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ABSTRACT

Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean
amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo.
Interested in the forecast horizon of such studies, we quantify the predictability window of a representative,
advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control
parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial
perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τe. The
e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the
imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average
estimate for τe equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in
this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After
reviewing these, we discuss their implications for solar cycle prediction.
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1. INTRODUCTION

The Sun is a magnetic active star, which undergoes successive
phases of high and low magnetic activity with a quasi-periodicity
of approximately 11 yr, powered by a natural dynamo mecha-
nism (Moffatt 1978). This magnetic activity encompasses the
recurrent manifestation of dynamical phenomena at the solar
surface and in its atmosphere, such as sunspots, flares, and coro-
nal mass ejections (Priest 1982). In addition to its remarkable
regularity, solar activity exhibits longer term (decadal to centen-
nial) fluctuations (Hathaway 2009), and occasional periods of
long-lasting near-quiescence, such as the Maunder Minimum.
Since the solar cycle affects the energy radiated by the Sun,
its understanding is key in elucidating the potential control of
solar activity on the long-term variability of the Earth’s climate
(Haigh 2003).

Solar activity influences the terrestrial environment in other
important aspects, connected with the operation of satellites
(Baker 2000), and the occurrence of geomagnetic storms, which
can damage electric power grids and interfere with radars and ra-
dio communications. These important issues highlight the strong
need for an accurate prediction of solar magnetic phenomena,
which is one of the main goals of space weather (Pulkkinen
2007). Until recently, such forecasting exercises were mostly
conducted within an entirely data-driven framework, based, for
instance, on geomagnetic precursors methods (Hathaway 2009;
Wang & Sheeley 2009). It is sensible to believe, though, that
more accurate and effective predictions could be obtained by
combining these data with physical models of the Sun, using
data assimilation (e.g., Talagrand 1997). The most salient illus-
tration of the application of data assimilation emanates every
day from numerical weather prediction (NWP) centers, in the
form of weather forecasts (consult, e.g., Kalnay 2003 for a his-
torical perspective on NWP). Application of data assimilation
in geoscience also include oceanography (e.g., Brasseur 2006),
the study of air quality (e.g., Elbern et al. 2010), and land sur-
faces (e.g., Houser et al. 2010). In a context similar to that of the
solar dynamo, data assimilation has also recently come to the
fore for the study of the Earth’s dynamo, a surge motivated by

our increased ability to observe and simulate the geomagnetic
field (e.g., Fournier et al. 2007, 2010, 2013; Aubert & Fournier
2011). Over the past 15 yr, the study of the solar dynamo has
witnessed an even more spectacular increase in its observational
and modeling capabilities. The question of the feasibility of ap-
plying data assimilation techniques to the solar dynamo was
asked a few years ago (Brun 2007), and was followed by a
series of studies bearing promises (Kitiashvili & Kosovichev
2008; Jouve et al. 2011; Dikpati & Anderson 2012).

The physical model of the solar dynamo that should enter
this inverse problem machinery remains to be defined. Forward
modeling of the solar dynamo has shed light on the main
physical processes believed to be responsible for the solar
cycle (see Charbonneau 2005 for a review). Kinematic dynamo
theory stresses that these processes are connected with the
continuous transformation of poloidal magnetic energy into
toroidal magnetic energy (the P → T conversion), and vice
versa (the T → P conversion, necessary to close the dynamo
loop). There is now little doubt that the Ω-effect, which denotes
the shearing action of the differential rotation of the plasma
flow, is responsible for the P → T conversion. Through the
advent of helioseismology, the large-scale, interior, differential
rotation was mapped in detail (Tomczyk et al. 1995), which
made it possible to infer that the most likely location of the
Ω-effect is the base the convection zone, a region known as the
tachocline (Howe et al. 2000). There is less consensus regarding
the processes at work behind the T → P conversion. The mean-
field α-effect (Parker 1955), and the Babcock-Leighton (BL)
mechanism (Babcock 1961; Leighton 1969) are two commonly
envisioned possibilities. The former rests on the large scale
effect of small scale turbulent motions whose twisting action
can transform a toroidal field line into a poloidal field line. The
latter relies on empirical evidences of the process of diffusion
and reconfiguration of the magnetic field of sunspots. The
three aforementioned processes (α-effect, Ω-effect, and BL
mechanism) are illustrated in Figure 1.

The ambiguity between the α-effect scenario and the BL
mechanism would disappear, should one be in a position
to carry out the full three-dimensional numerical integration
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Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.

(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
ability to capture the essentials of the solar dynamo process
questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.

The same critic was made regarding weather prediction dur-
ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may

2



The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

(a) (c)(b)

Figure 2. Components defining the class of solar dynamo models used in this study. (a) Isocontours of the angular velocity Ω; (b) Meridional circulation streamlines;
(c) radial profiles of the α-effect and Babcock-Leighton poloidal source terms; (d) radial profiles of the magnetic diffusivities. In each panel, the shaded regions
symbolize the tachocline. Aside from the differential rotation, whose amplitude remains fixed in this study, we vary the magnitude of these various components, whose
relative contributions are described by a suite of non-dimensional numbers (see the text for details).

(A color version of this figure is available in the online journal.)

still hope that the short-term prediction of at least some of the
features of the solar cycle (e.g., duration and mean amplitude)
is possible.

Knowledge of the modulations and mean intensity of the up-
coming solar cycles from mean-field models may serve as an
important input for more specific space weather considerations.
In this study, we therefore wish to adopt an operational perspec-
tive. Assuming that mean-field models will be effectively used
to forecast solar activity, our goal here is to quantify their in-
trinsic limit of predictability τ (the equivalent of the two weeks
discussed above for the atmosphere), following the methodol-
ogy proposed recently by Hulot et al. (2010) and Lhuillier et al.
(2011) in order to estimate τ for the Earth’s dynamo.

This paper is organized as follows. In Section 2, we describe
our working mean-field model and detail its numerical imple-
mentation. We next inspect the sensitivity of this model to its
control parameters in Section 3. Section 4 presents the system-
atic study of the error growth between twin trajectories. This
allows us to evaluate τ , and to assess its sensitivity to its con-
trol parameters. Finally, we discuss in Section 5 the influence
of modeling and observational errors on the practical limit of
predictability of the model.

2. THE MODEL AND ITS NUMERICAL
IMPLEMENTATION

Our flux-transport model is the one presented by Sanchez et al.
(2014); it includes both the α and BL scenarios for the T → P
conversion. The first reason for adding an α-effect to a standard
BL flux-transport model is that a dynamo running on a BL
mechanism alone cannot recover from a quiescent phase devoid
of sunspots. As reported by Sanchez et al. (2014), the model set-
up enables the appearance of a long-term variability (succession
of active and quiet phases), which can then be interpreted as the

result of the competition between the α-effect operating at the
tachocline and a BL mechanism operating at the solar surface.
In addition, a deep location of the α-effect is known to favor the
sought antisymmetrical evolution of the magnetic field in the
Northern and Southern hemispheres (Dikpati & Gilman 2001;
Bonanno et al. 2002).

Let us now write accordingly the modified mean-field in-
duction equation (Moffatt 1978) for the large-scale magnetic
field B

∂B
∂t

= ∇ × [U × B − η∇ × B + αB + SBLBϕ êϕ], (1)

where U is the prescribed flow, η is the turbulent diffusivity, α
is the turbulent magnetic helicity, and SBLBϕ êϕ is the BL source
term (êϕ is the unit vector in the direction of longitude). We
will specify the profiles of these various physical fields in the
following. The definitions that we will need are summarized in
Table 1 and the profiles shown in Figure 2.

Under the assumption of axisymmetry, the magnetic and flow
fields are further expressed in terms of their poloidal and toroidal
components in spherical coordinates (r, θ, ϕ) as

B(r, t) = ∇ × [Aϕ(r, t)êϕ] + Bϕ(r, t)êϕ, (2)

U(r) = up(r) + r sin θ Ω(r)êϕ, (3)

in which Aϕ is the poloidal potential and Bϕ is the toroidal
field. The prescribed time-independent flow is defined by the
angular velocity Ω and the meridional circulation up, shown
in Figures 2(a) and (b), respectively. Helioseismic data pro-
vide strong constraints on Ω, which will thus remain fixed
in the remainder of this work, and approximated using the
analytic formula of Dikpati & Charbonneau (1999). On the
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Table 1
Summary of the Mathematical Symbols Used in the Model, Their Values and a Brief Explanation of Their Meaning

Symbol Value Interpretation

rtc 0.7 R� Radial location of the center of the tachocline
δr 0.05 R� Thickness of the tachocline
Ωeq 2π × 460.7 nHz Rotation rate at the equator
α0 0.34–1.03 m s−1 Strength of the α-effect
SBL0 0.02–0.06 m s−1 Strength of the Babcock-Leighton mechanism
u0 13.27–17.68 m s−1 Velocity of the superficial meridional flow at mid-latitude
ηr 5 × 108 cm2 s−1 Effective diffusivity near the radiative zone
ηcz 1 × 1010 cm2 s−1 Effective diffusivity at the bottom of the convection zone
ηs 3 × 1011 cm2 s−1 Effective diffusivity at the solar surface

contrary, the large-scale meridional circulation up remains
poorly constrained. For the sake of simplicity, we will fol-
low the one-cell per hemisphere description of Dikpati &
Charbonneau (1999).

The poloidal–toroidal decomposition of the magnetic and
flow fields prompts us to define poloidal and toroidal com-
ponents for the turbulent diffusivity η, denoted by ηp and ηt ,
respectively. This distinction rests on the analysis made by
Chatterjee et al. (2004), who pointed out that the toroidal field
strength is expected to be much larger than the poloidal field
strength throughout the convection zone. This should decrease
notably the efficiency of toroidal turbulent diffusion compared
with its poloidal counterpart. With this distinction at hand, in-
jection of Equations (2) and (3) into Equation (1) gives rise to a
set of two coupled partial differential equations for Aϕ and Bϕ

∂Aϕ

∂t
+

up

r sin θ
· ∇(r sin θAϕ) = ηp

(
∇2 − 1

r2 sin2 θ

)
Aϕ

+ α(r, θ;Bϕ)Bϕ

+ SBL
(
r, θ;Btc

ϕ

)
Btc

ϕ , (4)

∂Bϕ

∂t
+ r sin θ∇ ·

(
upBϕ

r sin θ

)
= ηt

(
∇2 − 1

r2 sin2 θ

)
Bϕ

+
1

r

∂ηt

∂r

∂(rBϕ)

∂r
+ r sin θ (∇ × Aϕ êϕ) · (∇Ω),

(5)

where Btc
ϕ = Bϕ(r = rtc, θ, t) is the toroidal field at the

tachocline, defined in this work as the spherical shell of
mean radius rtc = 0.7 R�, with a thickness δr = 0.05 R�.
The dependency of the SBL term in Equation (4) expresses
the non-local character of the BL source term. Even if it is
active within the surface layers, the BL regeneration process
is thought to originate from processes occurring in the vicinity
of the tachocline—numerical models indeed indicate that the
formation of tilted bipolar regions at the surface is mostly
controlled by the strength of toroidal flux tubes prior to their
buoyant instability (D’Silva & Choudhuri 1993). Their finite
rise time should induce a time lag between the onset of the
instability and the formation of the bipolar regions, on the order
of some days to a few weeks (Jouve et al. 2010). We will neglect
this delay on the account of it being small compared to the
timescales of interest here.

Turning now our attention to the α-effect, we use the standard
formula of α-quenching, which is written as

α(r;Bϕ) = α0

1 +
(

Bϕ

Beq

)2 fα(r), (6)

in which α0 is a typical magnitude, Beq = 104 G (Fan 2009) and
fα(r) restricts the α-effect to the mid-latitudes of the tachocline,
according to

fα(r) = 1

4

[
1 + erf

(
r − r1

d1

)][
1 − erf

(
r − r2

d2

)]
cos θ sin θ,

(7)

where r1 = rtc − δr/2, r2 = rtc + δr/2, and d1 = d2 = 0.01 R�.
The radial variations of fα are shown in Figure 2(c).

The BL SBL source term operates within bounds of the mag-
netic field strength (D’Silva & Choudhuri 1993), specifically
between Btc

ϕ,min = 104 G and Btc
ϕ,max = 105 G. Denoting the

magnitude of this source term by SBL0 , we write accordingly

SBL
(
r;Btc

ϕ

) = SBL0

4

[
1 + erf

(
Btc 2

ϕ − Btc 2
ϕ,min

)]
× [

1 − erf
(
Btc 2

ϕ − Btc 2
ϕ,max

)]
fBL(r). (8)

The radial and latitudinal distribution fBL(r) is in turn given by

fBL(r) = 1

4

[
1 + erf

(
r − r3

d3

)]

×
[

1 − erf

(
r − r4

d4

)]
cos θ sin θ, (9)

where r3 = 0.95 R�, r4 = R� and d3 = d4 = 0.01 R�. The
radial distribution of fBL is shown in Figure 2(c).

The poloidal and toroidal diffusivities in Equations (4)
and (5), are written as

ηp(r) = ηr + ηs

1

2

[
1 + erf

(
r − r5

d5

)]
, (10)

ηt (r) = ηr + ηcz

1

2

[
1 + erf

(
r − r6

d6

)]

+ ηs

1

2

[
1 + erf

(
r − r7

d7

)]
, (11)

in which r5 = 0.7 R�, r6 = 0.72 R�, r7 = 0.95 R�, d5 =
d6 = d7 = 0.025 R�, ηr is the diffusivity at the boundary
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with the radiative zone, ηcz is the diffusivity in the turbulent
convection zone, and ηs is the diffusivity in the surface lay-
ers (which applies to the poloidal field over the entire convec-
tion zone). The radial profiles of the diffusivities are shown in
Figure 2(d). This model pertains to the generic class of
advection-dominated models: owing to the low values of the
diffusivities throughout the convection zone, the coupling be-
tween the regions where the poloidal and toroidal fields are
generated is ensured by the meridional circulation. In diffusion-
dominated models (e.g., Chatterjee et al. 2004), this coupling is
on the contrary accomplished by turbulent diffusion.

In order to express the dynamo equations in their nondimen-
sional form, we choose the solar radius R� as the length scale
and the magnetic diffusion time R2

�/ηs as the timescale (roughly
equal to 500 yr). This yields

∂Aϕ

∂t
+

Rm

r sin θ
ũp · ∇(r sin θAϕ) = η̃p

(
∇2 − 1

r2 sin2 θ

)
Aϕ

+ Cαα̃ Bϕ + CBLS̃BL Btc
ϕ ,

(12)

∂Bϕ

∂t
+ Rm r sin θ∇ ·

(
ũpBϕ

r sin θ

)
= η̃t

(
∇2 − 1

r2 sin2 θ

)
Bϕ

+
1

r

∂η̃t

∂r

∂(rBϕ)

∂r
+ CΩ r sin θ

× (∇ × Aϕ êϕ) · (∇Ω̃). (13)

Equations (12) and (13) contain six nondimensional numbers
characterizing the relative importance of each term in the
equations

Rm = uoR�/ηs, (14)

CΩ = ΩeqR
2
�/ηs, (15)

Cα = α0R�/ηs, (16)

CBL = SBL0R�/ηs, (17)

the ratio ηr/ηs, (18)

and the ratio ηcz/ηs. (19)

The magnetic Reynolds number Rm is associated with the
amplitude of the large-scale meridional flow, u0. The three
following coefficients CΩ, Cα , CBL, respectively, express the
ratio of the equatorial rotation, turbulent and BL timescales
to the diffusive timescale. In these expressions, Ωeq is the
equatorial rotation rate, and α0 and SBL0 are the amplitudes
of the α and BL terms seen above. The remaining two terms
ηr/ηs and ηcz/ηs are magnetic diffusivity ratios entering the
nondimensional forms of Equations (10) and (11). The ∼ in
Equations (12) and (13) denotes normalization with respect
to those quantities. Note that a suitable rescaling of Aϕ can
decrease the number of control parameters by one, as it can
scale either Cα or CBL out of the problem (it is the ratio of
these two that would remain). Albeit more elegant, we did not
consider this possibility. We shall therefore analyze the α and
BL effects independently in the remainder of this study.

Finally, our formulation has to be complemented with bound-
ary and initial conditions. The inner boundary condition is that
of a perfect conductor. An approximation of this condition is
that

Aϕ = Bϕ = 0 at the inner radius

r = 0.6 R� (Chatterjee et al. 2004). (20)

The outer boundary condition corresponds to the interface with
an insulating medium, and requires matching of the internal
solar field with a potential field (Dikpati & Charbonneau 1999).

As an initial condition, we choose a dipolar field confined
inside the convection zone. In this case,

Aϕ(r, t = 0) = sin θ/r2 for 0.7 R� � r � R�, (21)

Aϕ(r, t = 0) = 0 elsewhere, (22)

Bϕ(r, t = 0) = 0 everywhere. (23)

The numerical approximation of the problem at hand is
based on the Parody code, which was originally designed
for three-dimensional geodynamo simulations (Dormy et al.
1998; Aubert et al. 2008), and successfully passed the dynamo
benchmark of Christensen et al. (2001). The magnetic field is
expanded according to the three-dimensional poloidal-toroidal
decomposition

B = ∇ × ∇ × (Pr) + ∇ × (T r), (24)

where the poloidal and toroidal scalar potentials P and T are
further expanded upon an axisymmetric spherical harmonic
basis Y 0

n (θ ), according to

(P, T )(r, θ, t) =
N∑

n=1

(Pn, Tn)(r, t) Y 0
n (θ ), (25)

and truncated at spherical harmonic degree N. The discretization
is completed by applying a second-order finite differencing in
radius and second order time integration, comprising a Crank-
Nicolson scheme for the diffusive terms and a second order
Adams-Bashforth scheme for the nonlinear terms. The resulting
code was then successfully tested against the reference solutions
of Jouve et al. (2008). Details of this benchmark are provided
in the Appendix. The results presented in what follows were
obtained using N = 65, and Nr = 65 uniform radial levels
in [0.6 R�, R�], and a constant non-dimensional time step size
Δt = 5 × 10−6. A typical run comprised 107 time steps, which
corresponds roughly to 25,000 yr.

3. FORWARD MODELING: MODEL PROPERTIES
AND VARIABILITY

With our operational purpose in mind, a representative
solution of the model should match some of the basic solar cycle
features (Charbonneau 2005): cyclic polarity reversals with
approximately 11 yr periodicity; strong toroidal fields at the base
of the convection zone migrating from mid-latitudes toward the
equator; poleward migration of a weaker high-latitude magnetic
field; phase lag of π/2 between the toroidal field at mid-latitudes
and polar field at the poles; antisymmetry of the magnetic field
between the northern and southern hemispheres; and long-term
variability of the solar cycle.
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Figure 3. Time-latitude (butterfly) diagrams of the reference solution S, corresponding to Rm = 318, Cα = 8 and CBL = 1. Top: toroidal magnetic field at the
tachocline; bottom: radial magnetic field at the solar surface.

(A color version of this figure is available in the online journal.)

In the following, we will impose the fixity of some of those
non-dimensional numbers appearing in Equations (14)–(19).
As helioseismological data give Ωeq ∼ 2π × 460.7 nHz, we
set accordingly CΩ = 4.7104. In addition, the turbulent diffu-
sivity in the solar interior is not well constrained (Ossendrijver
2003), and we consequently hold for simplicity the ratios ηr/ηs

and ηcz/ηs fixed to values (see Table 1) previously shown to
yield a satisfactory degree of solar semblance (e.g., Dikpati &
Charbonneau 1999). Variations of the remaining free parame-
ters Cα , CBL, and Rm allow for a broad range of solutions. Rm
represents the strength of the meridional circulation and controls
the periodicity of the solar cycle, a well-known characteristic of
flux transport dynamos (Dikpati & Charbonneau 1999). Conse-
quently, and because of the strong observational constraint to
obtain a period close to 11 yr, our family of models works in
relatively narrow range of Rm. As the meridional flow measured
at the solar surface at mid-latitudes has an average magnitude
u0 of 15 m s−1 (Hathaway 1996), we vary Rm between 308 and
378 (u0 ≈ 13 and 17 m s−1, respectively). Within this range,
getting a self-sustained reversing dynamo requires Cα � 2 and
CBL � 0.5.

We pick a reference (standard) solution (labeled S in the
following) which has Rm = 318, Cα = 8 and CBL = 1; it
generates quasi-periodic reversals, separated by approximately
10.95 yr. Figure 3 represents the simulated evolutions of the
toroidal field at the tachocline, Btc

φ , and of the radial field at
the surface, BS

r . It illustrates that the criteria for solar sem-
blance which we listed are essentially met. This does not
include the equatorial antisymmetric field configuration, a
known recurring issue with BL models (Chatterjee et al. 2004;
Charbonneau 2005). In this respect, Dikpati & Gilman (2001)
and Bonanno et al. (2002) previously showed that the addition
of an α-effect in a thin layer above the tachocline (as done here,
recall Figure 2(c)) helps in obtaining antisymmetric solutions.
However, and even if the portion of the dynamical trajectory
represented in Figure 3 does display an antisymmetric magnetic
field configuration, let us stress that there does not seem to ex-
ist a clear preferred mode of operation for the magnetic field:

periods of symmetric, antisymmetric, and out-of-phase modes
alternate over the dynamical trajectory followed by the standard
model.

Long-term variability of the solar cycle is also present in
this reference solution. Charbonneau et al. (2005) point out that
chaotic modulation is a characteristic of BL models in which the
BL term includes a lower operational threshold, as is the case in
our model. Short periods of weaker than average activity level,
lasting for approximately three cycles, are frequently found
in our simulations, over a vast range of input parameters. In
addition to this short-term variability, some of the solutions
we obtain (including the reference solution S) display as well
long periods of grand minima, lasting for several centuries,
during which the cycle is not fully developed, but persists with
a residual activity (see Sanchez et al. 2014 for more details).
The occurrence of long periods of minimum activity is rare in
our simulations; we chose accordingly to focus on their regular,
quasi-cyclic behavior to carry out the predictability analysis
exposed below.

The quantities Cα and CBL (recall their definition in
Equations (16) and (17)) are less tightly constrained by observa-
tions than Rm, and they will constitute the effective degrees of
freedom of our class of models when we investigate its horizon
of predictability in the following section. Variations in Cα and
CBL affect the overall morphology of the solar cycle in different
ways. While an increase in Cα tends to excite higher frequencies
during the solar cycle, it does not result in strong alterations of
the magnetic field strength and cycle periodicity. On the other
hand, the intensity of the magnetic field is strongly and irregu-
larly sensitive to variations of CBL—the overall trend is that it
grows with CBL. Increasing CBL also usually results in the ap-
pearance of a feature respecting the Gnevyshev-Ohl rule, which
is the persistent pattern of alternating high and low amplitudes
of the solar cycles (Hathaway 2010). A too large an increase,
though, gives rise to intermittent, non-solar-like, solutions. This
forces us to define an upper bound of 2 for any admissible CBL.
On the other hand, as the main role of Rm is that of setting the
pace of the solar cycle, increasing its value leads to a shortening
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of the simulated periodicity (note that the first columns of
Table 3, which we will discuss further below, document in detail
this variability).

4. PREDICTABILITY ANALYSIS

4.1. Methodology

Our mean-field solar dynamo model is a dynamical system,
characterized by a limited range of predictability, owing to its
chaotic nature (Lorenz 1963). As stated in the Introduction, two
initially very close, twin, dynamical trajectories are bound to
diverge in a finite time τ . The analysis of the divergence between
these twin trajectories forms the backbone of our methodology;
it is based on the work carried out by Hulot et al. (2010) and
Lhuillier et al. (2011) to study the limit of predictability of the
geodynamo.

We create a twin from a reference trajectory by perturbing a
field variable (or control parameter) ξ at a given instant tp in the
following way

ξ (tp) �−→ ξ̃ (tp) = ξ (tp)(1 + ε), (26)

where ξ̃ and ε are the perturbed quantity and the amplitude of
the perturbation, respectively.

Of importance for the assessment of the predictability is the
evolution of the distance between the two trajectories over time.
In order to monitor this distance, we resort to two pointwise
measures, which are related to the toroidal field Bϕ at a point
rtc ≡ (r = rtc, θ = 70o) on the tachocline, and to the radial
field Br at a point rS ≡ (r = R�, θ ∼ 2o) at the solar surface.
These measures write

ΔBϕ(rtc, t) ≡ |Bϕ(rtc, t) − B̃ϕ(rtc, t)|√〈
B2

ϕ(rtc)
〉 (27)

and

ΔBr (rS, t) ≡ |Br (rS, t) − B̃r (rS, t)|√〈
B2

r (rS)
〉 , (28)

respectively. In these two definitions, notice that the distance
is normalized since the brackets 〈·〉 represent time averaging
(which we perform over a period of about 1000 yr after t = tp).
In the following, we will use Δ as a shorthand for ΔBϕ or ΔBr ,
when the distinction need not be made, and we will refer to the
evolution of Δ as the error growth: in a forecasting perspective,
the perturbation which we insert can indeed be interpreted as
the uncertainty affecting the initial condition (or the control
parameters) of the model. In this sense the distance we measure
is analogous to the growth of the forecast error of interest for
the data assimilation practitioner.

Figure 4 shows the typical evolution of the error growth
(measured here in terms of ΔBϕ) in our numerical experiments.
It corresponds to a ε = 10−6 perturbation applied to the spectral
poloidal coefficient P1. The evolution of Δ comprises three
distinct phases. First, both trajectories remain fraternal, as their
distance remain similar to ε (phase I in Figure 4). This is called
the mobilization phase by Lhuillier et al. (2011). Next, the error
enters a phase of exponential growth (phase II), until it reaches
saturation (phase III). From then on, the reference and perturbed
solutions evolve in an uncorrelated way.

Among these three phases, the phase of exponential growth
is the most meaningful to constrain the limit of predictability.

Considering that this phase starts at t = tε with an initial value
ε, the distance evolves according to

Δ(t) = ε eλ(t−tε), (29)

where λ denotes the exponential growth rate. Its inverse λ−1 is
the so-called e-folding time τe, namely the divergence time τ we
discussed above. We set out to estimate λ (or τe) as accurately
as possible for the class of mean-field models considered in
this work. Visual inspection of the time series of Δ allows us
to pick the phase of exponential growth; we next perform a
least-squares analysis to estimate λ (this procedure yields the
purple line in Figure 4).

That estimate may depend on the type and amplitude of the
perturbation, though, which calls for a systematic approach
to evaluating λ. In the next subsection, we use the standard
model S presented in Section 3 to vary extensively the type and
amplitudes of perturbations. Within this single-model context,
we find that the characteristics of the error growth are robust.
Therefore, in order to push the analysis further, we shall consider
in Section 4.3 how λ may be influenced by the values of the
triplet (Rm, CBL, Cα).

4.2. Error Growth in the Standard Model

4.2.1. Magnetic Perturbations

As explained above, we focus here on the standard model
S and begin by examining its response to perturbations of the
magnetic field. We study different scenarios. The perturbation
can affect either the poloidal scalar P or the toroidal scalar T .
It can be either large-scale (restricted to the n = 1 harmonic
degree), in which case it writes

P1(r, tp) �−→ P̃1(r, tp) = P1(r, tp)(1 + ε), (30)

(and the same for T1), or distributed randomly over the entire
spectrum, according to

Pn �−→ P̃n(r, tp) = Pn(r, tp)(1 + γnε), 1 � n � N, (31)

(and the same for Tn), in which the γn are random numbers from
0 to 1 distributed over all the harmonic degrees. In the remainder
of this subsection, the amplitude of the perturbation ε is
set to 10−6.

The pink curves in Figure 5 show that large-scale perturba-
tions of the poloidal or toroidal scalars defined by Equation (30)
yield the same well-defined three phases for the evolution of ΔBr

and ΔBϕ . In addition, each panel of Figure 5 comprises five gray
curves obtained from five random realizations of the small-scale
perturbations defined by Equation (31). Despite some scatter, vi-
sual inspection indicates a common error growth behavior. In
particular, if we were to estimate λ from this catalog of curves,
we would probably get a robust value. This is rather encourag-
ing, but before proceeding with the actual calculation of λ, let
us now inspect in more detail its sensitivity to a broader range
of perturbations.

4.2.2. Systematic Perturbations

We thus investigate now the error growth induced by pertur-
bations of different origins, varying amplitudes ε and different
times of insertion tp on the standard model S. The origin of the
perturbation ξ in Equation (26) can be one of the following: P1,
T1, Pn, Tn (as in the previous section), Ω or up (the flow), α or
SBL (the poloidal source terms), or ηp (the poloidal diffusivity
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Figure 4. Error growth behavior for the reference model S (see Table 3).
Top: toroidal field at 200 latitude on the tachocline. The reference solution
(shown in black) is perturbed at a given instant, shown by the pink arrow, by a
relative amount ε = 10−6. This generates the perturbed solution (purple) which
progressively diverges from the reference one. Bottom: the difference ΔBϕ

between both solutions on a logarithmic scale. The error growth can be separated
in three well-defined stages: (I) a mobilization phase, (II) an exponential growth
phase and (III) a saturated phase. In phase (II), we perform a least-squares
regression (purple line) in order to estimate the error growth rate λ. See the text
for details.

profile). For each of these nine possibilities, we consider pertur-
bations of amplitudes 10−2, 10−4, 10−6, 10−8 or 10−10. Finally,
we perturb the reference dynamical trajectory at three different
times, tp = t1, t2 or t3. We therefore consider 9 (origins) × 5

(amplitudes) × 3 (instants) = 135 ways of perturbing the stan-
dard trajectory. Since both ΔBϕ and ΔBr are used to monitor
the error growth, this allows us to construct a database of 270
estimates of λ. The database is completely described in Table 2.

Figure 6 illustrates the variability within the database of
model S, and shows that regardless of this variability, the error
growth displays a fair amount of dynamical similarity in the
270 scenarios we envisioned. Figure 6(a) shows the evolution
of ΔBϕ , for different origins, times of perturbation insertion and
different perturbation amplitudes. We see that the error growth
is weakly sensitive to the origin of the perturbations. Still, the
mobilization phase seems to vary depending on the way the
perturbations were inserted. For perturbations corresponding to
ξ = α or ξ = up, the mobilization phase lasts longer (several
centuries), and there is a mild dependency of the duration
of that phase on tp. The mobilization phase has a duration
which decreases with ε as well. However, this variability on
the mobilization phase does not strongly affect the estimate of
λ. On another note, it can also be seen that the error growth due
to smaller perturbations can experience secondary mobilization
phases, and resume its exponential growth after some time.

Figure 6(b) presents the distribution of the error growth
rates (one histogram per value of ε, which integrates all other
dependencies) of model S. The exponential growth is steeper
for smaller levels of perturbations (noticing that ε = 10−8 and
ε = 10−10 yield essentially the same behavior, though), that is,
large perturbations lead to smaller values of λ. There is also a
general tendency for the growth to slacken as the error reaches
macroscopic values.

Still, focusing on small to extremely small values of ε (10−6

and less), the estimated λ does not vary by more than 20%. This
robustness suggests the fact that λ is an intrinsic property of
our standard model S: regardless of the perturbation time and
origin, and as long as it is small, the exponential growth of the

Figure 5. Time series of ΔBϕ and ΔBr , following the application of magnetic perturbations of relative amplitude ε = 10−6 on standard model S. The perturbations
are inserted either on the poloidal (left column) or toroidal (right column) component of the magnetic field, and they affect either the first harmonic degree (P1/T1
pink curves) or all the harmonic degrees randomly (Pn/Tn), in which case five curves with different shades of gray are shown in each graph.
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(a)

(b)

Figure 6. Sensitivity of the error growth rate against perturbation types for model S: (a) Error growth considering different origins (ξ = Ω, up, α, SBL, and ηp), times
(tp = t1, t2, and t3) and amplitudes (ε = 10−2, 10−4, 10−6, 10−8, and 10−10); (b) histograms of the exponential growth rates λ from the set of perturbations displayed
in Table 2 ordered by perturbation amplitude. The histograms are modeled by Gaussian curves with mean μ and standard deviation σ .

error is likely to occur on a timescale τ of roughly 40 yr, that is
over slightly more than three simulated cycles. More precisely,
if Tc denotes the period of the simulated cycle and considering a
least-squares analysis of the ε = 10−10 histogram, we find that
τe = (3.34 ± 0.40) Tc.

4.3. Sensitivity of λ to the Control Parameters

We now explore the more general dependency of τe to the
control parameters of our class of mean-field models. Since the
simulated Tc varies with these parameters as well, and since
we wish to express τe in units of Tc, we investigate the joint
dependency of these two quantities on the triplet (Rm, Cα, CBL).

First, we increase the α-effect coefficient from Cα = 8 to
Cα = 16 and consider the same 270 possibilities as the ones
used for the standard model (this new model is labeled T in the
following). Figure 7 illustrates the corresponding database of
model T, and highlights consistent differences when compared
with the standard case S shown in Figure 6. Most notably, the

mobilization phase is in every instance much shorter (not lasting
more than a few decades), while the exponential growth phase
is in all cases much steeper, two effects pointing toward an
increased influence of turbulence as the value of Cα increases,
leading to larger estimates for λ. We still retrieve the tendency
for λ to decrease with increasing ε, while its uncertainties
decrease with ε. Accordingly, we find that for ε = 10−10,
τe = (2.45 ± 0.42) Tc (here, Tc = 10.15 yr).

Next, we carry out a similar sensitivity analysis with differ-
ent triplets (Rm, Cα, CBL). More specifically, we consider the
following possibilities

1. 308 � Rm � 378,
2. 0.5 � CBL � 2,
3. 8 � Cα � 32,

providing a total of 48 different models (including models S
and T). For each model we calculate λ restraining the amplitude
of the perturbation ε to what we consider its most reliable level,
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Table 2
Mean Values of λ and Its Uncertainties σ (in Units of 10−2 yr−1) from the Systematic Perturbation Analysis of the Standard Model S

ΔBϕ ΔBr

ε 10−10 10−8 10−6 10−4 10−2 10−10 10−8 10−6 10−4 10−2

tp ξ λ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ λ σ

t1 P1 3.66 0.07 2.49 0.05 2.52 0.06 1.68 0.09 3.57 0.21 3.69 0.09 2.33 0.06 2.58 0.06 1.44 0.09 4.23 0.35
T1 3.62 0.07 3.20 0.13 1.52 0.05 1.33 0.07 3.82 0.35 3.70 0.09 3.51 0.11 1.51 0.05 1.60 0.09 1.19 0.22
Pn 3.48 0.06 1.49 0.06 1.87 0.08 1.21 0.08 2.76 0.27 3.69 0.08 1.51 0.05 2.05 0.06 1.33 0.07 1.21 0.21
Tn 2.89 0.06 2.12 0.08 1.86 0.11 2.43 0.21 1.61 0.15 3.04 0.06 2.11 0.07 1.89 0.10 2.29 0.14 1.52 0.13
Ω 3.16 0.05 3.82 0.09 2.30 0.06 1.40 0.05 2.11 0.09 3.98 0.10 3.52 0.11 2.90 0.08 2.22 0.06 2.20 0.14
up 1.74 0.03 3.52 0.04 2.90 0.08 3.98 0.06 2.20 0.14 2.57 0.05 3.73 0.07 2.77 0.07 2.43 0.06 2.15 0.13
α 3.12 0.05 2.32 0.04 3.03 0.05 3.98 0.12 2.01 0.05 3.18 0.05 2.28 0.03 3.39 0.05 4.19 0.15 1.62 0.06

SBL 2.73 0.05 3.39 0.08 1.92 0.04 1.91 0.13 4.83 0.25 2.91 0.05 3.58 0.09 1.84 0.05 1.67 0.09 2.18 0.14
ηp 2.66 0.05 2.53 0.05 1.83 0.04 2.22 0.11 1.56 0.28 2.90 0.04 2.31 0.06 1.85 0.05 1.12 0.08 1.12 0.12

t2 P1 2.48 0.04 2.57 0.04 1.37 0.06 1.46 0.04 1.37 0.07 2.50 0.04 2.77 0.05 1.26 0.05 1.15 0.05 1.61 0.14
T1 2.62 0.04 3.69 0.06 3.15 0.10 1.36 0.04 1.39 0.09 2.76 0.04 3.97 0.07 3.91 0.12 1.28 0.07 0.87 0.16
Pn 3.06 0.06 3.92 0.07 1.97 0.08 1.58 0.06 1.81 0.15 2.91 0.10 4.12 0.10 1.84 0.06 1.67 0.05 1.31 0.09
Tn 3.44 0.06 2.87 0.08 2.07 0.08 1.53 0.08 2.10 0.23 3.61 0.08 2.76 0.08 2.48 0.11 1.37 0.06 1.79 0.22
Ω 2.53 0.04 2.71 0.05 3.46 0.07 2.13 0.05 1.43 0.05 2.50 0.04 2.79 0.05 3.93 0.10 2.07 0.05 1.40 0.04
up 2.68 0.04 2.80 0.05 3.47 0.05 2.16 0.11 1.96 0.09 2.67 0.04 2.54 0.04 3.60 0.06 1.32 0.05 2.16 0.10
α 3.11 0.05 2.81 0.05 4.03 0.04 2.65 0.05 3.35 0.09 3.19 0.05 2.83 0.06 2.31 0.04 3.07 0.05 2.57 0.11

SBL 2.65 0.05 3.65 0.06 4.03 0.12 2.34 0.08 1.87 0.17 2.49 0.05 1.68 0.08 3.53 0.12 1.42 0.07 1.30 0.08
ηp 2.47 0.04 3.15 0.04 1.98 0.12 2.22 0.08 1.78 0.08 2.57 0.06 1.42 0.05 1.38 0.04 1.42 0.09 1.98 0.14

t3 P1 2.37 0.04 2.32 0.03 2.85 0.05 2.05 0.12 2.53 0.21 2.75 0.05 2.26 0.03 2.76 0.05 2.94 0.20 3.06 0.35
T1 2.59 0.05 2.57 0.07 3.19 0.07 2.45 0.16 1.37 0.32 2.69 0.06 2.07 0.06 2.61 0.08 3.65 0.25 1.84 0.22
Pn 4.40 0.12 2.48 0.05 2.73 0.14 0.82 0.33 2.00 0.29 2.73 0.06 2.47 0.05 2.45 0.12 2.52 0.20 2.06 0.25
Tn 1.64 0.02 2.81 0.06 2.81 0.10 3.07 0.19 2.72 0.32 1.96 0.04 2.59 0.05 2.48 0.10 3.16 0.24 3.65 0.34
Ω 1.50 0.01 1.87 0.03 3.07 0.08 2.74 0.18 1.98 0.14 1.54 0.01 1.91 0.03 3.29 0.07 2.65 0.13 2.82 0.22
up 2.77 0.06 2.77 0.06 3.53 0.08 3.17 0.06 3.11 0.05 2.70 0.06 2.61 0.06 3.43 0.08 2.96 0.06 2.02 0.05
α 1.76 0.03 3.56 0.09 1.33 0.04 2.10 0.04 2.95 0.05 1.67 0.03 2.66 0.06 1.60 0.02 2.15 0.04 2.57 0.06

SBL 2.42 0.08 2.44 0.07 2.80 0.05 2.84 0.18 4.31 0.35 2.64 0.06 2.03 0.06 2.60 0.07 2.11 0.09 1.51 0.20
ηp 2.74 0.06 3.36 0.06 2.21 0.08 2.75 0.17 3.59 0.21 2.39 0.03 3.26 0.07 1.55 0.05 3.24 0.19 3.46 0.34

Table 3
Summary of the Values of Solar Cycle Periodicity Tc, e-folding Time τe and Its Uncertainty δ, and the Ratio τe/Tc for a Large

Number of Configurations of the Triplet (Rm, Cα, CBL)

CBL Cα Rm Tc τe δ τe/Tc CBL Cα Rm Tc τe δ τe/Tc

0.50 16 308 9.02 24.48 3.50 2.71 1.00 16 368 9.40 42.15 5.50 4.48
0.50 16 318 12.78 23.25 5.94 1.81 1.00 16 378 9.28 46.00 17.59 4.95
0.50 16 328 12.52 23.33 6.79 1.86 1.00 20 318 9.73 23.74 4.77 2.43
0.50 16 338 12.13 25.40 5.61 2.09 1.00 24 308 9.48 20.98 5.80 2.21
0.50 16 348 11.61 26.37 5.74 2.29 1.00 24 318 9.47 19.00 2.72 2.00
0.50 16 358 11.49 29.06 6.61 2.52 1.00 24 328 9.26 19.15 3.67 2.06
0.50 16 368 11.26 26.60 3.29 2.36 1.00 24 338 9.94 20.85 4.02 2.09
0.50 16 378 11.04 42.66 2.52 3.86 1.00 24 348 8.96 21.75 1.67 2.42
0.75 16 318 10.64 28.05 4.62 2.63 1.00 24 358 8.84 19.74 2.81 2.23
1.00 8 308 11.13 32.21 5.67 2.89 1.00 24 368 8.61 25.07 4.39 2.91

S 1.00 8 318 10.95 36.64 4.41 3.34 1.00 24 378 8.52 21.06 2.48 2.47
1.00 8 328 10.77 62.13 14.35 5.76 1.00 28 318 9.32 18.54 2.00 1.99
1.00 8 338 10.50 52.30 9.98 4.98 1.00 32 318 9.28 16.75 2.46 1.80
1.00 8 348 10.30 47.97 7.21 4.65 1.25 16 318 10.19 33.69 10.99 3.30
1.00 8 358 10.17 53.44 19.78 5.25 1.50 16 308 10.13 25.21 2.01 2.48
1.00 8 368 10.08 63.59 3.03 6.30 1.50 16 318 10.30 24.12 2.57 2.34
1.00 8 378 10.07 54.52 3.27 5.41 1.50 16 328 10.14 25.50 3.35 2.51
1.00 12 318 10.53 32.81 3.36 3.11 1.50 16 338 9.45 22.46 7.07 2.37
1.00 16 308 10.18 27.35 2.36 2.68 1.50 16 348 9.56 25.77 4.00 2.69

T 1.00 16 318 10.15 24.94 4.33 2.45 1.50 16 358 9.44 30.21 3.04 3.20
1.00 16 328 9.99 27.95 4.33 2.79 1.50 16 368 9.23 26.78 4.89 2.90
1.00 16 338 9.85 25.44 2.55 2.58 1.50 16 378 9.19 26.05 2.74 2.83
1.00 16 348 9.65 31.90 4.66 3.30 1.75 16 318 10.37 24.91 2.26 2.40
1.00 16 358 9.58 31.63 5.21 3.30 2.00 16 318 10.89 26.21 4.37 2.40

Notes. The letters S and T make reference to the main two models discussed in the bulk of the paper. All the timescales are expressed in years. Boldface
highlights the values of the timescales for the two specific cases (S and T) discussed throughout the text.
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(a)

(b)

Figure 7. Same as Figure 6, for model T which has a stronger α-effect than model S (Cα = 16 instead of Cα = 8), all other control parameters being the same.

namely 10−10. This survey is summarized in Table 3, and the
results (expressed in terms of the corresponding timescales Tc
and τe) are shown in Figures 8 and 9.

When Rm is fixed to its standard value (model S, Rm = 318),
our results show that τe and Tc are mostly sensitive to Cα , and less
affected by variations in CBL. Regarding the former dependency,
it can be seen in Figure 8(a) that both τe and Tc decrease with Cα .
The decrease in τe is a consequence of the stronger destabilizing
effect of turbulence. We also note (Figure 8(a), right) that the
ratio τe/Tc decreases with increasing Cα . In the parameter region
which we explored, τe is thus more sensitive to variations in Cα

than Tc.
According to Figure 8(b), the cycle period Tc displays a

non-monotonic behavior with respect to changes in CBL, which
measures the intensity of the non-local coupling in the governing
Equation (12). It is worth mentioning here that for the lower
value of CBL, the system undergoes a transition to an α-
dominated dynamo, characterized by a longer (and less solar-
like) periodicity of about 13 yr. As indicated by Figure 8(b), the
e-folding time τe does not vary substantially with CBL over our
narrow interval of investigation (recall Section 3). Overall, we

find that the ratio τe/Tc remains approximately constant (equal
to 2.5) over this interval.

Turning our attention to the dependency of Tc and τe on Rm,
we see (Figure 9) that the former decreases with increasing
Rm. The cycle duration scales indeed approximately in inverse
proportion to Rm, as shown in the left panel of Figure 9. On
the other hand, the dependency of τe on Rm is less clear. There
seems to be a mild trend in the cases of low to intermediate values
of Cα (orange and red points in the middle plot of Figure 9),
with τe slightly increasing with increasing Rm. This behavior
can be interpreted as a regulatory effect of the meridional
circulation: as u0 gets larger the meridional circulation tends
to make the system more stable against perturbations. This is
no longer true for a large Cα (dark red points in the middle
plot of Figure 9), which indicates that τe is then controlled by
the α-effect. It is worth mentioning that some realizations of
τe are affected by large uncertainties, mostly in cases with low
values of Cα and CBL, and large values of Rm. These cases
are the less chaotic ones, and the introduction of a perturbation
can sometimes lead to a mobilization phase lasting for more
than 1000 yr.
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(a)

(b)

Figure 8. Solar cycle periodicity Tc, e-folding time τe , and their ratio for (a) (top row) Rm = 318, CBL = 1.0 and a varying Cα and (b) (bottom row) Rm = 318,
Cα = 16, and a varying CBL.

To conclude this analysis, let us stress (as shown in Figure 9,
right) that the τe/Tc ratio is mainly concentrated around two
values, 2.5 and 5, with a larger concentration of points around
the former. Using all the available data at our disposal (as
summarized in Table 3), we can finally calculate a weighted
average for the ratio τe/Tc, and find

τe

Tc

= 2.76 ± 0.05. (32)

5. SUMMARY AND DISCUSSION

Our extensive analysis of the e-folding time τe for our
preferred (in the sense of solar semblance) standard model S
led us to conclude that if the control parameters (Rm, Cα, CBL)
are fixed, then τe can be regarded as an intrinsic property of
the model, regardless of the source of the error, with a small
dependence on its initial magnitude (Section 4.2.2).

In view of using that standard model (or a close version) for
operational forecasting, we extended the analysis to a series of
models, and investigated the sensitivity of τe to (Rm, Cα, CBL)
in detail. Our results reveal three salient properties.

1. A decrease of τe with increasing Cα . This reflects the
influence of the non-linear nature of the quenched α-effect
on the amplification of errors, leading to a more chaotic
(and less predictable) dynamo.

2. An apparent independence of τe on CBL, indicating the
secondary role played by this non-local forcing term on
the error growth. However, let us stress that this may be
caused by the narrow range of possible CBL we explored,
a consequence of the extreme sensitivity of the solar
semblance of the flux-transport model to this parameter.

3. A slight tendency for τe to increase with Rm for those
models with low to intermediate strength of the α-effect,
pointing to a stabilizing role of the meridional circulation
on the system under these conditions.

In addition, the moderate variability of the ratio of τe to the
simulated cycle period Tc in our database of simulations (which
comprises approximately 50 members) prompts us to propose
the master value τ e = 2.76 Tc for the class of mean-field models
we considered, should they be used for operational forecasting

(and keeping in mind that we focused our analysis on the regular
working of those models, not considering extreme events such
as grand minima).

From a practical point of view, the perturbations artificially
inserted into the model in Section 4 can be interpreted as
uncertainties in the measurements or in the model itself, which
are the causes of errors any data assimilation scheme needs to
deal with. These uncertainties are ultimately responsible for the
limited horizon of predictability of the chaotic system we are
interested in. If ε denotes the relative level of these uncertainties,
we derive from Equation (29) that the forecast horizon τf is
given by

τf = −τ e ln ε. (33)

Let us begin by estimating the level of uncertainties on the
measurement side. It is likely that an operational data assimila-
tion scheme will assimilate observations connected with large-
scale maps of Br at the solar surface, BS

r . Such magnetograms
are contaminated by errors, due to limited resolution, asyn-
chronous sampling and sparse polar measurements. A way to
quantify those errors is to analyze the spherical harmonic de-
composition of BS

r . Theory demands the monopole term in this
expansion (g0

0) to be zero; a non-zero g0
0 can consequently be

used as a means to quantify the uncertainty ε(BS
r ) we are after.

Figure 10 shows the time series of the monopole and axial dipole
coefficient (g0

1) derived from the database of magnetograms of
the Wilcox Solar Observatory (WSO).1 The figure shows that
g0

1 evolves in phase with the global poloidal magnetic field—it
changes sign at the time of maximum activity, and is correlated
with the polar flux (DeRosa et al. 2012). The monopole coeffi-
cient g0

0 constantly oscillates around zero. We can therefore use
the ratio of the root-mean-squared (rms) value of g0

0, 〈g0
0〉, to the

rms value of g0
1, 〈g0

1〉, to estimate ε(BS
r ). This yields

ε
(
BS

r

) ≈
〈
g0

0

〉〈
g0

1

〉 = 0.1535 G

1.2550 G
≈ 12%. (34)

On the model side now, one of the most obvious sources of
errors lies in the large-scale kinematic approximation on which

1 http://wso.standford.edu/Harmonic.rad/ghlist.html
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Figure 9. Solar cycle periodicity Tc, e-folding time τe and their ratio for different values of Cα , CBL and Rm. The magnitude of Cα is color-coded: Cα = 8, orange;
Cα = 16, red; Cα = 24, dark red. Symbols indicate different CBL: CBL = 0.5, circles; CBL = 1.0, squares; CBL = 1.5, diamonds.

Figure 10. Time series of the monopole g0
0 and axial dipole g0

1 Gauss
coefficients derived from the magnetic charts of the Wilcox Solar Observatory
(http://wso.standford.edu/Harmonic.rad/ghlist.html).

our modeling rests. In particular, observations indicate that it
may be inappropriate to assume that the large-scale flow driving
the dynamo is steady. As a consequence, there are errors arising
from the variability of both the patterns of differential rotation
and meridional circulation. Howe et al. (2000) discovered a
persistent pattern of low-amplitude time variation of Ω, δΩ, of
about 6 nHz, due to solar torsional oscillations. Consequently,
we get

ε(Ω) = δΩ
Ωeq

≈ 1%. (35)

This small figure must be contrasted with the one owing to
those uncertainties impacting up. The long-term variability of
the meridional circulation δup has an amplitude δu0 close to
5 m s−1 (Hernández et al. 2006), which yields

ε(up) = δu0

u0
≈ 33%, (36)

if computed based on the mean value of the surface meridional
flow at mid-latitudes, u0 ≈ 15 m s−1. Injecting ε(up) in
Equation (33) yields

τf ≈ 3 Tc. (37)

In addition to these fluctuations in amplitude, there exists con-
siderable uncertainties on the large-scale structure of the merid-
ional circulation itself. The depth at which the equatorward

return flow occurs (Hathaway 2011) and the possible multi-cell
pattern of meridional flow (Zhao et al. 2013) are two examples
illustrating the current lack of robust observational constraints
on up. These cannot be readily incorporated in the current anal-
ysis, for they would require different families of simulations
to be integrated, and their region of solar semblance be iden-
tified in parameter space (in the same way we mapped it for
the ensemble of single-cell, tachocline equatorward return flow
simulations considered here).

Further uncertainties affect the turbulent diffusivity, η(r). As
explained in Section 2, we resort in this study to spherically
symmetric ηp(r) and ηt (r), of relatively low values. Both reach
an amplitude of 3 × 1011 cm s−2 at r = R� (recall Figure 2(d)).
This value has to be contrasted with the value of 1012 cm s−2

used by Choudhuri et al. (2007) for their prediction of cycle 24,
using a so-called diffusion-dominated flux-transport model.
More recently, Miesch et al. (2012) put forward theoretical and
observational arguments in favor of the same figure, 1012 cm s−2,
as a lower bound of this turbulent transport coefficient. The exact
nature of η(r) in the solar interior remains strongly debated, and
no consensus has been reached.

In this study, we opted for an advection-dominated forward
model, on the account of its first order dynamical semblance
with the solar dynamo. If one were to choose instead a diffusion-
dominated model for data assimilation purposes, one would have
to carry out a sensitivity analysis similar to the one pursued
here, in order to compute the e-folding time and estimate the
forecast horizon for that different family of models. In this
respect, note that Karak & Nandy (2012) resorted to a simpler,
correlation-based, analysis in order to study the “memory” of
such a diffusion-dominated model (which includes in their
case turbulent pumping and a stochastic component to the
poloidal source term). Their analysis demonstrates that turbulent
diffusion shortens the memory of the system to less than one
cycle. This preliminary work should be complemented by the
proper derivation of the e-folding time characterizing that class
of models, along the methodological lines presented in this
paper.

Regardless of the model ultimately chosen, one should keep
in mind that data assimilation remains in any case the only
sensible way of testing the compatibility of a given physical
model of the solar dynamo with observations of its dynami-
cal activity. By enabling on-the-fly parameter adjustments (in
addition to state estimation), data assimilation offers in prin-
ciple the possibility of correcting the radial profiles of diffu-
sion coefficients (and those of poloidal source terms). Even if
the advection-dominated model we studied has an optimistic
theoretical predictability limit of three solar cycles, we must
bear in mind that any data assimilation scheme aiming to fore-
cast solar activity will be unperfect, and its effective forecast
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(a) (b)

Figure 11. Convergence tests: critical dynamo numbers Ccrit
α and Ccrit

S and solar cycle periodicity ω for (a) case B and (b) case C, as defined by Jouve et al. (2008).
The resolution is defined by

√
Nr N , where Nr is the number of radial levels and N is the truncation of the spherical harmonic expansion.

(A color version of this figure is available in the online journal.)

Table 4
Comparison of the Critical Dynamo Numbers Ccrit

α,S and Frequency of the Solar Cycle ω in the Benchmark
Cases A, B and C from Jouve et al. (2008)

Case Results Reference

Resolution Δt Ccrit
α,s ω Ccrit

α,s ω

A 71 × 71 5 × 10−5 0.385 158.00 0.387 ± 0.002 158.1 ± 1.472
B 71 × 71 5 × 10−5 0.406 172.01 0.408 ± 0.003 172.0 ± 0.632
C 120 × 120 1 × 10−6 2.545 534.6 2.489 ± 0.075 536.6 ± 8.295

Notes. The spacial and temporal resolutions are given in terms of radial points and harmonic degree (Nr × N ) and time-step Δt .

horizon will consequently decrease. Taking this into account,
one can hope, though, that if such an advection-dominated
model were to be chosen for operational forecasting, its practi-
cal limit of predictability could reach (and perhaps exceed) one
solar cycle.

The authors thank the referee for helpful and constructive
review, and Allan Sacha Brun, Emmanuel Dormy and Martin
Schrinner for enlightening discussions. Sabrina Sanchez also
thanks Oscar Matsuura and Katia Pinheiro for the fruitful
contributions to the beginning of this project, the Observatório
Nacional of Brazil for the initial support, and the Space Physics
and Aeronomy group of the American Geophysical Union for
the student grant award at the 2012 AGU Meeting. Numerical
calculations were performed on IPGP’s S-CAPAD computing
facility. This is IPGP contribution 3459.

APPENDIX

PARODY CODE—MEAN FIELD BENCHMARKING

The Parody code used in this work was originally pro-
posed for full 3D MHD dynamo simulations (ACD code,
benchmarked in Christensen et al. 2001; see Dormy et al.
1998 and Aubert et al. 2008). In order to perform an anal-
ysis of the predictability of standard mean-field solar dy-
namos, it was necessary to ensure the compatibility of the
model with the ones used within the solar dynamo commu-
nity. For such reason, we modified and compared outputs
from our 3D MHD code with a mean-field solar dynamo
benchmark.

The full spherical harmonic expansion of the code writes

(P, T )(r, θ, ϕ, t) =
N∑

n=1

M∑
m=1

(
Pm

n , T m
n

)
(r, t) Ym

n (θ, ϕ), (A1)

truncated at spherical harmonic degree and order N and M,
respectively. As most mean-field models assume axisymmetry,
we set M = 0 throughout.

The original inner boundary conditions of Parody considered
the inner core as an insulating or electrically conducting medium
of finite conductivity (Christensen et al. 2001); in contrast, in
the solar context, the radiative zone is modeled as a perfect
conductor. This last condition requires to impose

P = 0, and (A2)

∂(r T )/∂r = 0 at the inner boundary. (A3)

Further modifications of the code included the incorporation
of the α and BL source terms in the poloidal induction
Equation (12), and the prescription of the flow fields, Ω and
up, and depth-dependent turbulent diffusivities η(r).

The resulting code was tested against published reference
solutions of the mean-field community benchmark effort de-
scribed by Jouve et al. (2008). The benchmarking consists of
computing the critical dynamo numbers Ccrit, and solar activ-
ity cycle frequency ω, for three case studies. The three cases
include two αΩ mean-field dynamos (cases A and B, differing
only by the prescribed η(r)) and a BL dynamo (case C). Table 4
displays the values obtained from our code and the Jouve et al.
(2008) benchmark ones for each case, while convergence tests

14



The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

(a) (b)

Figure 12. Butterfly diagrams summarizing two different benchmark cases from Jouve et al. (2008): (a) αΩ dynamo from the supercritical case SB and (b) a
Babcock-Leighton dynamo from the supercritical case SC. For each case, the upper panel displays the toroidal field at the tachocline and the lower one the radial field
at the surface.

(A color version of this figure is available in the online journal.)

of the critical numbers of cases B and C are shown in Figure 11.
In addition, butterfly diagrams for the supercritical cases SB
and SC (the supercritical cases include α and SBL quenching)
are displayed in Figure 12.

Note that in the present study, and compared with the
benchmark cases, we use slightly different inner boundary
conditions, namely

P = 0, and (A4)

T = 0 at the inner boundary, (A5)

as is common in mean-field solar dynamo simulations (e.g.,
Dikpati & Charbonneau 1999). Inspection of results obtained
with both types of inner boundary conditions shows that they
are virtually the same, in agreement with Chatterjee et al. (2004).
An interpretation of this is that the low diffusivity of the radiative
zone and the absence of a deeply penetrating meridional flow
inhibit the penetration of the strong tachocline magnetic field to
the deepermost layers.
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