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SUMMARY
We again consider the problem of recovering the Earth's internal magnetic ¢eld B
knowing its intensity kBk at the Earth's surface and the location of the dip equator. In
the present paper we focus on estimating the di¡erence between two solutions B
obtained from imperfect data. We explicitly estimate this di¡erence and show that it
converges to zero when the errors on kBk and on the location of the dip equator E both
tend to zero.

Key words: Backus E¡ect, geomagnetic ¢eld, potential theory.

1 INTRODUCTION

In a recent paper (Khokhlov et al. 1997) we discussed
theoretically the problem of recovering the Earth's internal
magnetic ¢eldB from knowledge of only its intensity kBk at the
Earth's surface.We showed that the solution of the problem is
unique if, in addition to the knowledge of kBk, the set of points
E where B is tangent to the Earth's surfaceöthe dip equatorö
is known. In practice, the intensity is measured within a certain
accuracyömore importantly, the external ¢eld, or part of
it, must be considered as an error when trying to recover
the internal ¢eldöand the location of the dip equator is only
approximately known. It is then necessary to take into account
these uncertainties in the solution of the problem. In the
present paper we focus on the estimate of the di¡erence
between two solutions B obtained from these imperfect data.
We show that this di¡erence converges to zero when the errors
on kBk and on the location of the dip equator E both tend to
zero. The way this di¡erence converges to zero provides a nice
theoretical explanation of the practical success of geomagnetic
modelling based on intensity data and on some knowledge of
the dip equator (Ultrë-Guërard et al. 1998). We again adopt
a mathematical language in this paper, as in our two earlier
papers (Khokhlov et al. 1997; Hulot et al. 1997), devoted
to the problem of theoretical uniqueness. For mathematical
simplicity, all quantities are de¢ned in non-dimensional units.

2 THE PROBLEM AND THE MAIN RESULT

Let us start with the list of notations, assumptions and con-
ditions we use. & and ) stand respectively for the convex
smooth closed surface in R3 (where the intensity data kBk are
collected) and the (unbounded) part of R3 outside &; n~n(x)
denotes the outward unit vector normal to & at x [&. Without
loss of generality, we assume that the origin of Cartesian
coordinates is well inside &; that is, not in some open domain
)'6()

S
&).

Let us now de¢ne the class of harmonic potentials f (~class
of harmonic vector ¢elds B such that B~+ f ) that we consider.

2.1 Constraints

We restrict ourselves to the class E(e, d) of harmonic potentials
f in the open domain )' satisfying the following conditions.

Condition 1 for x [)'5R3 , j f (x)j < K
DxD

� �d

,

K and d being positive constants, d§1. For the geomagnetic
applications we are mainly interested in, & can be taken to
be the surface of the Earth, all sources being assumed to be
well within & (i.e. outside )'). In the absence of magnetic
monopoles, condition 1 therefore applies with d~2.
Turning to the de¢nition of the dip equator and of the

uncertainty concerning its location, we consider the normal
component Bn~B . n of the harmonic vector ¢eld B~+f over
&, and assume

Condition 2 & being the union of three subsets Uz
e , U{

e , U0
e

de¢ned by some given e > 0, Bn~+f . n is such that:

(1) x [Uz
e , Bn > e ,

(2) x [U{
e , Bn < {e ,

(3) x [U0
e , jBnj¦e .

This condition both provides an approximate location of the
dip equator and gives information on the polarity of B (upward
or downward). Note that we do not necessarily require the
dip-equator to be a single curve.
Finally, with respect to the accuracy of the intensity data,

we de¢ne an uncertainty d/2 on the determination of kBk
over &, which we assume to be much smaller than the maxi-
mal value Bmax of kBk over & (in other words, the di¡erence
between two measurements of intensity is assumed to be
always less than d):
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Condition 3 for any two functions f and g belonging to the
class E(e, d) and for any x [& we have

(1) D+ f (x)D¦Bmax ,

(2) D+g(x)D¦Bmax ,

(3) k+f (x)D{D+g(x)DD¦d%Bmax .

2.2 Convergence theorem

The main result we intend to show is the following theorem:

Theorem 1 Consider two (not necessarily di¡erent) potentials
f and g belonging to the class E(e, d). If e, d?0 then
D+ f{+gD?0 in ).

Note

In fact an even stronger result holds: if e, d?0 then
D+ f{+gD?0 also at x [&. However, the proof of this separate
statement is more elaborate and will therefore be given
separately in the Appendix.

3 AUXILIARY RESULTS

It is known that for the class of potentials described above (and
in fact for a much wider class of harmonic potentials) some
estimate bearing on the gradient implies some estimate bearing
on the potential itself, and vice versa. The corresponding
formal statement has many di¡erent versions; we refer here to
Corollary 5.18 of Mitrea (1994):

Lemma 2 For any harmonic function u in ) which tends to zero
at in¢nity� �

&
juj2 dS*

� � �
)

D+uD2 dist(x, &) dV :

Here (*) means equivalence of the two quantities F and G
depending on some parameter g; it signi¢es that there always
exist two positive constants D1 and D2 such that, for all g, we
have F (g) < D1G(g) and G(g) < D2F (g).

Lemma 3 Let a harmonic potential u satisfy Condition 1 and at
x0 [& achieve its maximum value u(x0)~a > 0 over)

S
&. Then

D+u(x0)D >Cê a1z1=dK{1, where Cê is a positive constant that can
be taken equal to 1/9 for d§2 and 1/16 for 2 > d§1

Proof. Let us ¢rst consider the special case with K~1 and
a~1. Let the point xª be the centre of the sphere &1 of radius
R1 tangent at x0 to &. Since & is convex, (&1\x0)5). Consider
also the smaller sphere &2 of radius R2 with the same centre
xª . Obviously, for any point x [&2 we have DxD§R1{R2.
Therefore, by Condition 1, for any point x [&2 we have
u(x) < 1/[(R1{R2)d ]. Denote by )12 the part of R3 bounded
by &1 and &2 (see Fig. 1).
Consider the harmonic function in )12

o(x)~1{u(x){
1

Dx{xª D
{

1
R1

� �
.

Then o(x0)~0 and

Vx [&1
1

Dx{xª D
{

1
R1

� �
~0 ,

Vx [&2
1

Dx{xª D
{

1
R1

� �
~

1
R2

{
1
R1

.

Therefore,

Vx [ (&1\x0) o(x) > 0 ,

Vx [&2 o(x)~1{u(x){
1
R2

{
1
R1

� �
.

For d§2 one can take R1~3 and R2~3{31=d , then

Vx [&2 o(x)~1{u(x){
1
R2

{
1
R1

� �
> 1{

1
3{31=d

> 0 .

For 2 > d§1 just take R1~4 and R2~2, then

Vx [&2 o(x)~1{u(x){
1
R2

{
1
R1

� �
> 1{

1
2d

{
1
4
> 0 .

Since the harmonic function o(x) is non-negative on the
boundary &1

S
&2, it is non-negative (in fact it is positive) in

)12. Hence Lo/LnDx0§0. Now,

Lo
Ln

����
x0

~
L(1{u(x))

Ln

����
x0

{
L
Ln

1
Dx{xª D

{
1
R1

� �����
x0

~{
Lu(x)
Ln

����
x0

{
L
Ln

1
Dx{xª D

� �����
x0

~{
Lu(x)
Ln

����
x0

{
1
R1

� �2

§0 .

This condition, together with the fact that +u(x0) is normal
to &, provides the inequality

D+u(x0)D~{+u(x0) . n~{
Lu(x)
Ln

����
x0

§ 1
R1

� �2

~Cê .

Let us now consider the general case where K and a are
arbitrary positive values. Since the harmonic function u(x) is
assumed to satisfy Condition 1 with the constant K in the space
parametrized by the space variable x, it is straightforward
that the harmonic function u'(x')~u(x)/a satis¢es Condition 1
with the constant K '~1 in the space parametrized by the
rescaled variable x'~(x/K)a1=d . Now, since u(x) achieves its
maximum value u(x0)~a over & at x0, then u'(x') achieves

Figure 1. Sketch for the proof of Lemma 3.
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its maximum value u'(x00)~u(x0)/a~1 at x00 and

+'u'(x')~
1
a

+u(x)
K
a1=d

,

where +' stands for + when referring to the x' space para-
meters. The special case then applies to u'(x') for K '~1 and
a'~1 and it follows that

D+u(x0)D~a1z1=dK{1+'u'(x00) >Cê a1z1=dK{1 .

This completes the proof of Lemma 3.
We can easily derive the following useful corollary:

Corollary 4 Let the harmonic potential u satisfy Condition 1
and achieve at x0 [& its maximum value u(x0)~a > 0 over
)
S

&. Then

a < (KCê
{1

D+u(x0) D)d=(dz1) . (1)

Now consider two (not necessarily di¡erent) potentials f and g
belonging to the class E(e, d).

Lemma 5 Let the gradient of the harmonic potential h~f{g
be normal to the surface & at the point x0 [ (U{

e
S
Uz

e ). Then

D+h(x0)D <
������������������������
e2z2dBmax

p
{e . (2)

Proof. We use an elementary geometric reasoning with
reference to Fig. 2 for notations, where 0 stands for x0. Note
the important point that in this ¢gure, A and B both lie on
the same side of OC, precisely because x0 [ (U{

e
S
Uz

e ). This
implies that x0 lies on & at a place where the polarity (i.e the
sign of + f . n and +g . n) is well de¢ned. We then have

D ~ABD2z2D ~ABk ~BCD{(D ~OAD{D ~OBD)(D ~OADzD ~OBD)~0 . (3)

Being positive, D ~ABD is equal to the positive root of eq. (3):

D ~ABD~
���������������������������������������������������������������������
D ~BCD2z(D ~OAD{D ~OBD)(D ~OADzD ~OBD)

q
{D ~BCD (4)

<

������������������������������������������������������
D ~BCD2z2(D ~OAD{D ~OBD)D ~OAD

q
{D ~BCD (5)

<
������������������������
e2z2dBmax

p
{e . (6)

The step from (5) to (6) is possible because the function
y(x)~

�������������
x2zA
p

{x is decreasing for positive x and A.

4 CONVERGENCE

Let us now consider two functions f and g belonging to E(e, d)
and achieve the demonstration of convergence by a roundabout
way.We will ¢rst estimate a bound for D+ f{+gD~D+( f{g)D at

the extremum point of f{g on &, then use Corollary 4 to get a
bound for D f{gD everywhere in )

S
&, and ¢nally use Lemma 2

to show that D+ f{+gD?0 everywhere in ) when e, d?0. In
fact, the main idea of the proof is this back and forth reasoning
between the potential and its gradient on the one hand, and a
local (at the extremum) and global (everywhere in )) point of
view on the other hand.
We ¢rst apply some of the results of the preceeding section to

the harmonic potential h~f{g.
Now the Maximum principle (Courant & Hilbert 1966) says

that the function h achieves its minimum and maximum over
)
S

& only either at ? where h~0 (because of Condition 1) or
on &. If we assume that h is not identically zero, hmust have an
absolute maximum which cannot be negative. If this maximum
is zero, the ¢nal result is achieved (see 10 and 11). If it is strictly
positive, this maximum must lie at some point x0 [& where
+h(x0) is normal to the surface &.
It is then geometrically obvious that, if x0 [U0

e , D+h(x0)D¦2e.
If x0 [ (U{

e
S
Uz

e ), we may apply Lemma 5, and

D+h(x0)D <
������������������������
e2z2dBmax

p
{e , (7)

so that

D+h(x0)D <M(e, d),

M(e, d)~max (
������������������������
e2z2dBmax

p
{e, 2e) . (8)

Obviously, when e, d?0 the right-hand term of (8) also tends
to 0; therefore, inequality (1) of Corollary 4 provides an
upper bound for h(x0) (provided that we useKê ~21=dK because
condition 1 applies to f and g and not directly to h):

h(x0)¦(Kê Cê
{1

M(e, d))d=(dz1)~C .R(e, d) , (9)

where C~(Kê Cê
{1

)d=(dz1) and R(e, d)~(M(e, d))d=(dz1).
Taking into account h(x)D&¦h(x0) and performing a similar

reasoning with h~g{f , we obtain for su¤ciently small e
and d

sup
x [)

Dh(x)D¦ sup
x [&

Dh(x)D¦CR(e, d) . (10)

Therefore, Dh(x)D?0 everywhere in )
S

& when e, d?0.
By theWeierstrass convergence theorem (Courant & Hilbert

1966), one can then straightforwardly claim that

D+ f{+gD~D+hD?? 0

everywhere in ). (Note that Weierstrass' Theorem makes no
claim with respect to the behaviour of D+hD on &.) Alternatively
and more explicitly, one can refer to Lemma 2 and write� � �

)
D+hD2 dist(x, &) dV < D2C2R2(e, d) , (11)

which makes the way D+hD gradually reaches 0 when e, d?0
more explicit. This completes the proof of Theorem 1.
Inequality (11) makes it explicit that (generally speaking) the

convergence is not trivially guaranteed for D+h(x)D when x [&
[i.e dist(x, &)~0]öthis is made clear in the Appendix, where a
counterexample is constructed. It is in fact only by referring to
the additional fact that h~f{g, where f and g both satisfy
Condition 1, that the convergence in the special case x [& is
eventually proven (see the Appendix).Figure 2. Sketch for the proof of Lemma 5.
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5 PRACTICAL CONSIDERATIONS

The key point for an application of the theoretical bound is
the behaviour of the last right-hand term R(e, d) of inequality
(11):

R(e, d)~[max(
������������������������
e2z2dBmax

p
{e, 2e)]d=(dz1) , (12)

which re£ects the way that the information we have about the
intensity kBk of the ¢eld and the location of the equator on &
translates into some uncertainty concerning the ¢eld to be
recovered everywhere in ).
For practical geomagnetic purposes, we may consider d~2,

and rescale e and d in units of Bmax. A constant global B2=3
max

factor can then be taken out of R(e, d), the behaviour of which
is then proportional to the right-hand side of (12) when setting
Bmax~1; the plot is shown in Fig. 3 for e and d su¤ciently
small. The main observation from Fig. 3 is that choosing e and
d independently small is not the best approach to minimizing
R(e, d) and hence to bounding the possible error on a ¢eld to be
recovered.
If we ¢rst consider the case when e is ¢xed (i.e the threshold

for detecting the polarity of the magnetic ¢eld is ¢xed; recall
Condition 2), then R(e, d) decreases with d down to some
positive lower bound and reaches it when d~4e2. Therefore for
all d < 4e2 the largest possible error for the recovered ¢eld is
entirely controlled by the value of e. Geometrically this re£ects
the fact that for d < 4e2 this largest possible error comes from
the neighbourhoodU0

e of the magnetic equator. This behaviour
is reminiscent of the Backus E¡ect observed in practice when
only intensity data are being used to recover the ¢eld (see e.g
Ultrë-Guërard et al. 1998). This is because the Backus E¡ect
arises precisely when no knowledge of the equator is being
assumed (or equivalently, e is assumed to be large). We also
note here that any additional information concerning Bn in
U0

e may then of course signi¢cantly improve the bound for the
largest possible error. This sheds light on existing empirical
results; see e.g. Barraclough & Newitt (1976) and Lowes &
Martin (1987).
If we now consider the symmetrical case when d is ¢xed, we

see that R(e, d) decreases with e down to some positive lower
bound characterized by e0~

���
d
p

/2 and then starts increasing

again for e < e0. This re£ects the fact that for e < e0 the largest
possible error has its origin in U{

e
S
Uz

e . [Because the inter-
section (U{

e
S
Uz

e )
T
U0

e0 is not empty, the bound we derive
based on the fact that this region belongs to U{

e
S
Uz

e is no
longer more e¤cient than the one we derive based on the fact
that it also belongs to U0

e0 .]
Therefore, reducing d (and increasing the accuracy on the

intensity data) constrains the error ¢eld behaviour far from
the equator but may not bring any constraints globally. By
contrast, reducing e (and locating the equator better) con-
strains the error ¢eld near the equator, but may not bring any
constraints on the error ¢eld elsewhere.
What our results suggest is that the best balance is

reached when d~4e2. (Note, incidentally, that this result holds
independently of the actual values of Bmax and d).

6 DISCUSSION AND CONCLUSIONS

The main objective of the paper was to establish and estimate
the convergence of the solution computed from an inaccurate
set of data kBk on the Earth's surface and an inaccurate
location of the dip equator E towards the unique solution of
the problem with perfectly accurate data when the error on the
dataöcharacterized by the quantities e and dötends to zero.
The demonstration itself does not directly produce a practical
method to estimate the distance to the true solution, but it does
allow us to make some useful statements.
As is known empirically, the best way of making use of

intensity data without encountering too large a Backus e¡ect is
to carry out additional vectorial measurements in the neigh-
bourhood of the magnetic dip equator; see Lowes & Martin
(1987) and Barraclough & Newitt (1976).
According to recent results (Ultrë-Guërard et al. 1998) (see

also our earlier theoretical result; Khokhlov et al. 1997), some
a priori knowledge of where the magnetic equator should lie
could instead be used with high e¤ciency. The present results
show that what is important in practice is our ability to identify
the neighbourhood U0

e0 of the dip equator (out of which the
polarity of the ¢eld can be assumed to be known). Measuring
the vectorial ¢eld in the neighbourhood of the dip equator
would therefore be most e¤cient if we focus on the Bn~B . n
component. The threshold of polarity detection of this com-
ponent everywhere in this neighbourhood should then only
exceed the value e~

���
d
p

/2, where d is the relative accuracy with
which we are otherwise able to measure the intensity over the
surface. The true location of the dip equator need then not be
known to a greater accuracy than that required for this e. The
good news about this is that in all practical cases a good
accuracy on intensity measurements (i.e a small value of d) is
always much easier to attain than a good accuracy on vectorial
measurements (that is, in the present case, a small threshold
e for the detection of the polarity of Bmax). With a typical
value of d~1 nT when Bmax~70 000 nT, e is only required to
be of the order of 130 nT. This provides a simple explanation
for the success encountered in removing the Backus E¡ect
by including either relatively few vectorial measurements near
the dip equator, or relatively weak a priori information on the
location of this dip equator.
Finally, we note that nothing particular (no special statistical

property) was assumed about d; it could include a regular
component such as an uncorrelated external ¢eld.Figure 3. Plot of R(�, d) for d~2 and Bmax~1.
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APPENDIX A: CONVERGENCE AT x [Ó

Let us ¢rst stress the fact that knowing that a sequence of
harmonic functions hk(x) converges to zero everywhere in
)
S

& does not imply that D+hk(x)D?0 for x [&. Indeed, assume
& to be the sphere of unit radius centred at the origin x~0 and

consider the harmonic function

hk(x)~hk(o, h, r)~
Pk(cos h)

okz1 ,

where Pk() is the Legendre polynomial of degree k and o, h, r
are the spherical coordinates in R3\0. It satis¢es (e.g Robin
1957)� �

&
DhkD2dp~

4n
2kz1

and
� �

&
D+hkD2dp~4n(kz1) .

Then, when k?0, DhkD?0 everywhere in )
S

&, yet D+hkD fails
to converge (it actually diverges!). The reason for this is that the
set fhkg of functions fails to be uniformly bounded in )' (just
below &, as soon as o < 1, for instance hk(o, 0, r)~1/okz1

diverges for k??).
In the case of interest in the main text, however, we deal with

functions hk~fk{gk, where both fk and gk satisfy Condition 1.
This ensures that fhkg is uniformly bounded in )', and the
convergence of D+hk(x)D?0 at any point x [& can be established
by referring to the following `compactness' statement (see
Courant & Hilbert 1966, Chapter IV, Section 2.3).

Proposition 1 From any uniformly bounded set fh1g of
regular harmonic functions in some open domain G, a sequence
fhmg may be selected which converges to a harmonic function
uniformly in every closed interior subdomain G' of G.

Then, consider G~)' and de¢ne the set fhi Di [Ig as being
the set of all possible functions h~f{g as e, d?0. This set
is uniformly bounded by Condition 1. Now if some subset
fhj D j [Jg5fhi Di [Ig fails to satisfy +hj(x)?0 for x [& when
e, d?0 (say D+hj(x0)D§const > 0 for all j [J), Proposition 1
states that a subsequence fhmg of fhj D j [Jg can nevertheless be
extracted which converges uniformly to a harmonic function h0
in a closed neighbourhood G' of &: &5G'5G. This function h0
is then analytical inG', but from the proof of Theorem 1 it must
be zero in G'

T
). The function h0 must therefore be identically

zero in G' and satisfy +h0(x):0 for x [&. This contradicts the
way the subset fhj D j [Jg is being de¢ned. Thus all functions of
fhi Di [Ig must satisfy +hi(x)?0 for x [&, when e, d?0.
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