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We study the macroscopic representation of noise-driven interfaces in stochastic interface growth
models in (1 + 1) dimensions. The interface is characterized macroscopically by saturation, which
represents the fluctuating sharp interface by a smoothly varying phase field with values between
0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW)
and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the
phase saturation for each of them. While we obtain exact results for the EW model, we develop
a Gaussian closure approximation for the KPZ model. We identify an interface compression term,
which is related to mass transfer perpendicular to the growth direction, and a diffusion term that
tends to increase the interface width. The interface compression rate depends on the mesoscopic
mass transfer process along the interface and in this sense provides a relation between meso and
macroscopic interface dynamics. These results shed new light on the relation between mesoscale
and macroscale interface models, and provide a systematic framework for the upscaling of stochastic
interface dynamics.

PACS numbers: 05.40.–a

I. INTRODUCTION

Dynamics of fluctuating interfaces is central to under-
standing and quantification of growth phenomena in a
plethora of disciplines ranging from material science to
biology, and plasma physics to hydrology. Studies of in-
terface growth and dynamics deal with phenomena as
diverse as immiscible fluid displacement [1, 2], biofilm
growth and evolution of bacterial colonies [3], crystal
growth [4] and sediment deposition, as well as the mor-
phogenesis of interosseous structures [5]. While the un-
derlying (physical, chemical, or biological) mechanisms
of these and other interfacial phenomena can be quite
different, the focus on fluctuating interface dynamics fa-
cilitates the development of general approaches.

Fluctuations of the interface height are described by
stochastic differential equations, such as the random de-
position model [6], the Edwards-Wilkinson (EW) model,
and the Kadar-Parisi-Zhang (KPZ) model. These ap-
proaches have been used to describe such interfacial
growth phenomena as molecular beam epitaxy, biofilm
growth, and combustion fronts [7], fluctuating fluid inter-
faces [8], movement of fluid interfaces in disordered me-
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dia [2, 6, 9], and reaction fronts in disordered flows [10].
Reviews of such stochastic models can be found in [1, 6,
9, 11].

These models describe the interface behavior under dif-
ferent growth mechanisms, and quantify the impact of
system fluctuations driven by spatial and temporal dis-
order on the growth and displacement dynamics. Phase
saturation, or occupancy maps [12–14], on the other
hand, provide macroscopic descriptions of the interface
evolution. For (1 + 1)–dimensional interfaces, phase sat-
uration S(z, t) at the longitudinal position z and time t
is defined in terms of the interface height, z = H(x, t),
as

S(z, t) =
1

2a

∫ a

−a
H[H(x, t)− z]dx (1)

where H(·) is the Heaviside function, x is the trans-
verse coordinate, and 2a is the domain size. The
mesoscale description, H(x, t), exhibits significant fluc-
tuations, while its macroscopic (phase-field) representa-
tion, S(z, t), varies smoothly between 0 and 1. We ad-
dress the hitherto open question of how to account for
mesoscale interface fluctuations with lateral relaxation
in macroscopic saturation models. Thus, the objective of
this paper is to investigate the macroscopic (determin-
istic) saturation dynamics which originate in mesoscale
(stochastic) interface fluctuations.
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We consider the (1 + 1)–dimensional KPZ model [15]

∂H

∂t
= v + κ

∂2H

∂x2
+
λ

2

(
∂H

∂x

)2

+ ξ(x, t), (2)

which describes the evolution of the interface height
H(x, t) due to the combined effects of a constant growth
rate v, the interface relaxation process (transverse re-
distribution of mass) represented by the second (EW)
term, the transverse interface growth encoded in the
third (KPZ) term, and the Gaussian white noise ξ(x, t).
The latter has zero mean, variance σ2

ξ , and a two-point

correlation 〈ξ(x, t)ξ(x′, t′)〉 = 2Dl0δ(x−x′)δ(t−t′) where
l0 is a characteristic fluctuation scale, and δ(·) is the
Dirac delta function. The EW model [16] corresponds
to (2) with λ = 0.

II. PHASE SATURATION AND INTERFACE
STATISTICS

When the transverse system size 2a significantly ex-
ceeds the characteristic fluctuation length l0, a� l0, the
spatial average in (1) is equivalent to the ensemble aver-
age 〈·〉. In other words, the phase saturation S at a po-
sition z corresponds to the probability that H(x, t) > z,

S(z, t) =

∫ ∞
z

pH(h, t)dh, (3)

where pH(h, t) is the probability density function (PDF)
of the interface height at time t.

A. Multi-point Probability Density Function

Our derivation of an equation for the PDF of H(x, t)
starts with a spatial discretization of (2). Since the treat-
ment of ξ(x, ·) as a white noise may be considered an ide-
alization corresponding to l0 � a, we choose l0 as the dis-
cretization scale. Then the interface height H(x, t) is rep-
resented by a vector H(t) = [. . . , H−i(t), . . . ,Hi(t), . . . ]

>,
and (2) gives rise to the multi-dimensional Langevin
equation [17]

dHi

dt
= v + Ei(H) +Ki(H) + ξi(t). (4)

Here we have defined

Hi ≡
1

l0

xi+l0∫
xi

H(x, t)dx, ξi ≡
1

l0

xi+l0∫
xi

ξ(x, t)dx. (5)

and Ei(H) and Ki(H) are, respectively, discretized ver-
sions of the EW and KPZ terms

Ei(H) = κ
Hi+1 +Hi−1 − 2Hi

l20
(6)

Ki(H) =
λ

2

(Hi+1 −Hi−1)
2

4l20
. (7)

Note that the noise covariance is given by

〈ξi(t) ξj(t′)〉 = 2Dδijδ(t− t′), (8)

where δij is the Kronecker delta function. The discretiza-
tion scheme (7) provides stable numerical solutions for
moderate non-linearity [17–19]. For strong coupling al-
ternative numerical discretization schemes need to be em-
ployed [18, 20].

In the limit a � `0, the interface height statistics are
stationary. This means, the mean height 〈Hi〉 = 〈H〉 is
independent from the position, and the height covariance,
which is defined by

Cij = 〈(Hi − 〈Hi〉) (Hj − 〈Hj〉)〉 (9)

is a function of |i− j| only. The interface height variance
Cii is denoted by

σ2
H ≡ Cii. (10)

The evolution of the joint PDF of H(t), pH(h, t),
is governed by the Fokker-Planck equation equivalent
to (4),

∂pH
∂t

= D∇2
hpH −

∑
i

∂UipH
∂hi

, (11)

where we defined the drift

Ui(h) = v + Ei(h) +Ki(h). (12)

A similar perspective on the interfacial growth phe-
nomenon can be found in [21], which derives Langevin
equations for fluctuating surfaces from master equations
that describe the evolution of the joint PDF of the inter-
face heights.

B. One-Point Probability Density Function

The phase saturation, as defined by (3), requires the
determination of the single-point PDF, pHi

(hi, t), of the
interface height Hi(t) ≡ H(xi, t). It is obtained by
marginalization of pH(h, t), i.e.,

pHi
(hi, t) =

∏
j 6=i

∫
pH(h, t)dhj . (13)

Integration of (11) over all hj with j 6= i gives

∂pHi

∂t
= D

∂2pHi

∂h2i
− ∂VipHi

∂hi
, (14)

where we defined the conditional drift

Vi = v + 〈Ei(H)|hi〉+ 〈Ki(H)|hi〉. (15)

The conditional averages are of the form

〈f(Hj)|Hi = hi〉 =

∫
f(hj)pHj |Hi

(hj , t|hi)dhj , (16)
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where f [Hj(t)] is any function of the interface height
Hj(t) at point j 6= i. Since the conditional PDF

pHj |Hi
(hj , t|hi) =

pHi,Hj (hi, hj , t)

pHi
(hi, t)

(17)

is in principle unknown, the drift velocity U is not com-
putable and (14) requires a closure. Note that for the
sake of clarity we maintained here the index i for the
PDF of Hi. Due to stationarity, however, the one-point
PDF is independent of position.

III. CLOSURES

We first consider the exactly solvable random deposi-
tion and EW models before addressing the KPZ model
by means of a closure approximation.

A. Random Deposition Model

For the random deposition model, λ = κ = 0. Thus,
the solution for the equation for the single point height
PDF pH(h, t) is given by the advection-dispersion equa-
tion

∂pH
∂t

= D
∂2pH
∂h2

− v ∂pH
∂h

. (18)

The equation for the phase saturation S(z, t) defined
by (3) is thus given by

∂S

∂t
= D

∂2S

∂z2
− v ∂S

∂z
, (19)

Its solution for the initial condition S(z, t = 0) = Θ(z)
with Θ(z) the Heaviside step function is given by

S =
1

2
erfc

(
z − vt√

4Dt

)
. (20)

B. Edwards-Wilkinson Model

For the EW model, i.e., for λ ≡ 0 in (2), the discretized
evolution equation (4) is a multi-dimensional Ornstein-
Uhlenbeck process [22]. In this case, and for the known
(deterministic) initial height distribution pH(h, t = 0) =
δ(h), the joint PDF pH(h, t) is a multivariate Gaus-
sian. In this case, the conditional PDF pHj |Hi

(hj , t|hi) is
known and given by a Gaussian PDF whose mean is

〈Hj |hi〉 = 〈H〉+
Cij
Cii

(hi − 〈H〉) . (21)

The unconditional height covariances Cij are defined
by (9). Thus, we can close equation (14) for the one
point interface height through the exact calculation of

the conditional moments in the drift (15) for κ ≡ 0. This
gives

Vi(hi) = v +
Ei
σ2
H

(hi − 〈H〉) , (22)

where we defined

Ei = κ
Cii+1 − 2Cii + Cii−1

`20
. (23)

This expression is obtained by using (21) to determine
the conditional averages in 〈Ei(H)|hi〉 with Ei(H) given
by (6). We can relate Ei to the variance Cii = σ2

H by
using (4) for λ = 0. First, we note that the mean height
is given by 〈H〉 = vt. Thus, we obtain from (4) for the
head fluctuation H ′ = H − 〈H〉

dH ′i
dt

= Ei(H
′) +
√

2Dξi(t). (24)

Multiplication of the latter with H ′i and using the Ito rule
gives

dσ2
H

dt
= Ei + 2D. (25)

Thus, we obtain for the drift Vi(hi) the closed form ex-
pression

Vi = v +

[
d ln(σ2

H)

dt
− 2D

σ2
H

]
(hi − vt), (26)

In the following, we define for compactness

γ ≡ 2D

σ2
H

− d ln(σ2
H)

dt
. (27)

The evolution of the variance σ2
H of the interface height

has been well-known [23] and is given by

σ2
H =

2D`0
√
t√

2πκ
. (28)

We thus obtain for the one-point PDF pH(h, t) the
evolution equation

∂pH
∂t

= D
∂2pH
∂h2

− ∂ [v − γ(t) (h− vt)] pH
∂h

. (29)

Consequently, we obtain for the phase saturation S(z, t)
the evolution equation

∂S

∂t
= D

∂2S

∂z2
− [v − γ(t) (h− vt)] ∂S

∂z
. (30)

Its solution for the initial condition S(z, t = 0) = Θ(z)
can be obtained by integration along the characteristics,
or directly by the fact that pH is a Gaussian characterized
by mean vt and variance σ2

H(t) as

S =
1

2
erfc

(
z − vt√

2σ2
H

)
. (31)
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C. Kadar-Parisi-Zhang Model

In order to obtain a saturation equation for the KPZ
model, we close (14) by assuming that for moderate val-
ues of λ 6= 0 the conditional PDFs pHj |Hi

(hj , t|hi) and
pHj ,Hk|Hi

(hj , hk, t|hi) are Gaussian as in the case of the
EW model. Thus, the conditional mean is given by (21),
where the Cij are the height covariances of the KPZ
model. The conditional height covariance is given by

〈(Hj − 〈Hj |hi〉)(Hk − 〈Hk|hi〉)|hi〉

= Cjk −
CijCik
Cii

. (32)

Under this assumption, we obtain for the conditional
drift (15)

Vi(hi) =
Ei
σ2
H

(hi − 〈H〉) + v +Ki, (33)

where Ei is defined by (23) and Ki is given by

Ki =
λ

2

2Ci+1i+1 − 2Ci+1i−1

4`20
. (34)

This expression is obtained by using (32) for the condi-
tional covariances in 〈Ki(H)|hi〉 with Ki(H) given by (7)
and furthermore using that the statistics are stationary
such that Cii = Cjj and Cii+1 = Cii−1.

Now we turn to determining Ei and Ki. To this end,
we first consider the evolution equation for the the mean
height 〈H〉. We obtain by averaging (4)

d〈H〉
dt

= v +Ki (35)

The nonlinear KPZ term Ki causes a net interface dis-
placement even in the absence of an external drift [6];
this is because transverse interface growth requires the
addition of mass to the interface. The long time value of
this drift is given by [24]

Ki =
λD

2κ
. (36)

We define the effective interface velocity by

ve = v +
λD

2κ
. (37)

In order to obtain a closed form expression for Ei, we
consider the evolution equation for the height fluctuation
H ′ = H − 〈H〉, for which we obtain

dH ′i
dt

= Ei(H
′) +Ki(H

′)−Ki +
√

2Dξi(t). (38)

Multiplication of the latter by H ′i and using the Ito rule
gives

dσ2
H

dt
= Ei + 〈H ′i[Ki(H

′)−Ki]〉+ 2D. (39)
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FIG. 1: Evolution of (top) the mean and (bottom) the vari-
ance of the interface height for (red) the random deposition
model, (blue) the EW model and (green) the KPZ model.
The results are obtained by numerical simulation of (4) for
κ = λ = 0 and v = 1 (random deposition model), for κ = 1,
λ = 0, and v = 1 (EW model), and κ = 1, λ = 4 and v = 1
(KPZ model), with `0 = 1, ∆t = 10−2 and a = 103 in 102 real-
izations. Note that the red and blue line overlay each other in
the top panel. The thin black lines in the top panel represent
the mean interface heights 〈H〉 = vt for the random deposi-
tion and EW models and 〈H〉 = vet with ve given by (37).
The thin black lines in the bottom panel denote the diffusive
behavior σ2

H = 2Dt, the behavior (28) for the EW model, and
the behavior (41) for the KPZ model with c2 = 0.31.

Under the assumption of Gaussianity, the second average
on the right side is zero because it involves first and third
order terms in the height fluctuations. Thus, we obtain
as in the case of the EW model

Ei =
dσ2

H

dt
− 2D. (40)

The height variance for the KPZ model is given by [24]

σ2
H = c2

(
D`0λ

κ
t

)2/3

(41)

with c2 a constant.

Thus, based on this Gaussian closure approximation,
we obtain for the one-point point PDF pH(h, t) the closed
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FIG. 2: Interfaces (top) and corresponding saturations (bottom) obtained with the (first column) random deposition model for
κ = λ = 0 and v = 1 in (4), (middle column) the EW model for κ = 1, λ = 0, and v = 1 in (4), and (right column) the KPZ
model with κ = 1, λ = 4 and v = 1 in (4) at times (from left to right) t = 10, 30 and 50. The circles in the bottom row indicate
data from the numerical solution of (4) for `0 = 1, ∆t = 10−2 and a = 103. These saturation profiles were obtained by spatial
averaging along x and ensemble averaging over 102 realizations. The solid lines in the bottom row indicate the corresponding
solutions (20), (31) and (44) for the saturation.

form evolution equation

∂pH
∂t

= D
∂2pH
∂h2

− ∂ [ve − γ(t) (h− vet)] pH
∂h

, (42)

where γ(t) is defined by (27) in terms of the height vari-
ance (41) of the KPZ model. The equation for the phase
saturation is then obtained from (42) according to (3) as

∂S

∂t
= D

∂2S

∂z2
− [ve − γ(t)(z − vet)]

∂S

∂z
. (43)

As in the case of the random deposition and EW mod-
els, its solution for a flat initial interface is given by a
complementary error function as

S =
1

2
erfc

(
z − vet√

2σ2
H

)
, (44)

where ve is given by (37) and σ2
H by (41).

IV. SATURATION DYNAMICS

The evolution equation (19) for the random deposi-
tion model describes the evolution of an interface, whose
width increases purely diffusively and whose mean posi-
tion increases linearly with time with the constant ve-
locity v, as illustrated in Figure 1. The evolution of a
typical interface and the corresponding saturation pro-
files are illustrated in the first column of Figure 2.

The evolution of the interface and the corresponding
saturation are different for the EW and KPZ models.
In fact, the evolution equations (30) and (43) resemble
those for scalar transport in fluid flow, under the com-
petition of molecular diffusion and compression resulting
from fluid deformation [25, 26]. The evolutions of the in-
terface mean position and height variance are illustrated
in 1. The height variances increase diffusively at short
times until the interfacial smoothing due to the EW and
KPZ terms, (6) and (7), starts dominating. Then, at
later times it increases sub-diffusively as a result of the
interfacial compression quantified by γ(t). At asymp-
totic times, it converges towards a constant long time
variance whose scaling with the lateral domain size a is
given by σH ∝ a1/2 for both the EW and KPZ mod-
els [6] (asymptote not shown in Figure 1). Figure 2 il-
lustrates the interface evolutions in the EW and KPZ
models and the corresponding saturation profiles at dif-
ferent times. The circles in the bottom row of Figure 2
denote the data obtained by numerical simulations of (4),
while the solid lines correspond to the analytical expres-
sions (31) and (44) for the saturation profiles. Due to
the interface in the EW and KPZ models, the saturation
profiles are compressed in comparison to the random de-
position model. The interfacial compression rate γ(t)
defined by (27) relates the stochastic mesoscale interface
fluctuations to the macroscopic interface dynamics. In
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the EW model it is given in leading order by

γ =

√
2πκ

`0
t−1/2 (45)

while the KPZ model is in leading order characterized by
the relatively weaker compression rate

γ =
2D1/3κ2/3

c2 (`0λ)
2/3

t−2/3. (46)

Finally, we consider the issue of mass conservation for a
constant flux of the deposited substance or, equivalently,
for a constant fluid flux ve in the KPZ and EW models.
For the latter, ve = v. Under this condition, the total
amount of mass in the system,

I(t) ≡
∫ t

0

S(z, t′)dt′, (47)

equals I(t) = vet. Indeed, integrating (43) over z and
setting S(0, t) = 1, we obtain

dI

dt
= ve + γ(vet− I). (48)

Since I(0) = 0, the solution of (48) is I(t) = vet. Thus,
the mass is globally conserved. However, the saturation
model (43) is not locally mass conservative, which follows
from its divergence form,

∂S

∂t
+
∂ [ve − γ(z − vet)]S

∂z
= D

∂2S

∂z2
− γ(t)S. (49)

The sink term γ(t)S represents the mass transfer along
the interface. It removes mass from locations where
the interface is more advanced than its average posi-
tion. Concurrently, the same mass is transferred from
the boundary at z = 0 into the domain, which guaran-
tees global mass conservation. This behavior is similar
to evolution equations for scalar fronts transported by
fluid flows and subjected to molecular diffusion and fluid
deformation [25], as discussed above.

V. CONCLUSIONS

Macroscopic saturation equations are often based on
local mass conservation and momentum balance over a

control volume [27] and are therefore locally mass con-
serving. This is generally not the case for macroscopic
descriptors emerging from stochastic mesoscale interface
models, such as (2), because the saturation defined by (3)
is given in terms of the cumulative probability of interface
heights. Although the equation for the single-point PDF
of the interface height is locally mass conservative, the
equation satisfied by the cumulative distribution proba-
bility is not.

Nevertheless, for a given phenomenological descrip-
tion of the interface kinematics, a globally mass con-
serving saturation equation provides a valuable surrogate
model of the true macroscopic dynamics. On the other
hand, a macroscopic interface model may be used to in-
fer mesoscale interface dynamics via the compression rate
γ(t), which connects the macroscopic interface dynamics
with the mesoscale fluctuations. The derived method-
ology can be readily generalized to interfaces driven by
colored noise [28].

Irrespective of the nonlinearity of the stochastic in-
terface models, the macroscopic saturation dynamics are
governed by linear partial differential equations, which
include the salient features of the interfacial dynamics
such as interface compaction. Stochastic interface dy-
namics and its equivalent macroscopic representations
derived in this paper, provide a tool to predict the inter-
face dynamics that results from various fluctuation and
growth mechanisms.
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