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S U M M A R Y
To constrain the forecast horizon of geomagnetic data assimilation, it is of interest to quantify
the range of predictability of the geodynamo. Following earlier work in the field of dynamic
meteorology, we investigate the sensitivity of numerical dynamos to various perturbations
applied to the magnetic, velocity and temperature fields. These perturbations result in some
errors, which affect all fields in the same relative way, and grow at the same exponential rate
λ = τ−1

e , independent of the type and the amplitude of perturbation. Errors produced by the
limited resolution of numerical dynamos are also shown to produce a similar amplification,
with the same exponential rate. Exploring various possible scaling laws, we demonstrate that
the growth rate is mainly proportional to an advection timescale. To better understand the
mechanism responsible for the error amplification, we next compare these growth rates with
two other dynamo outputs which display a similar dependence on advection: the inverse τ−1

SV
of the secular-variation timescale, characterizing the secular variation of the observable field
produced by these dynamos; and the inverse (τmag

diss )−1 of the magnetic dissipation time, char-
acterizing the rate at which magnetic energy is produced to compensate for Ohmic dissipation
in these dynamos. The possible role of viscous dissipation is also discussed via the inverse
(τ kin

diss)
−1 of the analogous viscous dissipation time, characterizing the rate at which kinetic

energy is produced to compensate for viscous dissipation. We conclude that τ e tends to equate
τ

mag
diss for dynamos operating in a turbulent regime with low enough Ekman number, and such

that τ
mag
diss < τ kin

diss. As these conditions are met in the Earth’s outer core, we suggest that τ e is
controlled by magnetic dissipation, leading to a value τ e = τ

mag
diss ≈ 30 yr. We finally discuss

the consequences of our results for the practical limit of predictability of the geodynamo.

Key words: Instability analysis; Non-linear differential equations; Dynamo: theories and
simulations.

1 I N T RO D U C T I O N

It is now well established that the Earth’s main magnetic field is
generated by a dynamo operating in the liquid iron core. Since
the advent of the first 3-D self-consistent dynamo simulations
(Glatzmaier & Roberts 1995a,b; Kageyama et al. 1995), numer-
ous dynamo models have been published and have gradually suc-
ceeded in reproducing the main properties of the geomagnetic field
(Christensen & Wicht 2007). These models have led to a better
understanding of the physical mechanisms at work and a better as-
sessment of various possible approximations. In conjunction with
the advent of continuous satellite measurements (Friis-Christensen
et al. 2006; Hulot et al. 2007), they have recently paved the way
for promising strategies of data assimilation (Fournier et al. 2007,
2010; Kuang et al. 2008). Using schemes similar to those routinely
used in weather forecasting centres, they could be employed one
day to improve on the current forecasts of the geomagnetic field

(Maus et al. 2008; Beggan & Whaler 2009; Silva et al. 2010; Finlay
et al. 2010). Given the non-linear nature of the equations governing
the atmospheric dynamics, we know however that weather fore-
casts have a limited range of predictability (see Kalnay 2003). In
this study we draw inspiration from pioneering work in the field
of dynamic meteorology and investigate the limit of predictability
that such geomagnetic forecasts would ineluctably have to face.
This amounts in practice to exploring how much time in advance a
geomagnetic prediction could reasonably be made.

Numerical weather forecasting progressed from an experimen-
tal to an operational procedure, thanks to the increase in computer
power and an improved understanding of the physical processes that
govern the atmospheric dynamics. Meteorologists quickly came to
grips with the problem of the limit of weather predictability, and
initially ascribed it to a combination of the insufficient knowledge
of the initial conditions and the imperfect modelling of the atmo-
spheric dynamics. It was soon recognized that the non-linear nature
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of the equations governing the dynamical system was the intrin-
sic cause. Lorenz (1963a,b) proved that whether or not a solution
can be predicted at infinite range depends on whether or not the
general character of the solution was periodic. Periodic solutions
are generally stable with respect to small perturbations, and can
thus be forecast at infinite range. In contrast, most non-periodic
solutions are very sensitive to initial conditions, meaning that two
solutions originating from slightly different initial conditions may
macroscopically diverge after some finite time. To investigate this
issue, meteorologists proposed a dynamical approach based on the
numerical integration of twin solutions with slightly different ini-
tial conditions. They measured the errors—defined as the root-
mean-square (rms) differences between the two fields of wind or
temperature—and studied their rate of amplification—also known
as growth rate. This approach was first tested by Lorenz (1965) on
a 28-variable idealized model, and next applied by Charney et al.
(1966) to self-consistent models of atmospheric circulation then
available (Smagorinsky 1963; Mintz 1964; Leith 1965). The main
result was the following. No matter how small, initial errors were
found to grow at some exponential rate and eventually lead to di-
verging predictions. Although the details of the amplification were
highly dependent on several factors, it always led to an error dou-
bling time of about five days in the early models (Charney et al.
1966). This value reduced to 1.5 days when investigating more re-
cent models (Simmons et al. 1995). Given the current quality of
meteorological data, this translates into the practical possibility of
forecasting the weather up to roughly 1 week in advance (e.g. Kalnay
2003).

In this study, we focus on chaotic dynamos (a category to which
the Earth’s dynamo is expected to belong) in opposition to stationary
dynamos [an example of which is the numerical dynamo benchmark
of Christensen et al. (2001)]. These particular dynamos are another
class of non-periodic dynamical systems, and also display a finite
limit of predictability. The problems of geomagnetic and weather
forecasting are indeed very similar. They rely on the numerical inte-
gration of differential equations both involving rotating convection,
and have the same technical limitations—a finite number of obser-
vations in addition to finite computational resources. One important
additional difficulty in the case of dynamo simulations is that they
can only be run with control parameters remote from those expected
for the Earth (e.g. Christensen & Wicht 2007). Too large a viscosity
is for instance assumed to suppress small-scale turbulence that can-
not be resolved with present computers. Two different approaches
can be used to circumvent this difficulty. One is to choose com-
binations of values of the control parameters which lead to values
of the magnetic Reynolds number compatible with those expected
for the Earth. The magnetic Reynolds number describes the ratio
of magnetic advection to magnetic diffusion and is a key parameter
for describing the secular variation (Christensen & Tilgner 2004).
The second approach involves developing scaling laws to identify
the underlying physical mechanisms and then extrapolate the results
from the portion of parameter space accessible to dynamo simula-
tion to the parameter regime expected for the Earth (Christensen
& Aubert 2006; Olson & Christensen 2006). Both approaches are
combined in this paper.

A first study of the limit of predictability of chaotic dynamos—
based on an analysis of the error growth akin to that of Lorenz
(1965) and his successors—was reported in Hulot et al. (2010b).
They introduced small errors at the initial stage of dynamo sim-
ulations and monitored the subsequent evolution of this error in
several output quantities. Based on a simplified analysis of a set of
simulations, they noted that the growth rate of the errors was in-

dependent of the monitored output quantity, and mainly dependent
on the magnetic Reynolds number of the dynamo flow. Because
the typical timescale of the magnetic secular variation displayed
the same kind of dependence on the magnetic Reynolds number
(Christensen & Tilgner 2004), they empirically proposed that the
ratio of the error-growth timescale to the secular-variation timescale
had to be roughly constant for Earth-like parameter regimes, yield-
ing a way to evaluate the error-growth timescale for the Earth’s
dynamo.

In this paper, we recall the method we employ (Section 2),
and extensively investigate the robustness of the error growth rate
(Section 3). We then provide a detailed discussion of the mecha-
nism responsible for this error growth (Section 4). This leads us to
suggest that what likely governs the error growth rate in dynamos
with Earth-like parameters is the magnetic dissipation time, char-
acterizing the rate at which magnetic energy is produced to com-
pensate for Ohmic dissipation. Having summarized our key results
(Section 5), we conclude with some practical considerations on the
limit of predictability of the geodynamo (Section 6).

2 M O D E L S A N D T O O L S

2.1 Numerical models

We consider fluid dynamos driven by thermal convection, which
operate in an electrically conducting fluid within a spherical shell
V of aspect ratio 0.35, rotating about the z-axis with constant an-
gular velocity �. The deterministic equations governing MHD and
Boussinesq convection are similar to those described by Christensen
& Aubert (2006), namely, the induction equation for the magnetic
field B in the MHD approximation, the Navier–Stokes and heat
equations for the velocity field u and the temperature field T in the
Oberbeck–Boussinesq approximation. Rigid mechanical boundary
conditions are employed and a constant difference of temperature
�T between the inner and outer boundaries is considered. The
outer boundary is electrically insulating, whereas the inner core is
electrically conducting and free to rotate along the Earth’s rotation
axis. The four dimensionless control parameters of the system are
the modified Rayleigh number Ra∗ = αg�T /�2 D (a measure of
the strength with which the dynamo is driven), the Ekman number
E = ν/�D2 (a measure of the relative importance of viscous to
Coriolis forces), the Prandtl number Pr = ν/κ and the magnetic
Prandtl number Pm = ν/η. Here, D is the shell thickness, g the grav-
ity at the outer boundary and α the thermal expansion coefficient; ν,
κ and η respectively denote the viscous, thermal and magnetic dif-
fusivities. We use the PARODY-JA implementation of the equations
(see Aubert et al. 2008, for details). This dynamo code, bench-
marked against other major implementations (Christensen et al.
2001), is based on a semi-spectral method. A spherical harmonic
expansion in the lateral direction is combined with a second-order
finite-differencing scheme in the radial direction (with geometri-
cal progression towards the boundaries to resolve boundary layers).
As only scalar fields can be projected onto the spherical harmonic
basis, the solenoidal vector fields B and u are decomposed into
poloidal fields Bp and up, and toroidal fields B t and ut. Time inte-
gration involves an implicit second-order Crank–Nicholson scheme
for diffusion terms and an explicit second-order Adams–Bashforth
scheme for the other terms. The time steps are determined according
to an adaptive criterion (see Christensen et al. 1999, for details).

In this study, we work with a set of 49 dynamo simulations, the
features of which are summarized in Table 1. The resolutions in
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Table 1. Set of numerical models. The input parameters E, Ra∗, Pm, Pr are described in the main text. All simulations
have been run with Pr = 1, and t run indicates the total run time in magnetic diffusion time τη = D2/η. The output
parameters Re (Reynolds number), Rm (magnetic Reynolds number), Ro (Rossby number), 
 (Elsasser number) are
defined as Re = UD/ν, Rm = UD/η, Ro = U/(�D), where U is the time-averaged rms velocity over the shell V ,
and 
 = B2/(ρ0μ0η�), where B is the time-averaged rms magnetic field, ρ0 the fluid density and μ0 the magnetic
permeability. The dipolarity f dip is the time-averaged rms amplitude of the dipole relative to the total field at the outer
boundary. Also provided is the error growth rates λ = τ−1

e in units of τ−1
η .

System E Ra∗ Pm t run Re Rm Ro 
 Reversals? f dip λ

(A1) 1 × 10−2 3 10 6 13 133 1 × 10−1 7 No 0.35 47
(A2) 1 × 10−2 3 20 3 13 251 1 × 10−1 29 No 0.30 102
(A3) 1 × 10−2 6 10 6 22 222 2 × 10−1 23 No 0.25 119
(A4) 1 × 10−2 6 20 3 21 428 2 × 10−1 65 Yes 0.16 233
(A5) 1 × 10−2 12 10 3 35 345 4 × 10−1 44 Yes 0.18 207
(A6) 1 × 10−2 12 20 2 33 667 3 × 10−1 120 Yes 0.10 423
(A7) 1 × 10−2 12 30 2 32 962 3 × 10−1 261 Yes 0.12 623
(A8) 1 × 10−2 24 10 2 51 509 5 × 10−1 80 Yes 0.12 344
(A9) 1 × 10−2 24 20 2 48 964 5 × 10−1 265 Yes 0.10 708

(A10) 1 × 10−2 24 30 2 47 1416 5 × 10−1 471 Yes 0.08 1122

(B1) 1 × 10−3 0.3 5 6 27 134 3 × 10−2 8 No 0.55 81
(B2) 1 × 10−3 0.3 10 3 26 255 3 × 10−2 26 No 0.46 191
(B3) 1 × 10−3 0.6 5 6 56 280 6 × 10−2 2 Yes 0.17 351
(B4) 1 × 10−3 0.6 10 3 50 502 5 ×10−2 20 Yes 0.16 602
(B5) 1 × 10−3 1.2 5 4 87 434 9 × 10−2 12 Yes 0.08 615
(B6) 1 × 10−3 1.2 10 2 80 803 8 × 10−2 44 Yes 0.08 1231
(B7) 1 × 10−3 1.2 15 2 78 1174 8 × 10−2 78 Yes 0.07 1936
(B8) 1 × 10−3 2.4 5 4 132 661 1 × 10−1 28 Yes 0.07 1071
(B9) 1 × 10−3 2.4 10 2 124 1242 1 × 10−1 85 Yes 0.06 2196
(B10) 1 × 10−3 2.4 15 2 121 1817 1 × 10−1 148 Yes 0.05 3593

(C1) 3 × 10−4 0.09 3 3 30 90 9 × 10−3 5 No 0.83 78
(C2) 3 × 10−4 0.09 6 2 28 170 9 × 10−3 15 No 0.65 165
(C3) 3 × 10−4 0.09 9 2 29 262 9 × 10−3 27 No 0.56 258
(C4) 3 × 10−4 0.18 3 3 63 188 2 × 10−2 7 No 0.57 260
(C5) 3 × 10−4 0.18 6 2 60 359 2 × 10−2 20 No 0.44 520
(C6) 3 × 10−4 0.18 9 2 59 529 2 × 10−2 38 No 0.39 860
(C7) 3 × 10−4 0.36 3 3 131 394 4 × 10−2 3 Yes 0.14 766
(C8) 3 × 10−4 0.36 6 2 111 667 3 × 10−2 24 No 0.25 1386
(C9) 3 × 10−4 0.36 9 2 107 962 3 × 10−2 45 No 0.22 2200
(C10) 3 × 10−4 0.72 3 3 200 599 6 × 10−2 11 Yes 0.08 1412
(C11) 3 × 10−4 0.72 6 2 183 1097 5 × 10−2 38 Yes 0.08 2988
(C12) 3 × 10−4 0.72 9 2 178 1600 5 × 10−2 67 Yes 0.07 4683

(D1) 1 × 10−4 0.05 1 4 58 58 6 × 10−3 2 No 0.93 98
(D2) 1 × 10−4 0.05 2 2 54 108 5 × 10−3 4 No 0.87 156
(D3) 1 × 10−4 0.1 1 3 114 114 1 × 10−2 3 No 0.84 231
(D4) 1 × 10−4 0.1 2 2 111 222 1 × 10−2 8 No 0.66 447
(D5) 1 × 10−4 0.2 1 3 278 278 3 × 10−2 10 Yes 0.16 735
(D6) 1 × 10−4 0.2 2 3 251 502 3 × 10−2 4 Yes 0.13 1454
(D7) 1 × 10−4 0.4 1 2 429 429 4 × 10−2 3 Yes 009 1438
(D8) 1 × 10−4 0.4 2 2 384 768 4 × 10−2 11 Yes 0.07 2873
(D9) 1 × 10−4 0.4 3 1 362 1086 4 × 10−2 20 Yes 0.09 4510

(D10) 1 × 10−4 0.8 2 1 589 1177 6 × 10−2 23 Yes 0.05 4816

(E1) 3 × 10−5 0.07 0.5 1.5 315 158 1 × 10−2 2 No 0.84 619
(E2) 3 × 10−5 0.14 0.5 1.5 663 332 2 × 10−2 2 Yes 0.16 1957
(E3) 3 × 10−5 0.14 1.0 1.0 668 668 2 × 10−2 4 Yes 0.14 3662
(E4) 3 × 10−5 0.29 0.5 1.5 1003 501 3 × 10−2 5 Yes 0.10 3128
(E5) 3 × 10−5 0.29 1.0 1.0 940 940 3 × 10−2 12 Yes 0.07 5930
(F1) 1 × 10−5 0.05 0.25 1.0 710 178 7 × 10−3 2 No 0.85 1298
(F2) 1 × 10−5 0.05 0.50 0.6 631 315 6 × 10−3 5 No 0.75 1983

terms of maximum spherical harmonic degree �max and number of
radial grid levels N r are selected so that at least a factor 50 may
be found between the maximum energy and the energy at the cut-
off wavelength in the kinetic and magnetic spectra. Depending on
the simulation, this amounts in practice to varying �max between
44 and 106, and N r between 90 and 160. The Ekman number E

varies from 10−2 to 10−5, and we have chosen to explore the param-
eter space by alternately increasing the modified Rayleigh number
Ra∗ and the magnetic Prandtl number Pm, keeping Pr = 1. In this
way, we move from dipolar dynamos characterized by a dipolarity
f dip > 0.35 to non-dipolar dynamos characterized by a dipolarity
f dip < 0.35, where f dip is the time-averaged rms amplitude of the
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Earth’s dynamo limit of predictability 495

Figure 1. Reference time-series for dynamo model B4 (see Table 1 for
definitions and parameters) computed with �max = 44 and N r = 90: (a)
dipole tilt in degrees; (b) g0

1 axial dipole coefficient at the outer boundary in
units of (ρ0μ0η�)1/2; (c) average magnetic (black curve) and kinetic (grey
curve) energy densities over the whole shell V in units of ρ0(ν/D)2. The
four quantities are expressed as a function of the magnetic diffusion time
τη . The 16 arrows indicate the times when the perturbations are introduced
for the cases illustrated in Fig. 2 (red) and Fig. 5 (all).

dipole relative to the total field at the outer boundary. In parallel,
we also move from stable dynamos which undergo neither reversals
nor significant excursions to dynamos which can reverse their po-
larity. The magnetic Reynolds number Rm = UD/η (where U is the
time-averaged rms velocity within the dynamo shell) evolves into a
range of values from 100 to 1800, which is consistent with the range
of values expected for the Earth (Christensen & Tilgner 2004). We
extensively investigate dynamo B4, which has the advantage of not
being too expensive in terms of computational time, and conse-
quently enables us to carry out a large number of verifications. With
a magnetic Reynolds number Rm of the order of 500, it exhibits re-
versals but has the usual drawback of being weakly dipolar (Kutzner
& Christensen 2002). A reference time-series, against which other
perturbed solutions will be compared, is presented in Fig. 1. It is
computed with (�max = 44, Nr = 90) and spans about 1.5 magnetic
diffusion times. A polarity reversal occurs at around two magnetic
diffusion times, whereas the polarity is globally maintained during
the rest of the time. Note that all time-series will be plotted in units
of magnetic diffusion time τ η = D2/η in the rest of the study.

2.2 Perturbative method

To investigate the growth of the errors, we first introduce various
types of well-controlled perturbations in spectral space. We next
monitor the departure of the perturbed solutions from the reference
solution.

Type-1 perturbations refer to the simple case of radially homoge-
neous perturbations introduced in the axial dipole component g0

1 of
the poloidal magnetic field Bp throughout the whole shell V . This
is a natural choice because the dipole field is an important feature
of the magnetic field observed outside the core. At one given step
t0 of the simulation, we thus set

∀r ∈ V, g̃0
1(r, t0) = g0

1(r, t0) (1 + ε) , (1)

where g0
1 is the axial dipole strength of the reference solution, g̃0

1 is

the strength of the perturbed solution and ε is the amplitude of the
perturbation. In this study, we rely on double precision calculations
and choose amplitudes from 10−2 to 10−10.

Type-2 perturbations are more general and correspond to in-
troducing random perturbations in all harmonic modes ym

n of the
poloidal magnetic field Bp (type 2a), of the poloidal velocity field up

(type 2b) or of the temperature field T (type 2c). The perturbations
are still homogeneous in the radial direction but are now random in
the lateral direction. At one given step t0 of the simulation, we thus
set

∀r ∈ V, ỹm
n (r, t0) = ym

n (r, t0)
(
1 + αm

n ε
)
, (2)

where the harmonic potentials ym
n and ỹm

n denote the reference and
perturbed solutions, the αm

n are random numbers which verify a
normal law of zero mean and unit variance, and ε is the amplitude
of the perturbation (varying from 10−2 to 10−10 as previously). The
integers n and m denote the degrees and orders of the spherical
harmonic expansion respectively. In both types 1 and 2, the per-
turbations are impulsive in time, meaning that the reference and
perturbed fields independently evolve according to the same equa-
tions after the perturbation is introduced.

To monitor the departure of the perturbed solutions from the
reference solution, we define, for any harmonic potential ym

n (t), the
normalized error

�ym
n (r, t) = [̃ym

n (r, t) − ym
n (r, t)]/

√
〈[ym

n (r, t)]2〉, (3)

and in particular the axial dipole error

�g0
1(r, t) = [̃g0

1(r, t) − g0
1(r, t)]/

√
〈[g0

1(r, t)]2〉, (4)

where the angle brackets define time averaging. More generally,
it will prove convenient to define a normalized rms error for any
harmonic degree,

�yn(r, t) =
√√√√ 1

(2n + 1)

n∑
m=0

∣∣�ym
n (r, t)

∣∣2
, (5)

which provides a more diagnostic view of the subsequent evolution
of the errors. As we observe that the response of the dynamo system
to the perturbations is large scale, it is not necessary to integrate
the different errors over the whole outer shell. Rather, the rms
magnetic errors—which refer to the poloidal magnetic field Bp—
are evaluated at the core-mantle boundary, whereas the rms flow
and temperature errors—which respectively refer to the poloidal
velocity field up and the temperature field T—are evaluated at mid-
depth of the shell.

3 RO B U S T N E S S O F T H E E R RO R
G ROW T H

We start by illustrating the way any perturbation introduced in
a given reference simulation results in a subsequent exponential
growth of the errors in all fields (magnetic, flow and temperature).
This is first shown for a case study, where we focus on the be-
haviour of the dipole field after an error is introduced in the axial
dipole. Next, we show that a similar error growth can be found in
all fields—independent of the type, the amplitude and the time of
the perturbation introduced—and proceed to quantify the remark-
ably little variability displayed by the corresponding growth rates.
Finally, we investigate the impact of the limited resolution of nu-
merical solutions, which does not affect the estimated growth rates,
but produces quantifiable errors that also grow with the same rate.

C© 2011 The Authors, GJI, 186, 492–508
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Figure 2. Consequences of introducing non-random perturbations in the g0
1 axial dipole coefficient of dynamo B4 at three times (t0 = 1.51, t0 = 1.9, t0 =

2.0) highlighted in red in Fig. 1. The reference time-series is represented in black, whereas the perturbed time-series are represented in red, green and blue,
according to the amplitude of perturbation. The four panels show: (a) long-term evolution of the perturbed solutions; (b) short-term evolution of the perturbed
solutions; (c) modulus of the axial dipole error (i.e. ln |�y0

1| for the poloidal magnetic field Bp) in a semi-logarithmic plot; (d) modulus of the dipole error
(i.e. ln |�y1| for the poloidal magnetic field Bp) in a semi-logarithmic plot. The colour vertical lines indicate the time after which the reference and perturbed
solutions drift apart in panel (b), which actually corresponds to the beginning of the free-development phase. For any of the amplitudes 10−2, 10−6, 10−10 of
perturbation and any of the three times of perturbation, the exponential growth rates λ2, λ6 and λ10 of panels (d) were computed together with their uncertainty
at 95 per cent confidence level (in units of τ−1

η ) as described in Section 3.1.

3.1 Error growth for a case study

For this case study, we focus on dynamo B4. In the reference time-
series presented in Fig. 1, type-1 perturbations (computed with
the help of eq. 1) were introduced at three given stages of the
simulation: t0 = 1.51, half a magnetic time before the reversal;
t0 = 1.9, at the onset of the reversal; t0 = 2, when the reversal
is under way. In each case, three amplitudes of perturbation were
tested: 10−2, 10−6 and 10−10. Nine different perturbed solutions
were thus produced, the evolutions of which are shown in Fig. 2.
Fig. 2(a) details the long-term evolution of the perturbed solutions
and underlines the difficulty in predicting the long-term behaviour
of the perturbed solutions from the reference one. The reversal of
the reference time-series may be in certain cases slightly altered,
in other cases impeded, otherwise it is changed into an excursion.
It is then possible to conclude that the reference and perturbed
solutions evolve with no apparent relationship. In parallel with this
first conclusion, Fig. 2(b) focusing on the time shortly after the
introduction of the perturbation, shows that the lapse of time after

which the reference and perturbed solutions drift apart depends on
the amplitude of this perturbation. As could be expected, perturbed
solutions separate first for the largest perturbation (10−2, vertical red
line), next for the medium perturbation (10−6, vertical green line)
and finally for the smallest perturbation (10−10, vertical blue line). It
is of interest that the time interval between the red and green vertical
lines is approximately equal to the time interval between the green
and blue vertical lines. This indicates that, every time the amplitude
of the perturbation is changed by the same factor (here 10−4), the
same delay is introduced before the perturbed solution separates
from the reference solution. This is a first clear indication of the
exponential growth of the errors resulting from the perturbations.

Fig. 2(c) presents the modulus of the axial dipole error as a func-
tion of time in a semi-logarithmic scale. It demonstrates the expo-
nential character of the error growth, and reveals three main stages
in the evolution of the perturbed solutions: a mobilization phase, an
exponential-growth phase and a free-development phase. The first
phase, which lasts about one hundredth of magnetic time in this
case, does not depend on the amplitude of the initial perturbation. It
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can be interpreted as the response time of the system, during which
the initial perturbation is communicated to all harmonic potentials.
The second phase describes the exponential growth of the errors.
As previously observed, the duration of this phase depends on the
amplitude of the initial perturbation. The smaller this amplitude,
the longer the duration of this phase. Note that this exponential-
growth phase is much longer than the mobilization phase, which
will consequently be neglected in the rest of this study. Another
important feature is that the exponential growth appears to be in-
dependent of the time and amplitude of the initial perturbation,
suggesting that the parameter regime investigated here is associated
with a single dominant growth rate. The second phase ends when
the perturbation reaches a macroscopic level which approximately
corresponds to the unperturbed g0

1 time-averaged value. Once this
threshold value has been reached, the solutions then evolve with no
apparent relationship to the reference solution.

We now try to quantify the dominant growth rate we identified.
When g0

1(t) is perturbed with an initial amplitude ε, the averaged
exponential growth can formally be written as

�g0
1(t) = �g0

1(0) exp(λ0
1t), (6)

where λ0
1 defines the averaged growth rate. Supposing that the initial

perturbation �g0
1(0) = ε reaches a macroscopic level �g0

1(�t) = 1
in a lapse of time �t , this growth rate can then be estimated from

λ0
1 = 1

�t
ln

[
�g0

1(0)

�g0
1(�t)

]
= ln(ε)

�t
. (7)

Using this formula is however not very convenient because �g0
1(t)

displays some variability (recall Fig. 2c). Fortunately, analogous av-
eraged growth rates can be defined for each harmonic mode of the
poloidal magnetic field Bp and toroidal magnetic field B t. These ap-
pear to be essentially identical and we choose to compute an estimate
of their common value for each degree n of Bp, using the normalized
rms errors �yn (eq. 5). Fig. 2(d) shows for instance the modulus of
the dipole error (i.e. |�y1| for the poloidal magnetic field Bp) as a
function of time for the three instants and amplitudes of perturba-
tion previously defined. The growth rate λ, which corresponds to
the inverse of the e-folding time τ e, can then be calculated using
least-squares linear regression. In addition, the posterior covariance
matrix can be used to quantify the uncertainty of each individual es-
timate of the growth rate at 95 per cent confidence level (equivalent
to 2σ ). Not surprisingly, this uncertainty is largest when perturba-
tions of amplitude 10−2 are introduced, and the growth rate is less
well recovered (Fig. 2d). For smaller perturbations, the uncertainty
is however small enough and it appears that the recovered growth
rates slightly fluctuate depending on the time and the amplitude
of the initial perturbation. Ignoring the perturbations of amplitude
10−2, the growth rates (measured in units of τ−1

η ) cover a restricted
range of values of mean μ = 580 and standard deviation σ = 22. In
the following paragraph we discuss the variability of these growth
rates when a larger variety of perturbations is introduced.

3.2 Variability of the error growth

We first assess the consequence of introducing other types of per-
turbations at a given time. For this purpose, type-2 perturbations
(computed with the help of eq. 2) are introduced at t0 = 1.51 in
dynamo B4. The amplification of the resulting errors in the first
eight degrees (i.e. for �yn with n = 1 to 8) of the various fields
(magnetic, velocity and temperature) is illustrated in Fig. 3. With
the same amplitudes as previously, three types of perturbations are

tested: magnetic perturbations (type 2a, upper panels), flow pertur-
bations (type 2b, middle panels) and thermal perturbations (type 2c,
lower panels). Three monitoring quantities are also considered: rms
magnetic errors (left column), rms flow errors (middle column) and
rms temperature errors (right column). Fig. 3 shows that the mobi-
lization phase can be seen as the time required for the magnetic, flow
and temperature relative errors to become of equal amplitude. An
exponential growth is then observed, regardless of the type of pertur-
bation, the amplitude of perturbation, and the monitoring quantity.
For each monitoring quantity, the growth rate and its uncertainty at
95 per cent confidence level are calculated using least-squares linear
regression, by simultaneously considering the first eight �yn errors.
The time window used to infer the growth rate is manually deter-
mined, to start after the mobilization phase and stop when the rms
error reaches a macroscopic level. This growth rate displays a slight
variability, depending on the type of perturbation, the amplitude of
perturbation and the monitoring quantity.

To better quantify this variability, we chose to investigate numer-
ous cases when magnetic perturbations were applied. For each of
the five considered amplitudes (10−2, 10−4, 10−6, 10−8 and 10−10),
100 random perturbations were introduced (still at time t0 = 1.51
in dynamo B4). Histograms of the magnetic, kinematic and ther-
mal growth rates (again computed by simultaneously considering
the errors in the first eight degrees of the monitoring quantity) are
presented in Fig. 4, where values were collected in bins with width
comparable to the 95 per cent confidence level with which each
individual estimate was recovered. These plots again confirm that
individual estimates are recovered with sufficient accuracy that, for
each observed quantity, the intrinsic variability of the growth rate
with respect to the perturbation introduced can be assessed. This
variability can be quantified by fitting each histogram with a nor-
mal distribution, providing estimates of the mean μ and standard
deviation σ . This standard deviation does not exceed 6 per cent of
the mean value. Disregarding the perturbations of amplitude 10−2

as previously, a standard deviation of less than 3 per cent is found
between the histograms, which confirms that the growth rates are
not significantly different. The exponential growth is slightly slower
for the perturbations of amplitude 10−2 but this behaviour may be
justified by the fact that the system rapidly saturates and does not
have the time to produce a regular exponential growth.

To finally assess the variability of the growth rate as a function
of the time of perturbation, magnetic, flow and temperature pertur-
bations of amplitude 10−10 were introduced in dynamo B4 at each
of the different times highlighted in Fig. 1. The values of the mag-
netic, kinematic and thermal growth rates (computed in the same
manner) are plotted in Fig. 5. At any given time, the growth rate is
fairly independent of the perturbation introduced and the monitor-
ing quantity, with a standard deviation of the order of 3 per cent in
the present case. The main source of variability thus stems from the
time of the perturbation, with a standard deviation of the order of
6 per cent in this case. No correlation has been found between the
growth rate and the magnetic or kinetic energies.

To sum up, the variability of the growth rate is the result of
two main contributions: (1) a temporal variability of the order of 6
per cent, depending on the time the perturbation is introduced but
uncorrelated with macroscopic energies; (2) an intrinsic variability
generally of the order of 3 per cent due to the introduction of random
perturbations at the initial time. Type and amplitude of perturbation
are not determining factors, except for the case when the amplitude
is strong and the system saturates. The variations of the growth rate
are at any rate limited and do not contradict the idea that the growth
rate represents a general feature of the dynamo mean state. We thus
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Figure 3. Consequences of introducing random perturbations in dynamo B4 at t0 = 1.51. The first line corresponds to magnetic perturbations (type 2a), the
second line to flow perturbations (type 2b) and the third line to thermal perturbations (type 2c) at the initial time. The first column represents magnetic errors,
the second column flow errors and the third column thermal errors, as defined by the normalized rms errors �yn(t) and plotted for n = 1 to 8. Three amplitudes
of perturbation were tested : 10−2 in red, 10−6 in green, 10−10 in blue. The exponential growth rates λi are determined using least-squares linear regression,
simultaneously over the first eight �yn errors. They are as previously estimated with a confidence level of 95 per cent.

conclude that a characteristic growth rate can be determined for
each dynamo simulation.

For all the results discussed in Section 4, growth rates are com-
puted in the following way. For each dynamo solution, magnetic
random perturbations of amplitude 10−10 are introduced at 10 dif-
ferent times over a period of at least one magnetic diffusion time.
Magnetic random perturbations have been arbitrarily chosen, be-
cause the three types of perturbation lead to the same growth rate;
and weak amplitudes of perturbation have been favoured, because
they lead to more accurate estimates of the slope. Growth rates are
next jointly determined over the first eight harmonic degrees of
the magnetic errors for each of the 10 perturbation times, with the
same procedure as previously described. The corresponding 10 es-
timates are finally used to obtain an averaged growth rate λ together
with its uncertainty at 95 per cent confidence level. The corre-
sponding values of λ and its associated τ e = λ−1 are provided in
Table 1.

3.3 Impact of limited resolution

Instead of introducing initial perturbations of known amplitude, we
now wish to explore the impact of limited spatial resolution. To
illustrate this point, we rely on dynamo B4 with a higher angular
spatial resolution than previously (�max = 128 instead of �max =

44). Fig. 6(a) presents the dipole tilt associated with this extended
reference time-series, and Fig. 6(b) its magnetic spectrum integrated
over the whole shell V .

In a first series of tests we removed the energy in the small scales
of the magnetic field (both poloidal and toroidal) by setting to zero
all spherical harmonic degrees beyond a given degree �tr, at a given
time step t0. The reset solution is next left free to evolve with the
same resolution as the extended reference time-series. These tests
were carried out for four different times t0 (Fig. 6a), and four differ-
ent truncation degrees (�tr = 44, 96, 112 and 120). As illustrated in
Fig. 7(a) for the poloidal magnetic field when the reset takes place
at time t0 = 10.505, the rms errors �yn (computed from eq. 5)
exponentially grow. The growth rates (calculated by least-squares
linear regression, by simultaneously considering the first eight �yn)
are moreover consistent with those previously inferred for dynamo
B4 (within the variability already discussed in Section 3.2). This
underlines the generality of the error growth mechanism, and in-
dicates that its value does not significantly depend on the spatial
resolution of the simulations.

To assess more directly the impact of limited spatial resolution
in numerical simulations, we carried out a second series of tests.
We permanently set to zero all spherical harmonic degrees of all
fields (magnetic, flow and temperature) beyond a given degree �tr,
starting at a given time step t0. As illustrated in Fig. 7(b) for the
poloidal magnetic field when the change in resolution takes place
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Figure 4. Histograms of the magnetic (column 1), kinematic (column 2) and thermal (column 3) growth rates for magnetic perturbations introduced in dynamo
B4 at time t0 = 1.51. The histograms are modelled by normal distributions, the mean μ and standard deviation σ of which are indicated on the right of each
panel (in units of τ−1

η ). The first five lines show histograms for amplitudes of perturbation from 10−2 to 10−10. The sixth line is a summary of the results.

from time t0, we found again that the rms errors �yn (computed
from eq. 5) exponentially grow, and that the recovered growth rates
are consistent with those previously inferred for dynamo B4. It thus
appears that two dynamo solutions, starting from the same initial
state but only contrasting by their level of resolution, will differ
by an error growing exponentially with the same growth rate as an
error resulting from an initial seed perturbation introduced in either
of the two solutions.

As shown in Fig. 7(b), the error is larger when the level of res-
olution is lower. To quantify this trend, we plotted in Fig. 8 the
equivalent magnetic perturbation (i.e. the amplitude at which the
rms errors �yn begin to grow after the brief mobilisation phase in
Fig. 7b) as a function of the loss of magnetic energy due to the
non-modelled small scales (i.e. the ratio of the truncated tail of the
magnetic spectrum to the entire magnetic spectrum, see Figs 6b and
c). It suggests that the non-modelled magnetic energy can provide a
rough measure of the equivalent magnetic perturbation. Note how-
ever that the best-fitting trend in this log–log plot reveals that the
equivalent magnetic perturbation is intermediate between being pro-
portional to the relative missing magnetic energy and its square root,
which probably comes from the role played by the missing small-
scale flow and thermal fields in defining the equivalent magnetic
perturbation. In this respect, Fig. 8 should not be over-interpreted.

It simply suggests that estimating the relative contribution of the
non-modelled magnetic energy is able to provide an order of mag-
nitude of an equivalent magnetic perturbation, which in turn can be
used to assess the limit of predictability of a simulation with a given
limited spatial resolution.

By analogy with the issue of limited spatial resolution, the impact
of limited temporal resolution in numerical simulations can also be
assessed. To this end, we still relied on dynamo B4 and produced
two solutions with fixed time-steps (contrary to the previous ones
produced with an adaptive time-step varying between 1 × 10−6

and 5 × 10−6 τ η): one well-resolved with a time-step of �t =
10−8 τ η, one of lesser resolution computed starting from the pre-
vious solution at a given time t0 but with a time-step of �t =
10−6 τ η from there on. As illustrated in Fig. 9, the rms errors �yn

between these two solutions after t0 (computed according to eq. 5)
led to an exponential growth, the rate of which was found to be
consistent with those previously inferred for dynamo B4. Note that
the equivalent magnetic perturbation (i.e. the amplitude at which
the rms errors �yn begin to grow after the brief mobilization phase
in Fig. 9) is now of the order of 10−5 for a decrease of two or-
ders of magnitude in the time-step. It thus suggests that the impact
of limited temporal resolution is by far less acute than the im-
pact of limited spatial resolution, which appears to be the main
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Figure 5. Variability of the growth rate as a function of time for dynamo B4. Random perturbations of amplitude 10−10 were introduced at the 16 times
highlighted in Fig. 1. Magnetic, flow and temperature perturbations were alternately tested. The three panels depict: (a) the magnetic growth rates; (b) the
kinematic growth rates and (c) the thermal growth rates. The histograms on the right show the distribution of the growth rates, irrespective of the type of
perturbation. They can be modelled by normal distributions, the mean μ and standard deviation σ of which are indicated on the right of each panel (in units of
τ−1

η ).

source of error associated with the limited resolution of numerical
simulations.

4 S C A L I N G L AW S

4.1 Cause of the error growth

We now wish to investigate the cause of the observed error
growth. Let us denote (B0, u0, T 0, P0) the reference solution and
(B0 +B, u0 +u, T 0 + T , P0 + P) the perturbed solution after the
mobilization phase. Both solutions are dynamo solutions and thus
satisfy the equations governing MHD and Boussinesq convection
(e.g. Christensen & Aubert 2006), that is, for the reference state

∂u0

∂t
+ (u0 · ∇) u0 = − 1

ρ0
∇P0 + ν�u0 + αT0 g − 2� × u0

+ 1

μ0ρ0
(∇ × B0) × B0; (8)

∂T0

∂t
+ (u0 · ∇) T0 = κ�T0; (9)

∂ B0

∂t
= ∇ × (u0 × B0) + η�B0, (10)

where ρ0 is the density of the core and μ0 is the magnetic perme-
ability.

Assuming the perturbations to be small and linearizing about the
reference state then yields the following three equations:

∂u

∂t
+ (u0 · ∇) u︸ ︷︷ ︸

(i)

+ (u · ∇) u0︸ ︷︷ ︸
(i i)

= − 1

ρ0
∇P + ν�u + αT g − 2� × u

+ 1

μ0ρ0
[(∇ × B) × B0 + (∇ × B0) × B] ;

(11)

∂T

∂t
+ (u0 · ∇) T︸ ︷︷ ︸

(i)

+ (u · ∇) T0︸ ︷︷ ︸
(i i i)

= κ�T ; (12)

∂ B

∂t
= ∇ × (u0 × B)︸ ︷︷ ︸

(i)

+∇ × (u × B0)︸ ︷︷ ︸
(iv)

+η�B. (13)

which respectively describe the evolution of the flow, temperature
and magnetic perturbations. All those equations display at least
one term [labelled (i) in each equation] that can produce some
exponential growth of u, T and B. A first-order dimensional anal-
ysis of those terms immediately suggests a possible growth rate
scaling as λ ∝ U 0/D. (Note that for the purpose of the present
discussion, all dynamo output quantities such as U 0 with a 0 index

C© 2011 The Authors, GJI, 186, 492–508

Geophysical Journal International C© 2011 RAS

 at B
iblio Planets on D

ecem
ber 1, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Earth’s dynamo limit of predictability 501

Figure 6. Extended reference time-series for dynamo B4 (Table 1) com-
puted with �max = 128 and N r = 96: (a) dipole tilt in degrees; (b) magnetic
spectrum integrated over the whole shell V (in units of ρ0μ0η�) and (c)
enlargement of the spectrum tail. Arrows in panel (a) indicate times when
tests are applied, whereas the vertical black lines in panels (b) and (c) cor-
respond to the various values of �tr (44, 96, 112 and 120) considered in our
tests.

will relate to the unperturbed dynamo solution, whereas analogous
quantities without any index will refer to the perturbation) How-
ever, those equations also display diffusive terms (ν�u in eq. 11,
κ�T in eq. 12 and η�B in eq. 13), and a number of terms cou-
pling the flow (u), temperature (T) and magnetic (B) perturba-
tions. Some of those terms, labelled (ii), (iii) and (iv) are quite
similar in form as the (i)-terms. As noted in Section 3.2, the mo-
bilization phase can be seen as the time required to produce the
equilibrium U/U 0 = T /T 0 = B/B0 (presumably via a balance
between the buoyancy, Coriolis and Lorentz terms in eqs 8 and
11). In these conditions, the (ii)–(iv) terms respectively scales as
U0U

D ,
U T0

D = U
U0

T0
T

U0T
D = U0T

D ,
U B0

D = U
U0

B0
B

U0 B
D = U0 B

D . In a regime
where advection renders the various diffusive terms of secondary
importance, we thus obtain that the natural scaling for the error
growth rate we observe is λ ∝ U 0/D.

Depending on which timescale one uses, this scaling law can then
be written as λτη ∝ (U 0 D)/η = Rm (the magnetic Reynolds num-
ber) if using the magnetic diffusion time τ η = D2/η, λ τκ ∝ (U 0 D)/
κ = Pe (the Péclet number) if using the thermal diffusion time τ κ

= D2/κ , λτν ∝ (U 0 D)/ν = Re (the Reynolds number) if using
the kinematic diffusion time τ ν = D2/ν, and λ�−1 ∝ U 0/(�D)
= Ro (the Rossby number) if using the inverse rotation frequency
�−1. In principle, if λ indeed only scales like U 0/D, any of the
four timescales τ = {τ η, τ κ , τ ν , �−1} should lead λτ to plot as a
linear function of the corresponding Rm, Pe, Re or Ro number. Yet,
this is not the case. This can be seen in Fig. 10, which shows only
three such plots, because all our simulations were run with Pr = 1,
leading to Pe = Re and τ κ = τ ν so that plotting λτκ as a function
of Pe would be exactly the same as plotting λτν as a function of Re.

Fig. 10(a) which shows λτη as a function of Rm, indeed suggests
that λ in units of τ−1

η is proportional to Rm. But it also shows that the
factor of proportionality is sensitive to the Ekman number E. This
sensitivity was attributed by Hulot et al. (2010b) to a geometrical
effect of the leading scales of the background dynamo flows. Plot-
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Figure 7. Impact of limited spatial resolution in dynamo B4: (a) magnetic
error growth (as measured by the normalized poloidal field rms errors �yn

for n = 1–8) after setting to zero all spherical harmonic degrees of the
magnetic field (both poloidal and toroidal) beyond degrees �tr in the extended
reference time-series of Fig. 6(a), at time step t0 = 10.505; (b) magnetic error
growth [measured as in (a)] after permanently setting to zero all spherical
harmonic degrees of all fields (magnetic, flow and temperature) beyond
degrees �tr in the extended reference time-series, from time step t0 = 10.505.
In both (a) and (b), three values of �tr (44, red; 96, green; and 120, blue)
were shown and the growth rates (in units of τ−1

η ) were estimated with their
uncertainties at 95 per cent confidence level.

ting λτν as a function of Re provides a complementary perspective
(Fig. 10b). This figure can be seen as a transform of Fig. 10a via
the common multiplication of both abscissa and ordinate of each
point by the magnetic Prandtl number Pm. As Pm-values in our
simulations are roughly related to E-values (recall Table 1), with
larger values of Pm being associated with larger values of E, this
leads to a reorganisation of the various segments of Fig. 10(a) into
a mainly piecewise succession of segments in Fig. 10(b). Runs with
various Pm values were nevertheless computed for each E, and this
also reveals some sensitivity of λ with respect to Pm, as is best
seen in Fig. 10(c), which now shows λ�−1 as a function of Ro.
The advantage of such a plot is that both abscissa and ordinates no
longer refer to any of the diffusive parameters η and ν, so that the
sensitivity of λ to those parameters (via E and Pm) are directly to
be found in the behaviour of the plot itself. This plot shows that
λ�−1 is proportional to Ro, with a slope that depends on E, but also
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Figure 8. Log–log plot of the equivalent magnetic perturbation as a function
of the relative contribution of the non-modelled small-scale magnetic field
to the total magnetic field energy over the entire core (see text for details).
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Figure 9. Impact of limited temporal resolution in dynamo B4 as illustrated
by the growth of the magnetic errors �yn for n = 1 to 8 between one solution
with a fixed time-step of 10−8 τη and another one with a fixed time-step of
10−6 τη . The growth rate (in units of τ−1

η ) was estimated with its uncertainty
at 95 per cent confidence level.

on Pm. This then leads us to conclude that as a general rule, λ is
indeed proportional to U 0/D, but with a factor of proportionality
that depends on both E and Pm, that is on the two diffusivities η

and ν.

4.2 Comparing the growth rate to the secular-variation
timescale

The sensitivity to E of the factor linking λ to U 0/D was already
recognised in Hulot et al. (2010b). This led to the suggestion that
scaling λ with respect to some directly observable dynamo output
parameter displaying a similar dependence with respect to U 0/D,
could perhaps lead to a clearer picture of what exactly governs the
growth rate of the errors, particularly in view of inferring an estimate
of τ e =λ−1 for the Earth’s dynamo. The candidate parameter was the
so-called secular-variation timescale τ SV introduced by Christensen
& Tilgner (2004) and recently discussed in Lhuillier et al. (2011).

0 500 1000 1500 2000
0

2000

4000

6000

8000

Rm

λ 
 [

in
 τ

η
]

0 300 600 900 1200
0

2000

4000

6000

8000

Re

λ 
 [

in
 τ

ν
]

0 0.15 0.3 0.45 0.6
0

0.15

0.3

0.45

0.6

Ro

λ 
 [

in
 

]

a.

b.

c.

Figure 10. Growth rate λ as a function of Rm (a), Re (b) and Ro (c). Note
that λ is counted in units of τ−1

η in (a) (which amounts to plotting λτη), in

units of τ−1
ν in (b) (which amounts to plotting λτν ), and in units of � in (c)

(which amounts to plotting λ�−1). Colour codes and symbols refer to E,
with E = 1 × 10−2 being shown as red squares, E = 1 × 10−3 as purple
circles, E = 3 × 10−4 as blue down-pointing triangles, E = 1 × 10−4 as
green up-pointing triangles, E = 3 × 10−5 as brown diamonds, and E =
1 × 10−5 as black stars (error bars refer to 95 per cent level of confidence).

This timescale characterises the time variations of each non-dipole
spherical harmonic degree n of the (observable) poloidal field at the
core surface, through the relationship:

τn = τSV/n (n � 2), (14)

where τ n is the reorganization (or correlation) time introduced by
Hulot & Le Mouël (1994) and defined as

τn =
√

〈∑n
m=0

[
(gm

n )2 + (hm
n )2

]〉
〈∑n

m=0

[
(ġm

n )2 + (ḣm
n )2

]〉 , (15)
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Figure 11. Inverse τ−1
SV of the secular-variation timescale as a function of

Rm (a), Re (b) and Ro (c). Note that τ−1
SV is counted in units of τ−1

η in (a)

(which amounts to plotting τη/τSV), in units of τ−1
ν in (b) (which amounts

to plotting τ ν/τSV), and in units of � in (c) (which amounts to plotting (τSV

�)−1). Note also that in panel (a), eq. (16) predicts a linear plot (τη/τSV

= 0.296 Rm, not shown) indistinguishable from the overlapping linear best
fits obtained for E between 10−5 and 10−4. Colour codes and symbols refer
to E as in Fig. 10 (error bars refer to 95 per cent level of confidence).

where g and h define the Gauss coefficients of the poloidal field
at the core surface, ġ and ḣ their time derivatives, and the angle
brackets refer to time averaging.

In the same way as for λ, it is expected that τ−1
SV is proportional to

U 0/D. This can be tested using the same three scaling options as was
done for λ: plotting τ−1

SV τ η as a function of Rm (Fig. 11a), τ−1
SV τ ν as a

function of Re (Fig. 11b), and τ−1
SV �−1 as a function of Ro (Fig. 11c).

These plots show that τ−1
SV in these dynamo models is close to being

proportional to U 0/D, with significantly less dependence on E and
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Figure 12. Ratio of the e-folding time τ e to the secular-variation timescale
τSV as a function of the magnetic Reynolds number Rm (a) and Reynolds
number Re (b). Simple fits of the form τ e/τSV = a + b/Rm are presented
for each value of the Ekman number E (save for E = 1 × 10−5 in view of
the scarcity of the values) in panel (a) and a similar fit of the form τ e/τSV

= a + b/Rm (for all the values) is shown in panel (b). This last best fit
leads to an asymptotic estimate of 0.05 ± 0.02 for τ e/τSV. Colour codes
and symbols refer to E as in Fig. 10.

Pm (and thus on the two diffusivities η and ν) than λ. This behaviour
was already noted by Christensen & Tilgner (2004) who proposed
that (their fig. 3b, where we correct for our different definitions of
τ η and Rm)

τSV/τη = 3.38Rm−1. (16)

This relationship is indeed compatible with our own results, when
considering low enough Ekman numbers (Fig. 11a). Note however
that some dependence on E and Pm is still to be found, but mainly
for dynamos with high Ekman numbers.

The fact that both λ and τ−1
SV are mainly proportional to U 0/D

leads us to test the behaviour of τ e = λ−1 rescaled in units of τ SV,
which amounts to plotting the non-dimensional quantity τ e/τ SV as a
function of some parameter characterising U 0/D. Again, three op-
tions are possible, depending on which timescale we use to measure
U 0/D.

We first discuss Fig. 12(a), which shows τ e/τ SV as a func-
tion of Rm. For any fixed Ekman number E, and when Rm in-
creases, τ e/τ SV progressively decreases towards some asymptotic
value, this asymptotic value being reached more rapidly when
the Ekman number becomes smaller. Of the order of 0.05 for
the lowest Ekman number, this value provides an upper estimate
of τ e/τ SV for dynamos with lower Ekman number, such as the
geodynamo.
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Interesting additional insight is provided by Fig. 12(b), which
shows τ e/τ SV as a function of Re. This figure reveals a more strik-
ing trend for all dynamos we investigated to have τ e/τ SV converging
towards a common value 0.05 ± 0.02 when Re increases. Because
only modest variability was considered for Pm for each value of the
Ekman number, plotting τ e/τ SV as a function of Re in place of Rm
essentially amounts to rescaling each curve of Fig. 12(a) according
to Pm, to produce the single curve in Fig. 12(b). It can then be inter-
preted as an indication that all curves with fixed Ekman numbers in
Fig. 12(a) tend to eventually converge towards the common value
of 0.05 ± 0.02 when Rm becomes large enough.

Our results thus suggest that the two diffusivities η and ν are
important parameters, and that the asymptotic value of 0.05 ± 0.02
we found for τ e/τ SV is only reached provided that E is small enough,
whereas both Rm and Re are large enough.

4.3 Comparing the growth rate to the dissipation times

The previous analysis raises the intriguing question of the origin of
the asymptotic value we found for τ e/τ SV. This value is significantly
different from order 1, and one may wonder why such a small
ratio is obtained. Interestingly, a comparable ratio is found between
the magnetic dissipation time τ

mag
diss introduced by Christensen &

Tilgner (2004) and τ SV, possibly suggesting a more fundamental
link between τ e and τ

mag
diss than between τ e and τ SV.

This magnetic dissipation time is defined as the ratio τ
mag
diss =

Emag/DOhm of the total magnetic energy of the dynamo

Emag = 1

2μ0

∫
B2

0dV (17)

to the total Ohmic dissipation power

DOhm = η

μ0

∫
(∇ × B0)2dV, (18)

where the integrals are computed over the volume of the dynamo
shell. Just like τ SV, τ

mag
diss can be expected to scale like Rm−1 when

measured in units of τ η. To see this, it is important to first recognise
that because the dynamo is in a saturated regime, eq. (10) implies
that on average DOhm also satisfies

DOhm = 1

2μ0

∫
B0 · ∇ × (u0 × B0)dV . (19)

It is then quite natural to expect DOhm to scale as B2
0U 0V /(μ0 D),

where V is the volume of the dynamo shell. Similarly, it is natural
to expect Emag (as given by eq. 17) to scale as B2

0V /μ0. This then
leads to the suggestion that τ

mag
diss = Emag/DOhm scales like D/U 0 =

τ η Rm−1. Christensen & Tilgner (2004) already found that τ
mag
diss is

essentially proportional to Rm−1 when counted in units of τ η (for
dynamo simulations with E ranging from 1 × 10−5 to 3 × 10−4,
when using our definition of E, see their fig. 1a). This led them to
propose that τ

mag
diss /τ η = 0.27 Rm−1 (their eq. 3, which we modify

for our definitions of τ η and Rm). Such a relationship implies that
(τmag

diss )−1 plots as a linear function of Rm when scaled in units of
τ−1

η . Fig. 13 shows that this is indeed the case for the simulations
we ran. But as was already observed for both λ (Fig. 10a) and
τ−1

SV (Fig. 11a), some dependence on E is also to be found for the
slope. Interestingly, just like for τ−1

SV, this dependence weakens as
E decreases. Searching for a best linear fit for the simulations with
the smallest Ekman numbers we ran (between E = 1 × 10−5 and
E = 1 × 10−4) then leads to

τ
mag
diss /τη = 0.18(±0.02)Rm−1. (20)
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Figure 13. (τmag
diss )−1 counted in units of τ−1

η (which amounts to plotting

τη/τ
mag
diss ) as a function of Rm. Also shown, the scaling suggested by Chris-

tensen & Tilgner (2004) (dashed line), and our best fit to values correspond-
ing to E between 1 × 10−5 and 1 × 10−4, leading to eq. (20) (solid line,
with light lines referring to 95 per cent level of confidence). Colour codes
and symbols refer to E as in Fig. 10.
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Figure 14. Ratio of the e-folding time τ e to the magnetic dissipation time
τ

mag
diss (a) and to the minimum min (τ kin

diss, τ
mag
diss ) of the viscous and magnetic

dissipation times (b) as a function of Re. Colour codes and symbols refer
to E as in Fig. 10. In panel (b), grey-filled symbols indicate values obtained
when τ kin

diss < τ
mag
diss .

Combined together, eqs (20) and (16) lead to a ratio τ
mag
diss /τ SV

of the order of 0.05, identical to the asymptotic value we found for
τ e/τ SV. These considerations prompted us to directly investigate
the behaviour of τ e/τ

mag
diss as a function of Re, for comparison with

Fig. 12(b). As can be seen in Fig. 14(a), it now appears that τ e/τ
mag
diss
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Figure 15. τ kin
diss counted in units of τ ν (which amounts to plotting τ kin

diss/τν )
as a function of E1/2. Also shown our best fit leading to eq. (23) (solid line,
with light lines referring to 95 per cent level of confidence). Colour codes
and symbols refer to E as in Fig. 10.

converges towards unity as both E decreases and Re increases. This
then suggests that for dynamos with low E and high Re and Rm, τ e

is governed by the magnetic dissipation time τ
mag
diss . Because (τmag

diss )−1

reflects the rate at which magnetic energy is both lost and supplied
in the dynamo (because the field is permanently maintained), this
then leads us to suggest that for low enough E and high enough Re
and Rm, what ultimately governs the growth rate λ = τ−1

e is the rate
with which magnetic energy can be provided by the system to feed
the error growth.

At this point however, it is important to recall that the error
growth not only affects the magnetic field but also the other fields,
and that the rate at which kinetic energy is provided to compensate
for viscous dissipation could therefore also play a role. This rate can
be measured via an analogous viscous dissipation time defined as
the ratio τ kin

diss = Ekin/Dvis of the total kinetic energy of the dynamo

Ekin = ρ0

2

∫
u2

0dV (21)

to the total viscous dissipation power

Dvis = ρ0ν

∫
(∇ × u0)2dV, (22)

where the integrals are computed over the dynamo shell.
Interestingly, this second dissipation time τ kin

diss scales very dif-
ferently. Although the formal analogy of eqs (17) and (21) on the
one hand, and (18) and (22) on the other hand, would suggest that
τ

mag
diss is simply related to τ kin

diss via a factor Pm = ν/η, this turns out
not to be the case. The reason for this is that the detailed way the
dissipation occurs is very different for DOhm and Dvis. To properly
scale Dvis, we must recognise that most of the viscous dissipation
occurs within the Ekman boundary layer, of thickness δ scaling as
(ν/�)1/2. This then leads Dvis (as given by eq. 22) to scale as ρ0ν U 2

0

S/δ, where S is the outer surface of the shell, while Ekin (as given
by 21) scales as ρ0 U 2

0 V . This in turn implies that τ kin
diss = Ekin/Dvis

scales as Dδ/ν = D/(ν�) = �−1 E−1/2 = τ ν E1/2. As can be seen
in Fig. 15, τ kin

diss essentially scales as E1/2 when measured in units of
τ ν for all the dynamos we considered, with a best fit leading to

τ kin
diss/τν = 0.071(±0.004)E1/2. (23)

This equation, together with eq. (20), then makes it possible to
identify which of τ kin

diss and τ
mag
diss is the shortest for a given dynamo.

These equations can indeed be combined so that the ratio τ kin
diss/τ

mag
diss

can directly be expressed as

τ kin
diss/τ

mag
diss = 0.39(±0.07)ReE1/2. (24)

This being established, we now note that all our simulations with
low Re (less than typically 200) happen to display a τ kin

diss smaller
than τ

mag
diss [as can be seen in Fig. 14(b), where we plot τ e/

min (τ kin
diss, τ

mag
diss ) as a function of Re]. This suggests that viscos-

ity could also play a significant role in controlling the rate of error
growth for these dynamos. However, for most of our simulations
with high Re (above typically 200), τ kin

diss was found to be larger
than τ

mag
diss , and this suggests that for these dynamos, viscous dissi-

pation plays a minor role compared to magnetic dissipation. This is
consistent with the fact that τ e asymptotically equates to τ

mag
diss for

those high Re simulations. Nevertheless, we note that in the few
instances when τ kin

diss was found to be (then slightly) smaller than
τ

mag
diss for such high Re, τ e happens to be closer to τ kin

diss than to τ
mag
diss

(Fig. 14b).
From these results, we suggest that for low enough E and high

enough Re and Rm, provided that τ kin
diss is larger than τ

mag
diss (as can

be assessed thanks to eq. 24), what governs the error growth in a
dynamo, is the rate (τmag

diss )−1 with which magnetic energy can be
provided to feed the growth of the errors.

5 S U M M A RY O F R E S U LT S

In this study we investigated, both from a numerical and a theoretical
point of view, the growth of errors initially introduced in numerical
dynamo simulations. As was shown in Section 3, one of the most
remarkable properties of this error growth is its universal and robust
character. Irrespective of the type, the amplitude and the time of the
perturbation introduced, it always resulted in an exponential error
growth. Furthermore, for any fixed dynamo regime defined by a set
of non-dimensional parameters Ra∗, E, Pr and Pm, this rate was
always found to be the same, to within little variability. The largest
cause of variability was found to be related to the time of the per-
turbation introduced, causing an approximately normal distribution
of the recovered rates, with a standard deviation of the order of 6
per cent of the mean rate. When considering random perturbations
introduced at a given fixed time, this standard deviation was found
to be lower, of the order of 3 per cent. The only exception to this
general rule was found when the amplitude of the perturbation in-
troduced was very large (typically greater than 10−2), in which case
the growth rate was found to slightly slows. Similar slowing was
observed by meteorologists when they carried out similar analysis
of the atmospheric system (e.g. Smagorinsky 1969). But it is worth
noting that, in contrast to what we observed for dynamos, these me-
teorological studies reveal much more sensitivity of the error growth
to the details of the instantaneous atmospheric state (e.g. Charney
et al. 1966; Kalnay 2003, for more recent illustrations).

Thanks to its universal and robust character, the growth rate
was estimated for a large set of control parameters, and scaling laws
were sought to investigate the cause of the error growth. Based on an
analysis of eqs (8)–(10) governing the reference solution and of eqs
(11)–(13) governing the perturbation, we argued that the growth rate
λ was mainly proportional to U 0/D (Section 4.1), as had originally
been proposed in Hulot et al. (2010b). We also observed (Fig. 10)
that the factor of proportionality linking λ to U 0/D depended on
E and Pm (Pr being anyway set to 1 in all our simulations). But
rather than making an attempt to scale λ also with respect to E and
Pm, we investigated the possibility of directly scaling the e-folding
time τ e = λ−1 of the error growth with respect to other relevant
dynamo output timescales. Three such timescales were identified,
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the secular-variation timescale τ SV defined by eqs (14) and (15), the
magnetic dissipation time τ

mag
diss defined by eqs (17) and (18) and the

kinetic dissipation time τ kin
diss defined by eqs (21) and (22).

Scaling τ e with respect to τ SV, we found that some asymptotic
value of 0.05 ± 0.02 was eventually reached for τ e/τ SV, provided
that E was small enough, while both Rm and Re were large enough
(Section 4.2). Scaling τ e with respect to τ

mag
diss led to further insight.

We showed that (τmag
diss )−1 was also primarily proportional to U 0/D

(Section 4.3). Guided by Christensen & Tilgner (2004) who had
investigated the behaviour of both τ

mag
diss /τ η and τ SV/τ η as a func-

tion of Rm, we noted that a value of 0.05 was found for the ratio
τ

mag
diss /τ SV, when E was small enough. The coincidence between

the value of 0.05 found for τ
mag
diss /τ SV, and the asymptotic value of

0.05 ± 0.2 previously found for τ e/τ SV, was a clear incentive to
more closely investigate the behaviour of τ e/τ

mag
diss . Plotting τ e/τ

mag
diss

as a function of Re revealed that this ratio tended to reach an asymp-
totic value of unity when Re became large enough (Fig. 14a). This
was interpreted as the fact that the growth rate of the errors could
be controlled by the rate with which magnetic energy could be
provided by the flow to feed the error growth. But we also noted
that kinetic energy, just like magnetic energy, could also contribute.
The rate at which kinetic energy could be provided being charac-
terised by τ kin

diss, we also investigated the behaviour of this quantity,
which scales very differently from τ

mag
diss (eq. 23). We noted that for

most of our simulations with low Re, this timescale was shorter
than τ

mag
diss , implying a significant role of viscosity in controlling the

growth rate for such dynamos. But we also noted that most of our
simulations with high Re had τ kin

diss larger than τ
mag
diss , confirming the

leading role of this timescale in controlling the error growth for these
dynamos.

Taken together, our results suggest that τ e is controlled by τ
mag
diss

as soon as dynamos with low enough E, and large enough Re and
Rm are considered, and provided that τ kin

diss/τ
mag
diss is large enough

(as can be assessed with the help of eq. 24). As we shall see next,
the geodynamo is one such dynamo. We therefore propose that the
growth rate of the errors for the geodynamo could be identical to
its τ

mag
diss magnetic dissipation time.

6 I M P L I C AT I O N S F O R T H E E A RT H ’ S
DY NA M O L I M I T O F P R E D I C TA B I L I T Y

Hulot et al. (2010b) noted that τ e/τ SV tended to converge towards a
value of 0.05 as soon as E was small enough and Rm large enough.
This result was then used to infer an empirical value τ e ≈ 30 yr for
the geodynamo, assuming τ SV = 535 yr, as proposed by Christensen
& Tilgner (2004). The authors were however unaware of what could
be responsible for the asymptotic value τ e/τ SV = 0.05, and it is
important that we now reconsider these earlier results in view of the
present more extensive study.

Taking D ≈ 2260 km and η = 1.32 m2 s−1, we first estimate τ η

≈ 120 kyr for the Earth’s core. We next assume τ SV = 535 yr for
the Earth’s magnetic field (Christensen & Tilgner 2004) and rely
on eq. (16) to estimate Rm ≈ 760. Because Re = Rm/Pm, this
then implies that Re is at least of the order of 7 × 107 (assuming a
standard value of Pm = 10−5). Further noting that for the Earth’s
core the Ekman number locates in the range E = 10−15–10−14

(Christensen & Wicht 2007), this shows that the geodynamo is well
in the regime we identified in this study, such that τ e would equate
to τ

mag
diss , provided that τ

mag
diss is smaller than τ kin

diss.
To assess whether this last condition is met for the geodynamo, we

use Rm ≈ 760 and rely on eq. (20) to estimate τ
mag
diss ≈ 30 yr. Taking

E = 10−15–10−14, we next rely on eq. (23)—which we slightly recast
into the equivalent formulation τ kin

diss = 0.07�−1 E−1/2—to infer τ kin
diss

= 310–980 yr. Comparing these estimates of τ
mag
diss and τ kin

diss shows
that τ

mag
diss is indeed smaller than τ kin

diss for the geodynamo, by at least
one order of magnitude. We thus propose that τ e is governed by
τ

mag
diss to which it can be identified. This in turn leads us to estimate

τ e ≈ 30 yr, leading to an error doubling time of ln (2) · τ e ≈ 21 yr.
It is not fortuitous that the same value τ e ≈ 30 yr is reached here

as in Hulot et al. (2010b). It simply reflects the fact that the empirical
result τ e/τ SV = 0.05 is a direct consequence of both τ SV and τ

mag
diss

scaling as Rm when counted in units of τ η to within precisely that
factor (recall eqs 16 and 20). In contrast, our estimate of τ e is now
directly based on our contention that τ e is governed by τ

mag
diss .

Now what about the practical limit of predictability of the geo-
dynamo? Inferring this limit not only requires an estimate of τ e. It
also requires some knowledge of how well the dynamical state of
the geodynamo is known at some initial time. If this initial imperfect
knowledge can be cast in the form of some relative error of ampli-
tude ε in any of the magnetic, flow or temperature field, our results
of Section 3 show that this error would be quickly communicated
to all other dynamo fields and next grow exponentially with the rate
defined by τ e, so that the effective limit of predictability would be
of the order of �t = ln

(
ε−1

)
τe.

In practice, the situation is however more complex. Despite re-
cent progress in satellite measurements (e.g. Gillet et al. 2010),
only the largest scales of the radial field at the core surface can
directly be recovered (e.g. Hulot et al. 2007) because the smallest
scales are concealed by the lithospheric field (e.g. Hulot et al. 2009).
This limitation is however mitigated by the fact that the field at the
core surface can be reconstructed far back in time (e.g. Hulot et al.
2010a). Historical models (e.g. Jackson et al. 2000) and archaeo-
magnetic models (e.g. Korte & Constable 2005) provide useful
information over centennial and millennial timescales, and could
be used in the context of data assimilation to produce an estimate of
the current dynamical state of the geodynamo (e.g. Fournier et al.
2010).

Were dynamo simulations employed to produce forecasts of the
magnetic field, the practical limit of predictability would be de-
fined by both the value τ e ≈ 30 yr and all the combined sources of
errors with which the initial state of the geodynamo could be ap-
proximated, but also by further errors introduced by the necessarily
limited resolution of the numerical model. We saw in Section 3.3
that the impact of such a limited resolution was quite comparable
to that of an additional initial relative error of ε′, the main cause
of this error being due to spatial rather than temporal resolution.
We suggested a simple way of assessing the magnitude of this
equivalent initial error, which can be kept reasonably low if enough
numerical resolution is achieved, but we saw can hardly be less than
ε′ = 10−3.

Finally, it is important to recall that all numerical models are
unfortunately forced to run in parameter regimes that are still very
far from that of the true geodynamo, so that none can yet claim
to be completely appropriate. Although progress in computational
resources will certainly help improve on this situation, and our study
or that of Christensen et al. (2010) could be used to assist in the
best choice of workable parameters, this will inevitably result in
some additional unknown error, and further reduce the practical
limit of predictability. Unfortunately and despite some interesting
suggestions (Liu et al. 2007), there is no simple way of anticipating
how severe the effect of this unknown error could be.

Hulot et al. (2010b) previously noted that satellite data currently
make it possible to build field models that correctly describe the core

C© 2011 The Authors, GJI, 186, 492–508

Geophysical Journal International C© 2011 RAS

 at B
iblio Planets on D

ecem
ber 1, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Earth’s dynamo limit of predictability 507

field at the Earth’s surface to within 10–20 nT (which is mainly the
effect of ignoring the unknown small scales of this core field), and
that simple linear temporal extrapolation of this field usually leads
to an error roughly 10 times larger after 5 years (e.g. Maus et al.
2008). Estimating τ e ≈ 30 yr, they concluded that, in the best of all
worlds and with the help of an optimised data-assimilation scheme,
a similar increase in error might be achieved after roughly ln (10)
τ e = 70 yr. This estimate ignored that very little is known about the
dynamical state of the geodynamo beyond the observable field it
produces, and it only took the impact of ignoring the small scales of
the observed field into account in a very optimistic way. Assessing
the true limit of predictability of data-assimilation schemes will
clearly require much more work, and will probably have to wait for
the advent of the first operational such codes. Nevertheless, it is clear
that the value of 30 yr we estimate for τ e, is a very serious challenge
in view of the many sources of errors that can grow exponentially
at that pace.
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