the gravitational field, we now can take advantage of the fact 
that the magnetic field cannot have monopole sources. This is 
a strong constraint which implies the following. 
Theorem 5: The solutions of H ,  (and respectively G,) with no 
monopole sources define a space (and respectively a cone) that 
cannot have more than n - 1 linearly independent solutions. 
Proof: Solutions of H ,  (and respectively G,) with no monopole 
sources obviously define a space H ,  (and respectively a cone 
GL). Now assume there are n independent solutions U j  in 
HA. From Lemma 4 we know that for any given scalar V > 0, 
a linear combination U = C  AjUj such that U ( i ) =  V>O on 
all loci Li could be constructed. From Lemma 2, however, 
we see that this would imply that 0 I U < V everywhere on 
and outside S since U is zero at infinity. U would therefore 
remain positive even as we go towards infinite distances from 
S.  This would not be possible if U had no monopole sources: 
at infinite distance, the lowest-order sources dominate, and 
without monopole sources this would lead to a potential of 
the form U(r, 8, p) cc r-("") C, g: Y:(8, p) (with n > 0), which 
requires at least some negative values for U .  Thus U must 
have some monopole sources. This contradicts the fact that U 
is a linear combination of solutions with no monopole sources. 

The obvious consequence of Theorem 5 is that uniqueness 
is recovered for n = 2 when one deals with magnetic fields. The 
exciting point now is that it corresponds to an Earth-like 
situation: if the field has exactly one North magnetic pole and 
one South magnetic pole, the field can be recovered to within 
a constant positive multiplier. This generalizes the 2-D result 
of Proctor & Gubbins (1990) to 3-D. 

6 REMARK ABOUT EXTERNAL SOURCES 

It is interesting to note that although we dealt with the 
directional problem only in the case of a field harmonic outside 
S with sources located inside S, similar conclusions can be 
reached when dealing with the directional problem for fields 
harmonic inside S and sources lying outside S. This can be 
seen either by using exactly the same reasoning as was done 
above, or in a more restricted way (when S is a sphere) by 
making use of Kelvin's transform (e.g. Kellogg 1953). In both 
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cases, Theorems 0 to 3 can be reached in a straightforward 
manner. 

Theorem 5 cannot be stated in exactly the same way and it 
is worth discussing this point in slightly more detail. If one 
assumes that S is a sphere, then to any potential field U,,, 
with sources lying outside S there corresponds, via Kelvin’s 
transform, a potential field Uin with sources lying inside S. The 
interesting point is that the (external) potential Uin of an 
internal monopole source then becomes a potential U,,, uni- 
form inside S. It follows that the requirement in Theorem 5 
that the (external) field has no monopole (internal) sources, 
would translate into the requirement that the (internal) field 
has a zero average potential inside S. In other words this 
suggests that when one deals with external sources Theorem 5 
should become as follows. 
Theorem 5‘: For a field defined inside S and sources lying 
outside S, the solutions of H ,  (and respectively G,) with zero 
average value define a space (and respectively a cone) that 
cannot have more than n - 1 independent solutions. 
Proof: A rigorous proof can in fact be derived in the general 
case (S not necessarily a sphere) by introducing the linear 
requirement that the average potential be zero in S and using 
it to reduce by one unit the maximum dimension of the space 
H,. The details of the proof are then very similar to those 
given in the proof of Theorem 5, and we will only briefly 
outline them here. If one assumes that the space HA of solutions 
with zero average value can have n independent solutions, 
then a linear combination of them can be constructed that is 
strictly positive on S, and therefore in S. This contradicts the 
fact that it is a linear combination of solutions with zero 
average values. 

The interesting point is that in physical situations we are 
only interested in recovering the vectorial (and physical) field 
B. The requirement that the potential be of zero average value 
in S does not in fact make a physical constraint and can 
always be imposed. It follows that in the case of external 
sources, there are always no more than n -  1 independent 
vectorial (and physical) solutions B. 

7 DISCUSSION A N D  CONCLUSIONS 

We have shown that some upper bounds can be put on the 
dimension of the space and cone of solutions of the directional 
problems, provided that on the surface S where the direction 
of the field is given there only are a finite number n of loci 
where the field is known to be either zero or normal to the 
surface S. Although we have dealt with the 3-D problem, it is 
important to note that all results can readily be extended to 
the k-dimensional case, provided that k is at least 2 and that S 
is understood as a manifold satisfying a generalized condition 0. 
Note also that our results do not depend on the dimension K 
of the space. In the following we will focus on the consequences 
of our study for the 3-D case, which is directly relevant to 
geophysics. 

In the event that one considers sources lying outside S and 
tries to recover the field inside S (external-sources directional 
problem), the dimensions of the space and cone of solutions 
are no larger than n - 1 (Theorem 5’) .  Although we do not 
intend to discuss this case in any further detail, we note that 
this already implies that if n = 1 (one locus), the external- 
sources directional problem cannot have a solution. Much 
more interesting is the conclusion that if n = 2, the solution, if 

it exists, is completely defined to within a positive, unless one 
considers the unsigned problem, constant factor. This is a 
situation that would correspond to a mainly dipolar external 
geomagnetic field. Note, however, that no claim has been made 
in the present study about the existence of the solution (or 
more generally about the lower bound of the dimension of the 
space and cone of solutions of the two directional problems). 

The internal-sources directional problem is much more 
relevant to the problems encountered in studies of the Earth’s 
potential fields. The conclusions in this case depend on the 
nature of the field under consideration. If it is known to have 
monopole sources (such as in the case of the gravitational 
field), then the maximum dimension of the space and cone of 
solutions of the unsigned and signed directional problem is n. 
We noted that the only situation for which this bound is of 
immediate use is when the surface S happens to be an 
isopotential (e.g. the geoid). In this case n = 1 and the solution 
exists and is known to within a (positive, if signed) constant 
factor. But we also noted that the usual practical situation is 
one for which n is large, and for which the bound we have 
found becomes useless. The situation here is exactly the reverse 
of that encountered in the intensity problem we mentioned 
briefly in the Introduction: whereas the presence of a monopole 
source efficiently warrants that the field can be recovered from 
the knowledge of its intensity at the surface S (if, in addition, 
S is convex; Backus 1968), such a monopole is essentially a 
problem when it comes to test the possibility of recovering the 
field from directional data. 

Fortunately, the magnetic field has no monopole sources 
and for such types of field, the dimensions of the space and 
cone of solutions for the internal-sources directional problems 
have been shown to be no larger than n -  1. This means that 
there are no solutions for n = 1 (in fact, we noted that n = 1 
required a monopole source) and that the solution is unique, 
ifit exists, to within a (positive, if signed) constant factor when 
n = 2. It also means that if n is larger than 2, uniqueness can 
no longer be guaranteed. Of course, this does not mean that 
non-uniqueness will systematically arise if n is larger than 2, 
or that the space and cone of solutions are exactly of dimension 
n - 1. Nonetheless, it is interesting to point out that this bound 
increases with n not just as a result of our inability to find a 
more stringent bound, but also as a result of some real 
possibility for the dimension of the space and cone of solutions 
to increase with n. The best way to illustrate this point is to 
note that our bound predicts the dimension of the cone of 
the symmetric solutions for the counter-example produced 
by Proctor & Gubbins (1990). Indeed, the axisymmetric 
directional boundary conditions they imposed on S (which 
was a sphere) implied four loci L,: the two geographical poles 
(L ,  for North and L,  for South), and two parallels symmetric 
about the equator and of intermediate latitude (L, in the 
northern hemisphere and L, in the southern hemisphere). 
Therefore, n = 4, and the maximum dimension of the cone of 
solutions is 3. If we now want the solutions to lead to fields 
anti-symmetric about the equator (which Proctor & Gubbins 
assumed), this requires that U(L,) - U(L, )  = U(L,) - U(L,),  
which is one additional and independent linear relationship of 
the type we encountered when requiring that the field have 
no monopole sources. This will again reduce the maximum 
dimension of the cone of solutions by one unit (the rigorous 
proof of this statement is similar to that given for Theorem 5). 
If we further recall that Proctor & Gubbins did produce two 
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independent anti-symmetrical solutions of their problem, we 
can then state that the cone of anti-symmetrical solutions is 
exactly of dimension 2. Of course, the space of solution of 
the corresponding unsigned directional problem is also of 
dimension 2. 

This shows that although all our results have been derived 
in terms of upper bounds for the dimension of the space and 
cone of solutions, there are situations for which these bounds 
)can be reached. Counting the loci L,  therefore appears to be 
the safest and easiest way of estimating this dimension. Taking 
into account symmetry properties can improve the prediction. 
The only reason why it may not always lead to an exact 
prediction is that this method does not test the internal 
consistency of the field of direction M. Clearly, any more 
precise prediction would involve more sophisticated tests in 
order to take this aspect into account. 

Finally, we return to the Earth's magnetic field and answer 
the question that motivated the present study. May we recover 
this field from pure directional data? The answer remains 
unknown if we wish to simultaneously consider the external 
and internal sources, but not if we are ready to ignore the 
weak external sources (which is what happens in practice when 
people deal with pure directional data). Indeed, in that case, 
and if we happen to know that there is only one South and 
one North magnetic pole, the answer becomes yes (to within 
a constant factor, positive if the direction is signed). How sure 
can we be that there is only one South and one North pole? 

All models of the main geomagnetic field display only 
two poles at the Earth's surface. However, this property no 
longer holds when the models are continued down deep 
towards the core. This shows that geometrical attenuation is 
an efficient way of preventing the appearance of secondary 
poles (Appendix B illustrates this point in terms of a simple 
order-of-magnitude computation). It also shows that we would 
not be able to recover the field if observations were made just 
above the core. As pointed out by one of the referees, this is 
an intriguing and somewhat counter-intuitive conclusion. 
Intuition suggests that being nearer to the sources should be 
a good thing, not a problem, but intuition in this case is based 
on our habit of dealing with linear parameters of the field 
(such as any component, or the potential) defined on a sphere. 
Continuations up and down of such linear parameters are then 
straightforward, which means that knowing the parameter at 
some surface is formally equivalent to knowing the parameter 
at any other surface above the sources. Thus, being nearer to 
the sources is better in that case only to the extent that errors 
on the observations would then be smaller relative to the 
signal. In the present case the situation is completely different 
because directions are non-linear parameters, and non-linearity 
is likely to prevent a one-to-one correspondence to be found 
between directions defined on two different surfaces, one near 
and one far from the sources. This seems to be the case at 
present. We can claim that the field is completely recovered 
only when we are in a situation where the field is mainly 
dipolar. Starting from such a situation, continuations up and 
down are then possible on a one-to-one basis. However, if we 
start from a surface standing nearer to the sources, so that 
several secondary poles are to be found, upward and downward 
continuation no longer seem possible on a one-to-one basis. 
It should, however, be emphasized that our study is based on 
bounds. Some of the ambiguity could possibly be removed by 

future refined studies. In any case, the good news is that we 
stand far from the core. 

The geomagnetic field of internal origin also includes crustal 
sources of smaller length scales. These shallow sources can be 
neglected when one considers the field of very large scale, but 
make the main contribution to the degrees of the field that are 
larger than 13 (Counil, Cohen & Achache 1991; Jackson 1994). 
The spatial behaviour of this field is very different from that 
of the main field. Instead of decreasing as an exponential 
function of degree n, each degree above 13 tends to contribute 
a more or less constant value to the total magnetic field. It 
follows that the condition for additional poles to arise is much 
more likely to be reached for some critical degree. Estimating 
this critical degree from the spatial spectrum of the crustal 
field would be somewhat hazardous and we will not try to 
do it here. Rather, we will rely on a number of observations 
that have been made in the immediate vicinity of the 'true' 
magnetic poles. 

Searching for the North magnetic pole, Sir James Clark 
Ross recorded the remarkable value of 89'59' several times on 
June lst, 1831 (Barraclough & Malin 1981). This extraordinary 
observation is unique. Ross only obtained an inclination of 
88"40' when he went searching for the South magnetic pole 
(Mayaud 1953). We now know that this is because of the 
external field, which makes the apparent pole (defined as being 
a place where inclination is 90") describe an ellipse of the order 
of a couple of tens of kilometres wide every day (Dawson & 
Newitt 1982). In addition, local anomalies, possibly reaching 
a thousand nanoteslas, are responsible for contradictory local 
declination measurements (Mayaud 1953). In fact, present 
estimates of the location of the magnetic poles always rely on 
some processing of a local survey, precisely in order to avoid 
this problem (e.g. Mayaud 1953; Dawson & Newitt 1982). 
From local observations, it therefore seems that several 
secondary poles could coexist within a region of typical lateral 
dimension of about 100 km. 

The presence of two and only two poles would guarantee 
theoretical uniqueness for the directional problem. The fact 
that several secondary poles may exist is unfortunate. However, 
we should recall that in practice, and for the early data for 
which no intensity value is available (archaeomagnetic and 
pre-1840 historical data), measurement errors in declination 
and inclination can be fairly large. In addition, these measure- 
ments have sometimes been made 1000 km apart and only 
very occasionally near the actual poles. In such a situation, 
and given the fact that we are essentially interested in the 
large-scale main geomagnetic field, it seems reasonable to 
address the data as if there were only two magnetic poles at 
the Earth's surface. It follows that any archaeomagnetic or 
early historical geomagnetic field could be recovered from pure 
directional data to within a constant (positive, if the direction 
is signed) multiplier, provided it is mainly dipolar (for example 
made of a strong dipole component and displaying a spatial 
spectrum comparable to that of the present field). It must be 
kept in mind, however, that uniqueness is no longer guaranteed 
whenever the field is not mainly dipolar, as is possibly the case 
during reversals. 
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APPENDIX A: LOOPHOLES I N  THE 
PROOF OF K O N O  (1976) 

As mentioned in the main text, we noted two successive 
loopholes in Kono’s proof, which we will now briefly describe. 

The first arises when Kono considers two functions g 
(positive) and W, assumed to  be analytical on S and sharing 
common isovalues on this same surface. The claim of Kono at 
this point is that g can then be written in the form of a single- 
valued function of W on s. This seems incorrect. Indeed, 
considering g a positive analytical function with at  least one 
isovalue line go on S ,  and defining W = ( g  -go)’ on S, then W 
is also analytical on S, shares common isovalues with g ,  yet g 
is not a single-valued function of W. Being more specific, the 
error in the proof apparently lies in the fact that Kono makes 
the additional assumption in his eq. (4) that the derivatives of 
g with respect to W exist, where actually they may not exist 
(as when W and g -go are zero in our counter-example). 

The second difficulty arises a little later when Kono claims 
that P(W) being a given function of W, if a general function Q 
of W and of two curvilinear coordinates u and u (taken along 
the iso-W surfaces) satisfies the conditions dP/dW + aQ/aW = 
aQ/au = aQ/av = 0 on S (his eq. 9), then dP/d W = aQ/a W = 0 
on S. To prove this Kono used a dubious reasoning, stating 
that Q on S has to be a function of W and of at least one 
additional parameter, while aQ/aW= -dP/dW can only be a 
function of W only. From this he concluded that aQ/aW= 
-dP/dW = cte on S. This seems incorrect. From the boundary 
conditions assumed for Q on S, we explicitly have the con- 
clusion that on S, Q is a function of W only. Therefore, the 
only conclusion we can reach is that P(W) + Q(W) = cte on S .  
It follows that Kono’s proof appears to be incomplete. 

APPENDIX B: GEOMETRICAL 
ATTENUATION A N D  SECONDARY POLES 

Consider a mainly dipolar axisymmetric field with some 
degree n axisymmetric multipolar contribution, U ( 0 )  = 
U,[cos 0 + a,P,(cos O ) ] .  A pole (or a line of poles) will arise 
if and only if U’(0 )  = Uo[  -sin 8 + a,dP,(cos Q)/aQ] = 0. This 
equation has two trivial solutions corresponding to the two 
poles of the dipole. The question of interest being the possibility 
for the field to have additional poles away from these poles, 
we may divide the previous equations by sinO, which then 
become dP,(u)/du = - l/a,,, and seek the a, for which this new 
equation has a t  least one solution. We know that the Legendre 
polynomials P,(u) are well-behaved degree n polynomials, with 
a norm of (n  + 1/2)-1/2. Its derivative would not exceed a 
typical value of order nl’’. It follows that for new poles to 
arise, the minimum relative strength of the multipolar field of 
degree n with respect to the dipolar field would typically have 
to be of order a, cc n-’/’. An additional similar computation 
can be carried out with the help of a pure sectorial non-dipole 
field Y;(e ,y )  in place of P,(u). This non-dipole term being 
normalized following the Schmidt normalization in use in 
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geomagnetism, a relative amplitude of the order of Earths surface is already an order of magnitude smaller than 
~ ~ ~ ( 2 " n ! / ( n $ ~ ) )  cc n-3'4 would then be needed. Clearly, the dipole field, while the amplitude of the higher degrees of 
in both cases (corresponding to two extremes), the relative the non-dipole main field decrease as an exponential function 
amplitude of the non-dipole field required for new poles to of n (e.g. Langel & Estes 1982), the condition necessary for 
arise is of the order of a weakly decreasing power law of degree additional poles to arise is never met in practice. 
n. Because of this and because the degree-two field at the 
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