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Abstract 14 

The surface reactivity of clay minerals remains challenging to characterize because of a duality of 15 

adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: clay 16 

minerals edge surfaces have a variable proton surface charge arising from hydroxyl functional 17 

groups, whereas basal surfaces have a permanent negative charge arising from isomorphic 18 

substitutions. Hence, the relationship between surface charge and surface potential on edge 19 

surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of 20 

negative electrostatic potential from the basal surface onto the edge surface. While surface 21 

complexation models can be modified to account for these features, a predictive fit of 22 

experimental data was not possible until recently, because of uncertainty regarding the densities 23 

and intrinsic pKa values of edge functional groups. Here, we reexamine this problem in light of 24 

new knowledge on intrinsic pKa values obtained over the last decade using ab initio molecular 25 

dynamics simulations, and we propose a new formalism to describe edge functional groups. Our 26 

simulation results yield good predictions of the best available experimental acid-base titration 27 

data.  28 

1. Introduction 29 

Clay minerals are natural fine-grained particles, ubiquitous in terrestrial weathering 30 

environments, that strongly influence the permeability, mechanics, and pore water chemistry of 31 

soils, sediments, and rocks in which they are found 1,2. In particular, these minerals control the 32 

performance of natural and engineered clay barriers used in the isolation of landfills and 33 

contaminated sites and proposed for use in the geological storage of high-level radioactive waste 34 

3,4. A widely examined feature of clay minerals that influences the performance of these barriers 35 
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is their cation-exchange capacity, the result of isomorphic substitutions in the structure 5.  In 36 

addition to this cation-exchange capacity, clay minerals, including montmorillonite (the most 37 

studied swelling clay mineral) carry oxide-type functional groups on their edge surfaces. These 38 

oxide-type functional groups, though present in much smaller quantity than the cation exchange 39 

sites, dominate the adsorption of trace metals, oxyanions, and organic molecules 6–9, the 40 

dissolution and growth kinetics of clay minerals 10,11, and the colloidal mechanics of clay 41 

particles 12, at least in some conditions. 42 

In the case of simple oxide minerals, surface reactivity is strongly influenced by their net proton 43 

surface charge, which varies with pH through reactions of the following type, where >SOHn is a 44 

generic surface site 13: 45 

> SOH� ⇄	> SOH��	 +	H� (1) 

The reaction described by Eq. (1) gives rise to a variable net proton surface charge density (σH) 46 

that depends on pH and ionic strength (I, dimensionless14). In the case of simple oxide minerals, 47 

the last few decades have seen steady advances in the characterization of their proton surface 48 

chemistry through a combination of experiments (in particular, acid-base titration and 49 

electrophoretic mobility measurements), surface complexation model (SCM) calculations, and 50 

bond-valence theory predictions of the intrinsic acidity constants of surface functional groups 15–51 

19
. In the case of the oxide-type functional groups on the montmorillonite edge surfaces, however, 52 

σH remains poorly understood, as shown by the wide range of reported values of the point of zero 53 

net proton charge (p.z.n.p.c., the pH value where σH = 0) and by the variety of models that have 54 

been used to describe σH 9,20. As described below, the difficulty in characterizing σH on 55 

montmorillonite relates to the high permanent structural charge of the solid (σ0 ≈ -1 mmolc⋅g-1) 56 
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and to the presence of two different surfaces (edge and basal surfaces) with very different 57 

properties. These properties have no equivalent in simple oxide minerals, but are widespread 58 

features of lamellar structures including vernadite, a phyllomanganate that controls the fate of 59 

trace metals in certain oxidized soils and sediments 21,22, green rust, a layered double hydroxide 60 

that influences the mobility of iron and anions in reduced soils 23, and synthetic phases widely 61 

used in materials chemistry, such as synthetic layered double hydroxides 24.   62 

The challenges associated with characterizing the proton surface reactivity of montmorillonite 63 

were summarized a decade ago by Bourg et al. 20. A first challenge is that montmorillonite 64 

particles undergo significant dissolution during acid-base titration measurements. This can be 65 

rendered near-negligible in the pH range from about 4.5 to 9.5 through a careful choice of clay 66 

pretreatment, storage, and titration procedures25–29 (see below). Unfortunately, most 67 

montmorillonite acid-base titration datasets do not fit the best practices established by Duc et al. 68 

25–28. A second challenge is that acid-base titration measurements do not directly measure the net 69 

proton surface charge density σH but rather δσH, the change in net proton surface charge density 70 

relative to its initial value σH,init (
�H = �H − �H,init). Conversion of 
�H to σH values requires 71 

knowledge of σH,init or of the p.z.n.p.c. at the conditions of interest 30. For simple oxide surfaces, 72 

this is achieved by measuring the sum of the adsorbed ion charge densities qi of all species except 73 

H+ and OH- (∆q) and applying the charge balance relation 30: 74 

�0 + �H + Δ� = 0  

 

(2) 

For montmorillonite, experimental uncertainties make it impossible to accurately determine �H 75 

using Eq. (2), because �H is small compared to �0 and Δ� 20,29. Alternatively, the p.z.n.p.c. of 76 

oxide surfaces is sometimes determined by assuming that it coincides with the point of zero salt 77 
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effect (p.z.s.e., the pH value at which acid-base titration curves carried out at different ionic 78 

strengths intersect) or with the isoelectric point (i.e.p., the pH value where the electrophoretic 79 

mobility equals zero) 31. These alternative methods, however, are neither strictly rigorous 20,30 nor 80 

applicable to montmorillonite, for which a p.z.s.e. or i.e.p. are not observed 26,32–34. Finally, the 81 

p.z.n.p.c. of montmorillonite is sometimes assumed to correspond to the pH value obtained by 82 

adding incremental amounts of dry solid to a solution 35, but this so-called “mass titration” 83 

technique, just like a standard acid-base titration, is sensitive to the initial protonation state of the 84 

solid 36. 85 

A third challenge arises when attempting to develop a SCM for montmorillonite. An important 86 

assumption of SCMs is that the ratio of activity coefficients of different surface species is a 87 

function of the surface electrostatic potential �. For the reaction described by Eq. (1), the 88 

relationship is almost always expressed with a quasi-thermodynamic equilibrium equation of the 89 

form: 90 

�� = �> SOH��	��H��
�> SOH�� exp "−#�

$% & (3) 

where Ka is an intrinsic equilibrium constant, (H+) is the thermodynamic activity of H+, square 91 

brackets denote mole fractions, � is the surface electrostatic potential, F is the Faraday constant 92 

(96 485 C	mol-1�, R is the ideal gas constant (8.314 J	mol-1	K-1), and T is temperature (in K). 93 

Closure of any SCM requires a model of � as a function of surface charge, ionic strength, and 94 

other conditions. For this, most studies rely on the Gouy-Chapman relation, a mean-field theory 95 

prediction based on the Poisson-Boltzmann equation (PBE) of the relationship between surface 96 

charge density and surface potential on an infinite planar surface in contact with an ideal 97 

electrolyte solution 31,37. Montmorillonite consists of flake-shaped, 1-nm-thick layers such that 98 
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the narrow edge surface cannot be a priori treated as an infinite planar surface 9,20. Solutions to 99 

the Poisson-Boltzmann equation for various possible arrangements of the montmorillonite layers 100 

indicate that the value of � at montmorillonite edges (ψedge) is influenced by the charge density 101 

of both edge and basal surfaces in a manner that depends on ionic strength and on the stacking 102 

arrangement of montmorillonite layers 9,20,38. Finally, a fourth challenge is that montmorillonite 103 

edge surfaces carry a variety of functional groups associated with tetrahedral Si and octahedral Al 104 

atoms (>SiOH, >AlOH, >Al2OH, >AlSiOH) as well as additional groups that arise from 105 

isomorphic substitutions of Si by Al and of Al by Mg, FeII, or FeIII. In the absence of independent 106 

predictions of the densities and intrinsic acidity constants of each surface functional group, model 107 

fits to experimental acid-base titration data are necessarily non-unique 20. 108 

Bourg et al. 20 showed that the first three challenges outlined above could be resolved using 109 

information available a decade ago. The second challenge was resolved by using an SCM to 110 

predict both σH,init (from reported conditions of clay pre-treatment) and σH. The first challenge 111 

required identifying experimental datasets that followed that best practices established by Duc et 112 

al. 26–28 and that used montmorillonite samples pre-treated by repeated washing in a solution of 113 

well-known pH and ionic strength (as required to predict σH,init); the available database included 114 

only two datasets, those of Baeyens and Bradbury 39 and Duc et al. 27. The third challenge was 115 

resolved by solving a two-dimensional version of the PBE near the edge surface of an isolated 116 

montmorillonite particle. The fourth challenge, however, could not be satisfactorily resolved, 117 

because of large disagreements between different bond-valence model predictions of the intrinsic 118 

pKa values of edge surface sites 40,41 and, also, because of insufficient knowledge of the densities 119 

of different edge surface sites 41. Eventually, Bourg et al. 20 concluded that experimental data on 120 
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the acid-base chemistry of montmorillonite edge surfaces could not be predicted from first 121 

principles using existing knowledge. 122 

The last decade has seen a significant number of new studies of the acid-base surface chemistry 123 

of montmorillonite. Several new potentiometric titration studies have been carried out 42–47 as 124 

well as one study that attempted to determine the i.e.p. of montmorillonite edge surfaces 48. 125 

Several studies have provided new estimates of the edge specific surface area of montmorillonite 126 

particles 10,49. Models of ψedge have been refined using new Poisson-Boltzmann calculations 9 and 127 

Grand Canonical Monte Carlo (GCMC) simulations 50. Finally, ab initio MD simulations have 128 

been used to predict the intrinsic pKa values of montmorillonite edge surface sites 51–57. Here, we 129 

revisit the conclusions of Bourg et al. 20 in light of these advances. First, we show that new 130 

knowledge obtained during the last decade provides a more coherent picture of the proton surface 131 

chemistry of montmorillonite. Then, we develop a state-of-the-art SCM for montmorillonite edge 132 

surfaces, and we note possibilities for future improvements. This new SCM is mainly based on a 133 

combination of the existing 2D Poisson-Boltzmann calculations, which are representative of clay 134 

edges geometry, with the development of a revised thermodynamic concept for the description of 135 

the edge sites, and with the use of pKa values that have been obtained from ab initio MD 136 

simulations.  137 

2. Constraints on the proton surface chemistry of montmorillonite edges 138 

2.1. Montmorillonite edge structure 139 

Current knowledge of the densities of different types of montmorillonite edge functional groups 140 

remains limited by uncertainty regarding edge crystallographic orientations. Crystal growth 141 

theory calculations, surface Coulomb energy considerations, atomistic simulations, and in situ 142 
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observation of dissolution kinetics using atomic force microscopy suggest the that most stable 143 

edge surfaces are perpendicular to [010] and [110] (or, equivalently, [1'10�) 58–63, where the Miller 144 

indices are assigned according to Churakov 60 (Figure 1). The two edge surfaces are sometimes 145 

referred to as the B and AC edges, respectively, following the seminal study by White and 146 

Zelazny 63. Recent molecular dynamics (MD) and ab initio MD simulations of hydrated clay 147 

edges suggest that the surface normal to [110] may be significantly more stable than the surface 148 

normal to [010] in the presence of liquid water 61,62,64. 149 

Montmorillonite edge surfaces are routinely assumed to have the same stoichiometry and 150 

structure as the bulk crystal, with minor bond-length relaxation to accommodate over- or under-151 

coordinated surface O atoms 40. Recent MD and ab initio MD simulation results reveal a more 152 

complex picture, the most well-established finding being that cations in the octahedral layer can 153 

adopt a five-fold coordination 55,61,65,66. 154 

Page 8 of 37

ACS Paragon Plus Environment

Environmental Science & Technology



 

 9

 155 

Figure 1. Edge surface sites of a model montmorillonite particle. Inserts with red and green 156 

borders describe sites on the B edge. The insert with a blue border describes sites on the AC 157 

edge. The clay mineral structure was taken from Viani et al. 67 and is representative of the 158 

structures considered in bond valence calculations and ab initio MD simulations. Grey octahedra: 159 

Al or Fe(III); orange octahedra: Mg or Fe(II); green tetrahedra: Si; red tetrahedra: Al. Isomorphic 160 

substitutions are only shown if they occur at the edge surface. The stoichoimetries of the 161 

deprotonated sites are written on the figure along with numbers corresponding to the log K values 162 
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of the associated protonation reactions predicted by ab initio MD calculations (see Section 2.4; an 163 

absence of value means that the site does not protonate/deprotonate in the pH range 1 to 14). 164 

 165 

2.2. Edge specific surface area  166 

An important parameter in studies of montmorillonite edge reactivity is the edge specific surface 167 

area, as,edge. Unfortunately, the N2 gas adsorption method with the Brunauer-Emmett-Teller 168 

technique (N2-BET) quantifies only the external surface area of crystals (stacks of 169 

montmorillonite layers) after drying, which provides no information on as,edge 
68. The ethylene 170 

glycol monoethyl ether (EGME) adsorption method quantifies the total specific surface area of 171 

montmorillonite layers, as, dominated by the basal surfaces 69. In principle, as,edge equals the 172 

difference between the measured as value and the theoretical basal specific surface area as,basal [≈ 173 

750 to 780 m2 g-1 70]. Unfortunately, EGME-derived as values show a significant dependence on 174 

experimental conditions 68 that precludes a precise calculation of as,edge. 175 

Direct measurements of as,edge for montmorillonite have been achieved using two approaches. 176 

The first consists in evaluating edge specific surface area by statistical analysis of particle 177 

morphology from atomic force microscopy (AFM) or transmission electron microscopy (TEM) 178 

images 71–73. Alternatively, the derivative isotherms summation (DIS) method distinguishes 179 

different clay surfaces in a single gas adsorption measurement based on differences in adsorption 180 

energy 68. Comparison of microscopic imaging and DIS results yields satisfactory agreement 181 

(Table S-1), with a possible slight overestimation of edge surface area by the DIS method 74.  182 
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2.3. Edge surface electrostatic potential  183 

As noted above, SCMs of proton adsorption on montmorillonite require a model of the edge 184 

surface electrostatic potential, ψedge. Most modeling studies have assumed that clay edges do not 185 

develop a significant electrostatic potential (ψedge = 0) 41,75–79 or that ψedge follows the Gouy-186 

Chapman relation for an infinite planar surface 33,35,43,80–91. The few studies that solved the PBE 187 

near clay edges for realistic geometries, however, showed that ψedge differs strongly from zero 188 

and from the Gouy-Chapman model prediction and is sensitive to the stacking arrangement of the 189 

clay layers 38,92–94. Bourg et al. 20 solved a two-dimensional form of the PBE near the edge 190 

surface of an isolated montmorillonite layer (consistent with exfoliated layers in Na-191 

montmorillonite suspensions at ionic strengths lower than I~0.2) and found that ψedge was 192 

reasonably described by:  193 

#�()*(
$% = +	 asinh /+012()*( + +345 (4) 

where Qedge (C⋅m-2) is the charge at the edge and A1 (unitless), A2 (m
-2⋅C) and A3 (C⋅m-2) are 194 

parameters that were fitted with the ψedge values obtained from the full resolution of the 2D PB 195 

equation. For montmorillonite at 25 °C, Tournassat et al. 9 refined the values of these parameters 196 

to: A1 = 1.4 -1.2 log I, A2 = 11 + log I, and A3 = -0.02 × (-log I)1.60. This equation can be 197 

compared with the classical Gouy-Chapman model for infinite planar surfaces 13: 198 

67
89 = 2asinh�; ∙ �� with ; = 	

=>??@89∙	AAA∙B 

 

(5) 
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where σ is the surface charge density (in m-2). A key prediction of Eq. 4 is that ψedge is negative 199 

when the edge surface charge is zero (Figure 2) because of a spillover of negative electrostatic 200 

potential from the basal surfaces 92,94. 201 

 202 

Figure 2. Comparison of the relationships between surface charge (horizontal axis) and surface 203 

electrostatical potential (vertical axis) predicted by the classical Gouy-Chapman model for a flat 204 

oxide surface (top) and by the PBE calculations of Bourg et al. 20 for the edge surface of an 205 

isolated montmorillonite layer (bottom) at three ionic strengths. The circles mark the condition of 206 

zero charge and zero potential on each graph.  207 

A potential limitation to the accuracy of the PBE is that it uses the mean-field theory 208 

approximation, i.e., it neglects specific ion-ion and ion-surface site interactions. On infinite flat 209 
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surfaces, the PBE is nevertheless known to adequately predict the structure of the electrical 210 

double layer except at high salinities or in the presence of multivalent counterions 37,95,96. In the 211 

case of montmorillonite, an opportunity to verify the validity of Eq. (4) is provided by GCMC 212 

simulations of the acid-base chemistry of individual clay particles where water was treated as a 213 

uniform dielectric continuum 50. To this end, we implemented Eq. (4) in PHREEQC 97 (the 214 

modification of the source code is made available in the supporting information file; a executable 215 

file can be sent upon request) and predicted the protonation of surface sites using the same site 216 

densities and pKa values as Delhorme et al. 50 (PHREEQC scripts and database are available in 217 

the supporting information file). An excellent agreement was found between the two predictions 218 

(Figure 3), suggesting that Eq. (4) is valid over the entire range of experimental conditions where 219 

montmorillonite particles are made of single layers. This condition is met in experiments carried 220 

out with montmorillonite particles dispersed in a NaCl or NaClO4 background electrolyte at ionic 221 

strengths lower than I~0.2 98–101.  222 
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 223 

Figure 3. Comparison of the GCMC simulations of Delhorme et al. 50 (circles and squares) with 224 

an SCM that used Eq. (4) (solid lines) at three different ionic strengths in NaCl salt background. 225 

Both models used the same site densities and intrinsic pKa values. Activity coefficients of solute 226 

species in the SCM were modeled using the extended Debye-Hückel formalism. Blue symbols 227 

and lines refer to aluminol sites having a pKa of 3.75 and a site density of 4.5 nm-2; red symbols 228 

and lines refer to silanol sites having a pKa of 8.0 and a site density of 5.2 nm-2. Shaded areas 229 

correspond to conditions that cannot exist, i.e., domains where the specified ionic strength is 230 

exceeded because of high H+ or OH- concentrations.  231 

Page 14 of 37

ACS Paragon Plus Environment

Environmental Science & Technology



 

 15

2.4. Intrinsic pKa values of edge surface sites 232 

Until recently, theoretical estimates of the intrinsic pKa values of edge surface sites were based on 233 

bond-valence theories. The resulting predicted pKa values were highly sensitive to model 234 

assumptions 40,41 and did not provide accurate predictions of experimental montmorillonite 235 

titration data 20. In the last decade, ab initio MD simulations have proved capable of accurately 236 

predicting the intrinsic pKa values of simple oxide surface functional groups 102–104, including 237 

oxide-type functional groups on montmorillonite edge surfaces 51–57. In particular, a series of 238 

papers by Liu et al. 51–55 explored the influence of edge crystallographic orientation and the 239 

presence of octahedral and tetrahedral substitutions on the intrinsic pKa values of edge surface 240 

groups. Their predictions are summarized in Figure 1. It is noteworthy that similar sites on the 241 

surfaces perpendicular to the [010] and [110] crystallographic directions have different reactivity 242 

according to the ab initio MD calculations. For example, silanol sites (>SiOH) have pKa values of 243 

7.0 on the [010] edge vs. 8.3 on the [110] edge when no octahedral substitution is present. These 244 

values are significantly different from the values predicted by bond valence methods 40,41 and 245 

used by Bourg et al. 20 (Table S-2).  246 

2.5. Experimental data  247 

Duc et al. 26–28 carried out a comprehensive examination of montmorillonite acid-base titration 248 

methodologies and identified a series of best practices. These included careful montmorillonite 249 

pre-treatment and storage procedures (use of a series of acid washes at pH ≈ 4, exchangeable 250 

cation homogenization at ionic strength I ≈ 1, and rinsing steps; storage in liquid water at low 251 

temperature for relatively short durations, or storage of freeze-dried samples as an acceptable 252 

alternative). For the titration experiments themselves, they noted the importance of using an inert 253 

atmosphere and limiting the experiments to the pH range ≈ 4.5-9.5. They found that a continuous 254 
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titration method was acceptable if equilibration times between additions of acid or base were 255 

short (< 10 min) and if hysteresis was quantified; alternatively, a discontinuous batch titration 256 

method was acceptable if the atoms released by clay dissolution (Si, Al, Mg, Fe) were analyzed 257 

(both in solution and on the clay cation-exchange sites) to account for pH buffering by side 258 

reactions. In the alkaline domain, however, correction of the raw batch titration data for measured 259 

side reactions failed to reproduce the continuous titration curves. The authors concluded on the 260 

superiority of fast, continuous methods for quantifying the dissociable surface charge of clays. 261 

Among the many reported studies of montmorillonite titration 12,27–29,33–35,39,80,84,86,88–90,105, Bourg 262 

et al. 20 determined that only three studies 27,28,39 followed this set of best practices. One of these 263 

studies used the batch titration technique 39, and its results at alkaline pH values are therefore of 264 

unclear reliability. Of the acid-base titration studies published over the last decade 42–47, none 265 

followed the entire established set of best practices while also reporting the pH and ionic strength 266 

of the solutions used during clay pre-treatment. The present study, therefore, focuses on the 267 

dataset from Duc et al. 27 as the best available set of montmorillonite acid-base titration results.  268 

An interesting indirect quantification of edge surface charge was pursued by Pecini and Avena 48, 269 

who measured the i.e.p. of montmorillonite loaded with cationic dyes with a strong affinity for 270 

the basal surface. Under the assumption that the dyes completely screen the basal surface charge 271 

but do not interact with the edge surfaces (such that the measured i.e.p. reflects edge surface 272 

properties) and within the well-established theoretical limitations associated with relating an i.e.p. 273 

to a point of zero charge 30, the results of Pecini and Avena 48 suggest that the point of zero 274 

charge of clay edge surfaces (the pH value where σ0,edge + σH = 0, where σ0,edge corresponds to the 275 

permanent structural charge density “expressed” on the edge surface) is in the pH range 3.8–5.5, 276 

in qualitative agreement with a previous measurement of the i.e.p. of thermally treated Cu-277 
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montmorillonite for which the structural layer charge was reduced to almost zero, whereby the 278 

authors estimated that the edge surfaces are negatively charged at pH > 3.5 106. 279 

3. Towards a predictive SCM for montmorillonite edge surfaces 280 

3.1. Reactivity of edge surface functional groups 281 

To determine whether the new knowledge summarized above allows a predictive simulation of 282 

the acid-base chemistry of montmorillonite, we developed a generic SCM for the [010] and [110] 283 

edge surfaces in our modified version of PHREEQC that applies Eq. (4) for the calculation of 284 

ψedge. Edge surface functional groups were modeled as groups of one octahedral and two 285 

tetrahedral cations together with their associated OH groups. The overall charge of a group was 286 

calculated from bond valence principle applied to the terminal oxygen atoms of the edge sites. 287 

For example, a fully-deprotonated functional group with no isomorphic substitution on the [010] 288 

edge corresponds to the grouping of two Si-O- sites and one Al-(OH)2
- site and is denoted >Si-Al-289 

SiO4
-3 (leaving the unreactive H out of the formula). It can be protonated four times with intrinsic 290 

pKa values of 8.3, 7, 7, and 3.1 as predicted by ab initio MD simulation (section 2.4 and Figure 291 

1). This representation deviates from the classical description used in SCMs, where each surface 292 

hydroxyl is modeled as a distinct functional group with a single pKa value 107. The advantages of 293 

the present representation are that the calculation of the number of sites affected by neighboring 294 

substitutions is straightforward and that future implementation of metal adsorption through the 295 

formation of multi-dentate surface complexes is made easier with regards to the calculation of 296 

surface site activities 9,108. Simple cases were used to verify that the grouping of surface sites had 297 

little effect on model predictions (Fig. SI-1 in supporting information; PHREEQC script files are 298 

also available in order to test further the effect of grouping sites). The fractions of edge functional 299 
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groups that include octahedral or tetrahedral substitutions were calculated from the structural 300 

formula of montmorillonite with the assumption that edge chemistry reflects that of the bulk 301 

mineral. Because of the absence of ab initio MD simulation predictions of the reactivity of Fe-302 

substituted sites on the [110] edge surface, sites with Fe(III) for Al substitutions on this surface 303 

were assigned the same properties as sites without substitutions, while sites with Fe(II) for Al 304 

substitutions were assigned the same properties as sites with Mg for Al substitutions. Surface site 305 

densities were estimated from crystallographic considerations and from reported clay unit cell 306 

formulae: each site group, SiAlSi, AlAlSi, SiMgSi, SiFeIIISi, and SiFeIISi had a density of 2.06 × 307 

xi nm-2, where CDEF�GH�EF = / GH
IJ�GH�KLMM�KLMMM5NOP, CDEF�KLMMM�EF = / KLMMM

IJ�GH�KLMM�KLMMM5NOP 308 

,	CDEF�KLMM�EF = / KLMM
IJ�GH�KLMM�KLMMM5NOP , CDIJ�IJ�EF = 2 × / IJ

EF�IJ5PLP, and CDEF�IJ�EF = 1 −309 

CDEF�GH�EF − CDIJ�IJ�EF − CDEF�KLMMM�EF − CDEF�KLMM�EF. This calculation implicitly neglects the 310 

possible existence of edge sites with both octahedral and tetrahedral substitutions or with two 311 

tetrahedral substitutions, for which predicted pKa values are not available. 312 

3.2. Impact of clay permanent structural charge 313 

Proton adsorption by Na-H cation exchange on basal surfaces was taken into account by using a 314 

constant selectivity coefficient of 3.2 (log K = 0.5) in near agreement with previously published 315 

values 41,109. The permanent structural charge was set to 0.9 molc·kg-1, yielding an overall charge 316 

density of σ0 = -0.12 C·m-2 for the clay layers. As noted above, the edge surface charge equals 317 

σ0,edge + σH = 0, where σ0,edge is the edge surface charge density resulting from nearby isomorphic 318 

substitutions. Bourg et al. 20 assumed that σ0,edge = σ0 for simplicity. Here, we modeled edge 319 

surface charge arising from near-edge isomorphic substitutions in an even simpler way: we added 320 

-1 to the valence of edge functional groups that include an isomorphic substitution of Al for Si or 321 
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of Mg or Fe(II) for Al. For example, a fully-deprotonated edge functional group with no 322 

isomorphic substitutions (>Si-Al-SiO4
-3), upon substitution of Mg for Al, becomes (>Si-Mg-SiO4

-323 

4). 324 

3.3. Predicted acid-base properties of edge surfaces  325 

According to the predictive model described above, montmorillonite edge surface charge has 326 

little dependence on the type and extent of layer structural substitutions, but it depends 327 

significantly on crystallographic orientation between the [010] and [110] edge surfaces (Figure 4, 328 

top). In the presence of 0.1 mol⋅L-1 NaCl, the [010] surface is positively charged at pH < 5, 329 

whereas the [110] surface is positively charged only at pH < 3.5, consistent with the experimental 330 

findings of Thomas et al. 106 and Pecini and Avena 48. The relative proportion of [010] and [110] 331 

edge surface orientations on montmorillonite is unfortunately unknown, which leaves one 332 

unavoidable free parameter in the presently developed SCM. 333 

Changes in ionic strength are predicted to have a marked effect on surface charge but not on the 334 

shape of the charge vs. pH curves, especially for the surface perpendicular to [110] (Figure 4, 335 

bottom). A decrease in ionic strength results primarily in a translation of the surface charge curve 336 

towards higher pH values, in agreement with experimental results. 337 
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 338 

Figure 4. Top: Predicted edge surface charge as a function of pH for montmorillonite particles 339 

immersed in a 0.1 mol⋅L-1 NaCl background electrolyte. “No”, “Al” and “Mg” substitutions refer 340 

to simulations carried out with (CDEF�GH�EF = 0; CDIJ�IJ�EF = 0), (CDEF�GH�EF = 0; CDIJ�IJ�EF =341 

0.1) and (CDEF�GH�EF = 0.2; CDIJ�IJ�EF = 0) respectively. Bottom: Influence of NaCl 342 

concentration (0.001, 0.01, and 0.1 mol⋅L-1) on the predictions obtained if x>Si-Al-Si = 1. 343 

3.4. Comparison with potentiometric titration data  344 

Model predictions were compared with the potentiometric titration results of Duc et al. 27 for the 345 

SWy-2 and MX80 reference montmorillonites (the dataset for SWy-2 was made available in 346 

Delhorme et al. 50). The structural formulae of SWy-2 and MX80 montmorillonites were reported 347 

as (Si3.87Al0.13)(Al1.52Mg0.25FeIII
0.224FeII

0.006)Na0.39O10(OH)2 and 348 
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(Si4)(Al1.57Mg0.25FeIII
0.09FeII

0.09)Na0.34O10(OH)2, respectively 27. Reported montmorillonite 349 

structural formulae can vary as a function of sample preparation and calculation method 65. This 350 

variability adds a minor source of uncertainty to our model predictions according to Figure 4. The 351 

CDEF�GH�EF, CDEF�KLMM�EF, CDEF�KLMMM�EF and CDIJ�IJ�EF values were set, respectively, to 0.125, 352 

0.045, 0.045 and 0 for MX80 montmorillonite and to 0.125, 0.003, 0.112 and 0.13 for SWy-2 353 

montmorillonite.  354 

A good agreement was found between experimental and predicted potentiometric titration data 355 

for SWy-2 montmorillonite if the specific edge surface area was set to 14 m2⋅g-1 and the relative 356 

abundance of [010] and [110] edges was set to 1:1 (Figure 5). The modeled edge specific surface 357 

area is in agreement with the value of 19.2 m2⋅g-1 measured on the sample used for the titration 358 

experiment (Table S-1), because the DIS method tends to overestimate the surface area 74. A 359 

lesser agreement was found for the lowest ionic strength (I=0.001) at pH values greater than 8, 360 

but the significance of this discrepancy is tempered by the increased experimental uncertainty at 361 

pH > 9 20. For MX80 montmorillonite, the agreement between experimental and predicted 362 

potentiometric titration curves was acceptable if the specific edge surface area was set to 12 m2⋅g-363 

1 and the relative abundance of [010] and [110] edges was set to 1:1 (Figure 5) (the effect of 364 

varying the relative abundance of [010] and [110] edges can be seen on Figure 4, and it can be 365 

quantified by using the PHREEQC script files provided in the supporting information). The 366 

modeled edge specific surface area was larger than the measured value (Table S-1, from 6 to 9 367 

m2⋅g-1, depending on the considered study). However, the values reported in Table S-1 were not 368 

measured for the same samples used in the titration experiments. For both titration datasets, the 369 

pH values corresponding to 
�H = 0 were correctly predicted at all investigated ionic strengths. 370 

A better agreement with the experimental data likely could have been achieved by adjusting the 371 
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pKa values of edge surface sites in the limit of the uncertainty reported in Liu et al. 51–55 (from 372 

± 0.6 to ± 1.6 depending on the site under consideration), but such a refinement was not deemed 373 

justified in light of the uncertainties in the experimental data. Such exercise can be done using the 374 

files made available in the supporting information.  375 

 376 

Figure 5. Comparison of model predictions (lines) and potentiometric titration data (symbols27,50) 377 

for MX80 montmorillonite (bottom) and SWy-2 montmorillonite (top). The specific edge surface 378 

area was set to 12 m2⋅g-1 and 14 m2⋅g-1 for MX80 and Swy-2 montmorillonite respectively, and 379 

the relative abundance of [010] and [110] edges was set at 0.5/0.5. Error bands were estimated as 380 

in Bourg et al. 20. 381 
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The present study relies on several simplifying assumptions or conditions that inherently limit the 382 

range of applicability of the proposed model. First and foremost, the model was derived for the 383 

case of simple indifferent 1:1 electrolytes such as NaCl at relatively dilute concentrations (≤ 0.1 384 

M) where clay layer stacking is minimal and where the mean field approximation inherent in the 385 

PBE is valid. Extension of the model to a broader set of conditions would require a new model of 386 

ψedge derived for the appropriate aggregation structure of montmorillonite layers and for 387 

deviations from the mean-field approximation. A significant challenge to such an extension is 388 

that the best-quality experimental titration data are limited to the conditions modeled in the 389 

present study. 390 

Another important condition for the applicability of our proposed model is that the model’s 391 

description of edge surface sites must be accurate. At the most fundamental level, this condition 392 

can be challenged on the grounds that most, if not all, theoretical calculations of montmorillonite 393 

edge site properties were carried out based on a pyrophillite-like model structure, which is trans-394 

vacant, whereas available data suggest that most montmorillonites have a cis-vacant structure 395 

110,111. Structural OH groups have different positions in cis- and trans-vacant structures. 396 

Additionally, cis-vacant structures are not centrosymmetric 111, and the types of edge surface 397 

configurations are thus more diverse than for trans-vacant structures. In particular, edge surface 398 

site configurations are different for the edges perpendicular to the �010� and T010U 399 

crystallographic directions in a cis-vacant structure, whereas they are the same in a trans-vacant 400 

structure (see Figure S-1 in supporting information). 401 
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