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ABSTRACT

Context. Some radio pulsar profiles (in particular those of millisecond pulsars) contain wide emission structures which cover large
intervals of pulse phase. Local distortions of an average curve of polarisation angle (PA) can be identified in such profiles, and they
are often found to be associated with absorption features ornarrow emission components.
Aims. The features may be interpreted as a convolution of a lateralprofile of an emitter with a microscopic radiation pattern ofa
non-negligible angular extent.
Methods. We study a model which assumes that such an extended microbeam of the X-mode curvature radiation is spreading the
radiation polarised at a fixed position angle within an interval of pulse phase.
Results. The model is capable of interpreting the strongly dissimilar polarisation of double notches in PSR B1821−24A (for which
we present new polarisation data from the Nançay Radio Telescope) and PSR J0437−4715. It also explains a step-like change in
PA observed at the bifurcated trailing component in the profile of J0437−4715. A generic form of the modelled PA distortion is a
zigzag-shaped wiggle, which in the presence of the second polarisation mode (O mode) can be magnified or transformed intoa W- or
U-shaped deflection of a total net PA.
Conclusions. The model’s efficiency in interpreting dissimilar polarisation effects provides further credence to the stream-based (fan-
beam) geometry of pulsar emission. It also suggests that themicrobeam width may not always be assumed negligible in comparison
with the angular scale of emissivity gradients in the emission region.

Key words. pulsars: general – pulsars: individual: PSR J0437−4715 – pulsars: individual: PSR B1821−24A – radiation mechanisms:
non-thermal.

1. Introduction

Pulsar polarisation escapes thorough understanding despite
more than four decades of increasingly deep study, both observa-
tional and theoretical. The association of observed polarisation
angle (PA, hereafter also denoted byψ) with a projection of local
magnetic field (Radhakrishnan & Cooke 1969) has strengthened
the magnetic pole model of a radio pulsar beam. A mathemati-
cal formulation of this rotating vector model (RVM, Komesaroff
1970) gives a chance to determine the global geometric param-
eters, such as the magnetic dipole inclinationα and the viewing
angleζ, both measured with respect to the rotation axisΩ.

Because of the commonly encountered deviations of the ob-
served PA from the simple RVM model, several extensions of the
model have been made. Blaskiewicz et al. (1991) included the
special relativistic effects on the PA curve (see also Dyks 2008),
whereas Hibschman and Arons (2001) also included the mod-
ification of a local magnetic field by magnetospheric currents.
Statistical studies of single-pulse PA distributions (McKinnon &
Stinebring 1998, van Straten 2009) have shown the importance
of various ways in which two polarisation modes can be com-
bined in the presence of observational noise. Single-pulseanal-
ysis of polarisation (Edwards, Stappers & van Leeuwen 2003;
Rankin & Ramachandran 2003) has shown a spatial (angular)

or temporal separation of orthogonal polarisation modes, inter-
preted either in terms of different refraction properties of these
modes (Petrova & Lyubarski 2000; Lyubarsky 2008) or different
locations of the modes in the radiation pattern of a specific emis-
sion mechanism (Dyks et al. 2010, hereafter DRD10). On the
theoretical side, the convolution of a spatially extended emis-
sion with microphysical radiation beams has been numerically
studied for non-coherent emission processes (Wang et al. 2012,
Kumar & Gangadhara 2012) with the inclusion of possible prop-
agation effects on the observed polarisation properties (Barnard
& Arons 1986; Wang et al. 2010; Beskin & Philippov 2012).
In these studies, the angular size of the microphysical radiation
pattern was negligible in comparison to the angular gradients of
emissivity in the emission region. Instead, in this paper weas-
sume that these scales are comparable.

Via statistical modelling of single-pulse effects, Luo (2004)
has shown that the microbeam effects are capable of generat-
ing perceivable non-RVM distortions when radio waves decou-
ple from the local plasma close to the emission region. Melrose
et al. (2006) have shown that statistical properties of single-pulse
emission in both polarisation modes considerably influencethe
PA distributions observed at a fixed phase, hence they affect the
average PA curve. By assuming appropriate populations of sin-
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Fig. 1. Linear polarisation properties of PSR B1821−24A as ob-
served with GBT in L band (BPDR). Grey curves refer to the
vertical axes on the right-hand side. The bottom two panels zoom
into the double notches atφ ≈ 100◦. a) Total flux I (black
solid) and the linear polarisation fractionΠ = L/I (grey).b) The
PA (black) and logI (grey).c) The total flux S/N (black solid)
and the polarisation fraction (grey).d) The PA (black) and logI
(grey). The straight line presents the PA variations anticipated in
the absence of the notches. There is a drop inΠ and a change
in PA at the notches. The zero point of PA (whether observed or
modelled) is arbitrary in all figures of this paper.

gle pulses, they were able to reproduce non-trivial distribution
of data on the Poincare sphere.

In spite of these developments, it is usually impossible
to explain why specific deviations of the average PA curve
from the RVM model are observed. Notable exceptions are the
orthogonal-mode jumps in PA by about 90◦, which clearly orig-
inate from one mode being overtaken by its orthogonal coun-
terpart (Cheng & Ruderman 1979, hereafter CR79; Tinbergen
2005). In this paper we attempt to understand less obvious dis-
tortions of PA, using a simple physical model of a polarised ra-
diation beam, and convolving it with a macroscopic spatial dis-
tribution of emissivity. Our approach may be considered com-
plimentary to that of Melrose et al. (2006) who modelled the
statistical effects of polarised single pulses at a fixed phase. We
instead focus on how the microbeam topology relates the PA at

Fig. 2. Linear polarisation properties of PSR B1821−24A ob-
served at 1.5 GHz with the Nançay telescope. The layout is the
same as in Fig. 1. The total profile in a) has 2048 samples per
periodP, whereas resolution of the other data was decreased to
292 bins/P by merging seven adjacent bins.

adjacent pulse longitudes while ignoring most of single-pulse ef-
fects. The non-RVM PA distortions may also be caused by multi-
ple (Mitra & Li 2004) or radially extended (Dyks 2008) emission
heights, return currents (Ramachandran & Kramer 2003), and
scattering in the interstellar medium (Karastergiou 2009). None
of these effects is included in the present study. Our model has
been inspired by the high-quality observations of double notches
reported for PSR B1821−24A in Bilous et al. (2015, hereafter
BPDR; see Figs. 1 and 2 therein). However, the model is also
applicable to the notches and the bifurcated emission component
observed on the trailing side of the profile of PSR J0437−4715
(Navarro et al. 1997).

Section 2 describes available polarisation data for pulsars
with double features in their average profiles. It is then fol-
lowed by the description of model assumptions and the numer-
ical method (Section 3). Section 4 presents the results of the
model simulations, which are immediately compared to the ob-
servations.
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2. Observed polarisation of profiles with double
features

Bilous et al. (2015) reported high S/N L-band polarimetric ob-
servations of a 3.05-millisecond pulsar B1821−24A, which are
summarised in our Fig. 1. The profile mostly exhibits a high
linear polarisation fractionΠ = L/I except for two quasi-
orthogonal polarisation jumps atφ ≈ −117◦ and 72◦. A con-
siderable drop inΠ, however, also occurs atφ ≈ 100◦ where
the double notches with a low, shallow central bump are found.
Interestingly, even thoughΠ decreases to nearly zero (grey line
in Fig. 1c) the PA changes just a little bit, by approximately15◦

(Fig. 1b and d). Although this change in PA has been described
as a jump in BPDR, it may also be interpreted as a zigzag-shaped
wiggle around a monotonically decreasing PA (marked with the
straight line in Fig. 1d). This work provides a framework which
supports this interpretation. In addition to the PA change at the
phase of 100◦, the profile of B1821−24A exhibits other inter-
esting deflections from a smooth PA curve. There is a zigzag-
like wiggle at the second-brightest component (P1, locatedat
φ = −107◦) and a one-directional PA deflection near the bright-
est component (P2, located atφ = 0◦). They are associated with
a largerΠ and deviate from a smoothly interpolated PA curve
less than observed at the double notches. Both P1 and P2 reveal
a double structure, although they are not as well resolved and not
as symmetric as the prominent double features observed in other
pulsars (e.g. the bifurcated precursor of J1012+5307, DRD10).
The slight PA distortions associated with these emission compo-
nents will be addressed in Section 4.5.

2.1. Observations of B1821−24A with the Nançay Radio
Telescope

The S/N of the profile within the notches observed by BPDR is
≈ 10 (black solid line in Fig. 1c), which is relatively low. This
persuaded us to confirm the presence of the notches using in-
dependent observations. PSR B1821−24A is regularly observed
with the 100 m equivalent Nançay Radio Telescope (NRT) as a
part of its pulsar timing program. In order to obtain high S/N
profile we used 82 observations taken between August 2011 and
May 2015 approximately once every two weeks.

The data were recorded with the NUPPI backend (Liu et
al. 2014) – a flexible digital signal processor designed for pul-
sar observations. First, Nyquist sampled spectra were acquired
centred at 1484 MHz in 512 MHz bandwidth with 4 MHz reso-
lution producing 128 frequency channels. The data were coher-
ently dedispersed in real time using a dispersion measure value
of 119.894 pc cm−3 in order to correct for the dispersive delay
caused by the interstellar medium (ISM). The data were then
transformed from XY auto- and cross-correlations to full Stokes
parameters, folded into final full-Stokes pulse profiles with res-
olution of 2048 samples per period and written out to disk in
PSRFITS (Hotan et al. 2004) format. Each of the 82 observations
was then inspected offline for the presence of radio-frequency
interference (RFI) using standard pulsar processing tools(PAZ,
PSRZAP) from the PSRCHIVE pulsar processing suite (Hotan
et al. 2004) by zero-weighting the affected portions of the data.

Flux and polarisation calibration were also performed using
the PSRCHIVE software package. A locally generated standard
pulsed noise source was recorded to determine the flux scale.
The equivalent noise source flux density was obtained by ob-
servation of the unpolarised quasar 3C48. Regular observations
of linearly polarised pulsar B1929+10 were used to characterise
the receiver system’s intrinsic polarisation cross-coupling matrix

(van Straten 2004). The data was then corrected for the effects of
rotation measure (RM) using the PSRCHIVE tool RMFIT. This
resulted in an average profile with a total integration time of 49.2
hours (≈ 5.8 · 107 periods).

The black solid line in panel a of Fig. 2 presents the average
profile with 2048 samples per period. To increase the S/N, the
rest of the observables in Fig. 2c are plotted after merging seven
adjacent bins for a total of 292 samples per period, which is close
to the resolution of the BPDR profile. Although the S/N of the
Nançay profile is slightly lower, it does confirm the existence of
the double ‘absorption’ feature atφ ≈ 100◦. As in BPDR, the
two minima seem to be separated by an indistinct bump. Our
data also confirm the change in PA, and the steep decrease inΠ

nearly to zero at the centre of the notches. In the Nançay profile
P1 and P2 are both clearly double.

Polarised profiles of B1821−24A are also published by Dai
et al. (2015), who present the Parkes data at 10, 20, and 50 cm.
The change in PA at the phase of the notches is detectable there;
however, the double form of the notches or of P1 and P2 is
not resolved. The linear polarisation fractionΠ considerably de-
creases within the notches (from 0.72 to 0.37, Fig. A16 therein),
although not down to the near-zero value reported in BPDR. The
difference may result from the smearing apparent in the Parkes
profile.1

Generally, all available data are consistent with the existence
of double ‘absorption’ feature atφ ≈ 100◦, accompanied by the
considerable drop inΠ and a modest change in the PA value.
Bilous et al. (2015) note that giant pulses in B1821−24A occur
at the phase of the double notches, and a peak of a narrow com-
ponent in an X-ray profile of this pulsar nearly coincides with
the notches.

2.2. Linear polarisation of PSR J0437−4715

Another pulsar that will be discussed in terms of our model
is PSR J0437−4715, a 5.25 ms pulsar with a long observa-
tion record at the Parkes telescope (e.g. Navarro et al. 1997;
Oslowski et al. 2014; Dai et al. 2015). Its polarisation proper-
ties exhibit interesting similarities to and differences from the
case of B1821−24A. Figure 3 summarises the best available lin-
ear polarisation data from Dai et al. (2015).2 Double notches
in J0437−4715 lag behind the peak of its brightest component
by approximately 69◦ and have a pronounced central maximum,
reaching a large fraction of the flux observed outside the notches.
The linear polarisation fractionΠ is decreasing at the minima of
the notches by 20-30 per cent of the off-notch value (from 0.75
to 0.6 at the leading-side notch, and by more than a quarter atthe
trailing notch; see the grey line in Fig. 3c). At each minimum,
the PA deflects toward the same direction by∆ψ ≈ 5◦, which
is a different behaviour from B1821−24A. Several other deflec-
tions of PA are observed across the profile, including the zigzags
in the phase intervals marked with the rectangles in Fig. 3b:
φ ∈ (−70◦,−48◦), φ ∈ (−40◦,−10◦), andφ ∈ (10◦, 32◦). These
wiggles seem to coincide in phase with broad minima in total
intensity, centred atφ ≈ −60◦, −25◦, and 20◦.

There are two more pulsars which exhibit both double
notches and PA deflections: B1929+10 and B0950+08. In the

1 The minimumΠmeasured by BPDR is eight times smaller than its
statistical error, hence this data point is not plotted in panel a of Fig. 1,
which only shows the points withΠ > σΠ, whereσΠ is the statistical
error ofΠ.

2 The data were obtained from the Parkes Observatory Pulsar Data
Archive (Hobbs et al. 2011, dx.doi.org/10.4225/08/54F3990BDF3F1).



4 Dyks et al.: Model for polarisation distortions in radio pulsars

Fig. 3. Linear polarisation properties of PSR J0437−4715 ob-
served at 1.4 GHz with the Parkes telescope (Dai et al. 2015).
The layout is the same as in the previous figures. The rectangles
in b) mark the zigzag-shaped PA distortions that are discussed in
Section 4.3.

first, the notches are observed at a flux level hundreds of times
lower than the peak of its main pulse. Well-calibrated polari-
sation data for this weak emission component are not available
(L > I in Rankin & Rathnasree 1997). In the case of B0950+08
the polarisation at 1.4 GHz was published in McLaughlin &
Rankin (2004), however, for a profile with almost invisible
notches, and with a small S/N in L.

3. A model for the polarisation angle deflections

The model assumes that the generic element of a radio emis-
sion region in a pulsar magnetosphere has the form of a plasma
stream occupying a narrow magnetic flux tube (see Fig. 1 in
Dyks & Rudak 2012, hereafter DR12). In a short time interval
(quasi-instantaneously), the charges in the stream emit a narrow
pattern of radiation beamed nearly along the velocity vector and
pointed tangentially to the stream. The angular size of sucha
microbeam is small but significant, and it needs to be convolved
with the spatial extent of the emission region (e.g. with thelat-
eral profile of density or emissivity in the stream). When mod-
elling the polarisation of notches we assume that the emitted mi-

Fig. 4. Sky-projected view of the split-fan beams typical of the
X-mode curvature radiation from narrow plasma streams. The
continuous beam shown on the left can be decomposed into a
sequence of lobe pairs, emitted quasi-instantaneously from dif-
ferent points along the stream (shown on the right-hand side),
e.g. from the points ‘a’ and ‘b’ in the bottom right corner.
The horizontal line marks the passage of the line of sight. The
stream’s polarisation angleΨB is detectable at two pulse longi-
tudes (corresponding to the lobes aL and bT) on the leading and
trailing side of the stream.

crobeam has the form of two lobes emitted at a small angle with
respect to the plane of the magnetic field (see Fig. 1 in DR12, and
Figs. 10 and 11 in DRD10). No radiation is emitted within the
plane of the electron trajectory (which in this paper is assumed to
coincide with aB-field line). Therefore, charges sweeping along
a bent magnetic field, emit a split-fan beam shown on the left-
hand side of Fig. 4.

Because the beam is double, each point of the stream (e.g.
point ‘a’ in Fig. 4) creates two bright patches of emission onthe
sky (aL and aT). Therefore, a fairly localised piece of emission
region, (e.g. the stream segment between ‘a’ and ‘b’ in Fig. 4)
can be detected at two different phases in the profile. For the
sightline passing along the horizontal path in Fig. 4, the a-b seg-
ment will be detected at the lobe aL and bT.

The process of curvature radiation (CR) in the extraordinary
polarisation mode (hereafter the X mode or⊥-mode) provides
an example of such a double-lobed beam. The CR beam emitted
in vacuum can be mathematically decomposed into two parts:
a filled-in pencil beam polarised in the plane of theB-field and
the bifurcated beam polarised at the right angle to the planeof
B (see Eq. 6.29 in Rybicki & Lightman 1979; Konopinski 1981,
p. 305). In a strongly magnetised plasma, the emitted beam gets
decomposed into a similar filled-in part polarised parallelto the
B-field line plane (O mode) and a bifurcated X-mode part. In
the limit of plasma in infinite magnetic field, only the X mode
is emitted, again with the bifurcated beam pattern, and polarised
at a right angle with respect to theB plane (Gil et al. 2004).
To study the qualitative implications for the observed PA, it is
sufficient to use the vacuum formula for the beam shape, which
we do in Sect. 3.1 (Eq. 1).

In the quasi-instantaneous X-mode beam, however, the radi-
ation is polarised in thek × B direction (see Fig. 1 in CR79 or
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Fig. 16 in DRD10), wherek is the wave vector pointing towards
the observer. The quasi-instantaneous polarisation direction then
strongly depends on where exactly our line of sight is pierc-
ing the microbeam. A moving charge is passing this microbeam
through our line of sight in a nanosecond timescale (∆t ∼ 1/ν,
whereν is the observed frequency). During that time, a limited
segment of the charge’s trajectory of length∆s ∼ cγ2∆t is ex-
posed to the observer. For the charge’s Lorentz factor ofγ ∼ 102,
the detectable segment is few kilometers in length. The horizon-
tal motion of the sightline through the lobe aL in Fig. 4 is several
orders of magnitude slower than the fast sweep of the lobe along
the guiding magnetic field line. Therefore, if the emissivity does
not change along that detectable part of electron trajectory, the
observer is exposed to a time-symmetric signal of intensityand
an antisymmetric signal of PA. These symmetries ensure that
the net PA is orthogonal to the projectedB-field for an arbitrary
location of sightline in the fully swept-by beam (the split-fan
beam).3

Accordingly, the lobe aL, after fully passing through our line
of sight, will contribute the PA fixed at the phase-independent
value ofψB = ΨB + 90◦, whereΨB is the PA corresponding
to the sky-projected direction of the magnetic field at point‘a’.
Analogically, the trailing-side lobe bT will be polarised at the
same angleψB, because the same magnetic azimuth corresponds
to the emission point ‘b’. If the emissivity and curvature oftheB-
field line do not change considerably between points ‘a’ and ‘b’,
a symmetrical double-peaked emission component will be ob-
served. It will be highly polarised and have a phase-independent
PA.

The key assumptions of our model are then the following: 1)
At least some parts of average profiles (especially those which
exhibit bifurcated features) consist of elementary radiation pat-
terns which have the double-peaked cross section such as shown
by the dot-dashed line in Fig. 5a. This one-dimensional version
of the microbeam pattern (denotedI⊥mb) needs to be convolved
with the macroscopic distribution of emissivityη⊥ within the
radio-emitting region; 2) It is assumed that both lobes of the mi-
crobeam are highly polarised at a fixed angle (of 90◦ for the X
mode) with respect to the projected direction of the magnetic
field line at the emission point corresponding to the observed
lobes. A reference will be provided by the RVM PA value for
the X mode (ψB) or the O mode (ΨB).

3.1. Numerical method

Double notches and bifurcated emission components are be-
lieved to be caused by a single void or peak in the spatial emis-
sivity profileη⊥. The double form results from the bifurcated na-
ture of the microbeam which is convolved with this spatial emis-
sivity (DRD10; DR12; cf. older models based on different con-
cepts: Wright 2004; Dyks et al. 2007). Therefore, we start with a
choice of the macroscopic emissivityη⊥ as a function of phase.
In most cases we assume thatη⊥ has a narrow Gaussian dip (or
peak) carved in (or projecting from) a uniform emission compo-
nent. An example of thisη⊥ is presented by the thick solid line

3 This condition of uniform emissivity applies to each electron in-
dividually. However, the single-pulse emission, as determined by the
longitudinal plasma density profile in the stream among others, may ex-
hibit arbitrary variability. For this reason, the model is consistent with
the observed randomness of subpulse shapes (cf. Sect. 3.2 inLuo 2004).
However, it is not generally applicable for any pulse components, in
particular those for which the single-charge emissivity isvariable on
the timescale ofγ2∆t or those for which our sightline is just grazing the
periferies of the full split-fan beam.

in Fig. 5a. This emissivity is convolved with the perfectly sym-
metric elementary emission pattern (dot-dashed line in Fig. 5a).
We neglect a possible asymmetry of this micropattern, that may
appear while the charges move between points ‘a’ and ‘b’ in
Fig. 4. Such asymmetry (and a related distortion of PA) is gener-
ally expected when the radio emissivity varies with altitude and
the sightline traverses through the split fan at an oblique angle
(see Fig. 2 in DR12). Therefore, the dot-dashed line in Fig. 5a
presents an effective pattern of the microbeam, mostly formed
by emission from different points (‘a’ and ‘b’ in Fig. 4). For the
effective microbeam shape we take that part of the vacuum CR
beam which is polarised orthogonally to the plane of aB-field
line

I⊥mb ∝ ξ K2
1/3(y) sin2 (φ − φ′), (1)

where

ξ = 1/γ2 + (φ − φ′)2, y =
2πνρcrv

3c
ξ3/2, (2)

K is the modified Bessel function,φ′ is the phase of the mi-
crobeam centre, andγ is the Lorentz factor of the emitting par-
ticles (Rybicki & Lightman 1979). The magnification of the ap-
parent microbeam through the non-orthogonal sightline cutat a
possibly smallα (section 2.2 in DR12) is ignored, i.e. the ob-
served width of the microbeam∆ is set only by the values of
ρcrv andν. The latter are selected to make the microbeam a few
degrees wide in the observed profile. The Lorentz factorγ is
fixed at a large (but otherwise arbitrary) value, because neither
the scale nor shape of the microbeam depend onγ, whenever
γ ≫ (νρcrv/c)1/3. To perform the convolution, a prescription for
the B-field-based (RVM) PA curve is selected. Since we focus
on narrow phase intervals, we approximate the PA with a lin-
ear function of phase (straight dotted line in Fig. 5b). For each
pulse phaseφ, the contributed flux of the microbeam (centred at
an arbitrary phaseφ′) is scaled byη⊥(φ′) and it is assumed to
be fully linearly polarised at the angleψB(φ′). Thus, most of the
flux cumulated atφ originates from two nearby phases on both
sides ofφ. Since these phases contribute their own values ofψB,
the intrinsic distribution of PA at a fixedφ has a double-peaked
form (Fig. 5b), with no radiation corresponding to the central
value ofψB(φ). However, the average value of the observed PA,
(denoted byψ⊥ since it refers to the X mode only), is equal to
ψB(φ). When doing the convolution, we make the normal transi-
tions betweenI, L = (Q2 + U2)1/2, ψ = 0.5 arctan(U/Q) and the
Stokes parametersI, Q = L cos(2ψ), U = L sin(2ψ). The circular
polarisation and propagation effects are not studied in this work.

4. Results

In this section we present typical PA distortions implied bythe
model and discuss them in the light of observations described in
Sect. 2. When we refer to data, model parameters are selected
manually to obtain a qualitative agreement.

4.1. Origin of PA deflections at double notches

The convolution of the microbeam (dot-dashed line in Fig. 5a)
with the spatial emissivityη⊥ (thick solid line) produces the dou-
ble feature shown by the thin solid line in Fig. 5a. This means
that a microbeam such as the one shown in the bottom right cor-
ner of Fig. 5b (dotted line) is not contributing its PA at the blank
gap around point D in the greyscale distribution of PA. The aver-
aging of PA at the phase marked with C then leads to the upward
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Fig. 5. Mechanism of the bidirectional (zigzag-shaped) PA dis-
tortion. a) Effective microbeam patternI⊥mb (dot-dashed line),
and the macroscopic X-mode emissivityη⊥ (thick solid) are con-
volved into the net intensity profileI⊥ (thin solid). b) PA as
a function of phase. The slanted solid line marksψ⊥, i.e. the
net value of the X-mode PA calculated as a fixed-phase average
of the bifurcated grey band. The dotted line marks the RVM-
based reference (ψB). The double-peaked microbeams, with ar-
rows emerging from points A and B, show how the PA is dis-
tributed within the neighbouring pulse longitudes. The void as-
sumed inη⊥ at D (φ = 0) creates the horizontal break in the
bifurcated PA band (grey). The resulting imbalance of the PA
averaging produces the thick solid PA wiggle.

deflection of the net PA because the flux at C is dominated by
emission from the phase B, with a larger PA. On the right-hand
side of D, the same effect leads to a downward PA deflection of
the same magnitude. The outcome is a zigzag-shaped wiggle of
the net PA around the referenceψB.

Fig. 6 presents the calculation made for a Gaussian void in
the emissivity:η⊥ = 1−exp(−0.5φ2/σ2

η), withση = 1.53◦ (thick
solid line in panel a), and for the microbeam of the apparent half
size δmb = 2.34◦ (dot-dashed line). The reference PA was as-
sumed to change with phase at a rate similar to that observed in
PSR B1821−24A: ψB = −0.6φ (dotted line in Fig. 6c; straight
solid line in Fig. 1d). The net PA is shown in panel c by a thick
solid line, which is made thinner in the central region of the
notches where the observed PA is unavailable because of the
insufficient S/N. There is a flattening of PA in the outer wings
of the notches, which makes the impression of a discontinuous
jump in PA similar to the one observed in B1821−24A. Panel
b presents the intensity profile (thick solid line) and the linear
polarisation fractionΠ⊥ (top thin line). It is clear that the convo-

Fig. 6. Result of a calculation which produces the PA wiggle
at a nearly merged double notch feature.a) Microbeam inten-
sity I⊥mb (dot-dashed line) and the macroscopic emissivity with a
Gaussian cavity atφ = 0 (thick solid).b) Net polarisation frac-
tion Π⊥ (top thin solid) and net X-mode intensity profile (thick
solid). TheΠ⊥ is slightly smaller than 1, as shown by the bottom
thin line presenting the quantity 100(Π⊥ − 0.99).c) Net X-mode
PA (ψ⊥, solid) overplotted on the referenceψB (dotted). The cen-
tral part ofψ⊥ is thinner to reflect the lack of high-quality data
points at the centre of notches in B1821−24A (see Figs. 1d and
2d). The result is forση = 1.53◦, ψB = −0.6φ, ρcrv = 5×104 cm,
andν = 1 GHz.

lution of a single-mode (X-mode) radiation with similar values
of PA (as constrained by the double-peaked PA distribution in
Fig. 5b) does not produce perceivable depolarisation. A plot of
100(Π⊥−0.99) reveals that outside the notchesΠ⊥ drops by less
than one per cent and is larger at the minima because the contri-
bution of depolarising radiation (from a second lobe) is missing
there. The modelled change in PA at the notches (by about 6◦) is
two times smaller than observed in B1821−24A.

The increase inΠ⊥ and the small change in PA at the notches
are inconsistent with the observations of B1821−24A; however,
the result of Fig. 6 does not include the possible contribution of
the other polarisation mode, i.e. the ordinary mode (O mode,or
‖-mode), which is polarised parallel to the sky-projected B-field.
In the following we use the term ‘net PA’ to describe the net
(average) PA of a single polarisation mode (either X or O). For
an average PA which contains both modes we use the term ‘total
net PA’ (or just ‘total PA’).

4.2. Polarisation of notches in the presence of two modes

The effects of adding the O mode are illustrated in Fig. 7, calcu-
lated for the same parameters of the X mode as before. We have
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Fig. 7. Polarisation of double notches in the presence of two po-
larisation modes.a) Intensity and polarisation fraction for both
modes (⊥-mode: solid line;‖-mode: dashed line).Π⊥ is indistin-
guishable fromΠ‖ = 1, hence we plot 100(Π⊥ − 0.99).b) Total
intensity (thick solid line) and the totalΠ (thin line).c) Total PA
ψ (thick solid line) overplotted on the net PA of the X mode (ψ⊥,
thin solid line), and the referenceψB of the RVM model (dot-
ted line). The contribution of the O mode increases the off-RVM
amplitude of the total PA.d) Same as in c, but for the increasing
contribution of the O mode:I‖/Imax

⊥ = 0.4, 0.5, 0.55, and 0.6. The
last case (thin line with spikes) undergoes the orthogonal-mode
jumps. The unspecified parameters are the same as in Fig. 6.

added a fixed amount of the O mode (I‖ = 0.3Imax
⊥ ) polarised

strictly at a right angle with respect to the reference (RVM)PA
of the X mode (ψ‖ = ψB − 90◦, i.e. the O mode is polarised
along the projectedB field). The linear polarisation properties
of both modes are shown in panel a, withI⊥ referring to the net
profile of the X mode (I⊥ results from the convolution of the
curves shown in Fig. 6a). The total net profile (thick solid line in
Fig. 7b) shows a drop inI down to 0.55 at the notches’ minima.
The total polarisation fractionΠ (thin line in panel b) is now de-
creasing from 0.54 to 0.3, in qualitative agreement with the ob-
servations of B1821−24A. The wiggle of PA (panel c) extends
over a larger interval because the O mode ‘attracts’ any non-
orthogonal PA values to itself. The presence of the other polar-
isation mode then tends to magnify any slight deviations of the
primary PA from strict orthogonality. Depending on the relative
proportions of both modes, the amplitude of the wiggle can eas-
ily be arbitrarily increased. Fig. 7d, calculated forI‖/Imax

⊥ = 0.4,

0.5, 0.55, and 0.6, presents how the PA deviation (∆ψ = ψ− ψB)
grows with the increasing contribution of the‖-mode. For the se-
lected parameters (i.e. for the assumed change inψB across the
microbeam width),∆ψ exceedes 10◦ for I‖ approachingI⊥ with
an accuracy of 10%. The largest distortion (forI‖ = 0.6Imax

⊥ ,
thin line with spikes) shows the jumps in PA by±90◦ caused by
the dominance of the O mode over the primary X mode at the
minima of the notches.

The ease of obtaining such large distortions is an impor-
tant phenomenon which has a crucial role in shaping the ob-
served average PA curve: tiny distortions of PA from the refer-
enceψB, become strongly magnified by the contribution of the
other mode. The original (small) distortions in a single mode
naturally result from the non-uniformity of the emission region
(convolved with the properties of the microbeam). This makes
the primary PA distribution at a given phase a little asymmet-
ric with respect to the referenceψB. The incoherent contribu-
tion of the second polarisation mode can amplify these origi-
nal PA deflections (characteristic of a single mode) to a very
large magnitude, easily comparable to the 90◦ separation be-
tween the modes. When both polarisation modes have compara-
ble flux, the net PA may be essentially arbitrary, which leadsto
the randomisation of the fixed-phase PA distributions described
in McKinnon & Stinebring (1998) and Melrose et al. (2006).

At a fixed phase, each polarisation mode may then be ex-
pected to have the form of an intrinsic PA distribution with a
finite width and with a specific shape, which is in general asym-
metric with respect toψB. Therefore, the PA ‘curve’ of pulsars
should rather be understood as a PA stripe or band, as is fre-
quently viewed in the greyscale plots presenting the PA dis-
tribution as a function of phase (e.g. Stinebring et al. 1984;
Edwards & Stappers 2004; Hankins & Rankin 2010; Oslowski
et al. 2014). The total net pulsar polarisation can be under-
stood as the interaction of these two quasi-perpendicularly po-
larised bands of PA. Any skewness of such a PA stripe (i.e. of
a single-mode PA histogram at a fixed phase) results in deflec-
tions which can be strongly enlarged by the second polarisation
mode. However, if both polarisation modes are observed simul-
taneously, only the total distribution of PA may be perceivable
at a fixed phase and the details of each mode PA distribution
undetectable. As explained in Section 4.6, even if the pure X
mode is detectable with negligible noise, the bifurcated PAdis-
tributions are unlikely to be observable. Our search for them in
J0437−4715 was indeed unsuccessful.

The agreement of Fig. 7 with the polarisation data on the
double notches in B1821−24A is qualitative only. For example,
the modelled polarisation fractionΠ does not decrease to such a
low value as observed, and is actually slightly larger at thecentre
of the notches than at the minima. The amplitude of the modelled
PA swing barely reaches 10◦ as compared to the observed value
of 15◦. There may be several reasons for these differences, and
we discuss them in Sect. 5.

4.3. Interpreting the polarisation of PSR J0437−4715

The secondary (‖) polarisation mode is subject to different con-
ditions of amplification and propagation (Melrose 2003; Wang,
Wang & Han 2015; Beskin & Philippov 2012). It may undergo
its own deflections fromψB, as determined by the skewness of O-
mode PA distributions, resulting from the convolution of the O-
mode emissivity with the O-mode microbeam. Since the mode is
prone to additional propagation effects, e.g. a refraction, the PA
of the O mode may possibly be even far from its RVM track. In
this paper all these O-mode deflections are parametrised as auni-
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Fig. 8. Polarisation of double notches in the presence of a con-
siderable amount of a quasi-orthogonal secondary polarisation
mode (ψ‖ = ψB − 89.5◦, I‖ = 0.5Imax

⊥ ). The layout is the same as
in panels a-c of Fig. 7. The PA wiggle in panel c acquired large
amplitude and became asymmetric. Unspecified parameters are
the same as before.

form shift ofψ‖ with respect toΨB, whereψ‖ denotes the net PA
of the parallel mode. We then assumeψ‖ = ΨB+ǫ‖ = ψB−90◦+ǫ‖,
with a small or moderate value ofǫ‖. This simplification is done
to make interpretation easier because in real data the totalnet
PA results from an interplay of the X-mode deflections with the
deflections of the O mode.

The summation of such quasi-orthogonal modes (Fig. 8c)
slightly displaces the whole net PA curve towardsψ‖, increases
the amplitude of the wiggle, and makes it asymmetric. The wig-
gle of Fig. 8c resembles those observed for J0437−4715 in the
phase intervals: (−70◦,−58◦), (−40◦,−14◦), and (13◦, 33◦) (in-
dicated by rectangular boxes in Fig. 3b). As in our simulation,
the observed wiggles seem to be associated with minima in in-
tensity, revealed by the abrupt changes in the intensity gradient,
e.g. atφ = −65◦, −10◦, 10◦, and 15◦. They may also be traced
to double minima inΠ (grey line in Fig. 3a). The wiggles may
then be interpreted as the result of theφ-dependent skewness
of the X-mode PA histogram, with the two-directional bias of
PA induced by the broad absorption features. Since the observed
width of these structures is several times larger than the scale of
double notches, their origin is likely dominated by the effects of
macroscopic emissivity.

In the case of J0437−4715, the PA at both minima of the dou-
ble notches deflects in the same direction, which makes it dif-
ferent from B1821−24A. This behaviour readily appears in the
model under some circumstances: when the linearly polarised X-
mode flux drops considerably at the minima and the O mode is
not too close to orthogonality with respect to the X mode (mod-

Fig. 9. Polarisation of double notches in the presence of a
slightly non-orthogonal secondary polarisation mode (ψ‖ = ψB−

80◦, I‖ = 0.3Imax
⊥ ). The dashed line inc presentsψoff , i.e. the in-

terpolated off-notch trend of the total PA. The total PA at both
minima is located belowψoff (see the explanation in Fig. 10).

erateǫ‖). In Fig. 9c the O mode is 10◦ off orthogonality, so the
overall PA curve is displaced down to the dashed line, which
marks the interpolated off-notch trendψoff for the total PA. Even
at the leading-side minimum (φ ≈ −2◦), where the net X-mode
PA was above the RVM-based value (ψ⊥ > ψB), the contribu-
tion of the O mode drags the PA acrossψB and we getψ < ψB.
Remarkably, however, the resulting value of the total PA at that
phase is even smaller thanψoff , so the PA at both minima stays
below the dashed line.

The value ofψ at the centre of the notches does not un-
dergo such a large shift and remains closer toψoff . The reason
for which the PA at the leading-side minimum gets overdrawn to
the other side of bothψoff andψB (as compared to its original lo-
cation) is illustrated in Fig. 10. Because of the low polarised flux
at the minima, the Stokes vectors representing (L⊥, ψ⊥) (marked
with A and B in Fig. 10c) are shorter than the vector C which
corresponds to the notches’ centre. Therefore, the addition of
the same‖-mode vector (representing the fixed amount of the
parallel mode) is capable of inducing much larger rotation of PA
towardsψ‖ at the minima. Without the drop in flux at the minima,
this effect does not show up (Fig. 10b).

Fig. 11 presents a calculation performed to roughly repro-
duce the characteristics of the notches in J0437−4715. A rect-
angular void inη⊥ has been assumed to reproduce the large
depth of notches with a high central maximum (the observed
depth possibly approaches∼ 50%, though the absolute zero flux
level for J0437−4715 has not been determined rigorously). For
ψB = −0.9φ, I‖ = 0.3Imax

⊥ , andψ‖ = ψB − 60◦ the result roughly
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Fig. 10. Mechanism of transformation of the bidirectional PA
distortion (the thin solid X-mode wiggle in panel a) into a one-
directional W-shaped deflection of the total PA (thick solid).
The Stokes vectors associated with the marked points are shown
schematically in panel c. Those with small letters (a, b, c) are
the sum of the corresponding X-mode vectors (A, B, C) with
the quasi-orthogonal‖-mode vector shown on the left. The tran-
sition to the W-shaped PA is mainly caused by the drop in the
X-mode flux at the minima of double notches (short vectors A
and B). Panel b presents a similar sum for the case with no drop
in polarised flux at A and B (all⊥-mode vectors have the same
length).

reproduces the 20% drop inΠ and the∼5◦ change in PA (the
observed deflections are 4◦ at the leading-side minimum and 6◦

at the trailing minimum). The modelled deflection of PA reveals
similar asymmetry. However, the drop inΠ at the trailing min-
imum is a bit smaller than at the leading minimum, in contrast
with observations (Fig. 3c). Possible reasons for these discrep-
ancies are discussed in Sect. 5.

The observed PA exhibits an interesting behaviour at the bi-
furcated trailing component (BTC) in J0437−4715 (Fig. 12). On
the right-hand side of the BTC, the PA appears to change lin-
early; however, it undergoes a step-like drop at the centre of the
BTC (dots in panel b). Such a step-like change in PA is natu-
rally expected in our ‘fixed-PA microbeam model’ if the emis-
sivity η⊥ changes more steeply on the leading side of the BTC.
Fig. 12 (c and d) presents a sample result obtained forη⊥ which
rises quickly on the BTC’s left-hand side (following a Gaussian),
but decreases linearly on the right (thick line in c). The step-
like drop in PA occurs because the PA makes a transition from
the single-lobe-dominated value on the left-hand side to the net

Fig. 11. Model results aimed at reproducing the observed prop-
erties of the double notches in J0437−4715 (see Fig. 3). A rect-
angular void in emissivity, of a half width equal to 0.9◦ (thick
line in a), has been assumed to raise the central maximum of
I at φ = 0. The layout of panels b-d is analogous to panels a-
c in Fig. 7. List of parameters:ψB = −0.9φ, ψ‖ = ψB − 60◦,
I‖ = 0.3Imax

⊥ , ρcrv = 1.4× 105 cm,ν = 1 GHz.

value close toψB on the right-hand side (see the thin solid curve
for ψ⊥ in panel d). If a fixed fraction of the O mode is added
(I‖ = 0.3I⊥(φ), Π ≈ 0.54), then the total PA assumes the shape
shown with the thick solid line in panel d. The model result does
not reproduce the relative flux of the BTC’s peaks (see the thin
solid line for I⊥ in panel c). However, the calculation does not
take into account several factors that influence the ratio. These
include 1) the likely asymmetry of the flux and PA in the effec-
tive microbeam, which appears for a non-orthogonal traverse of
the sightline through a non-uniform split-fan beam (see Fig. 2
in DR12); 2) the profile of the O mode, the amount of which is
increasing towards the left-hand side of the BTC, as suggested
by the observedΠ (grey line in a); and 3) the relative steepness
of η⊥ on both sides of the BTC (a guess form ofη⊥ was used in
Fig. 12). Detailed modelling of this feature is deferred to afuture
study.

4.4. Non-bifurcated microbeam

In the case of the centripetal acceleration the ordinary mode is
emitted into a single-peak microbeam of non-negligible width,
such as that shown with the dot-dashed line in Fig. 13. We as-
sume that the perceived PA is the same at any direction within
the beam and equal to the projected direction of theB-field (ΨB).
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Fig. 12. Comparison of the observed (panels a and b) and mod-
elled (c and d) properties of the bifurcated trailing component
(BTC) in J0437−4715. The observed properties (I andΠ in a;
ψ and logI in b) present a zoomed part of Fig. 3. The arrow in
b marks a step-like change in PA at the centre of the BTC (the
PA is shown with dots). A similar step-like change in PA (solid
lines in panel d) occurs for a one-sided emissivity profile (η⊥,
thick solid in c) which is decreasing gradually (linearly) on the
right-hand side, but much more steeply on the left-hand side(a
half-Gaussian withση = 1◦). The thin solid line in d presentsψ⊥,
whereas the thick line presentsψ obtained for a fixed fractional
contribution of the O mode:I‖ = 0.3I⊥(φ). This is an exemplary
result obtained forψB = −0.9φ, ρcrv = 5× 104 cm.

In this subsection the void in the emissivity will be appliedfor
the O mode only,η‖ refers to the macroscopic emissivity of the
O mode, andI‖mb represents the O-mode microbeam pattern. By
analogy to the X mode (eq. 1), it is assumed that the O-mode
microbeam can be approximated by that part of the vaccum CR
beam which is polarised in the plane of the guidingB-field line,
i.e. I‖mb ∝ ξ

2K2
2/3(y) (Rybicki & Lightman 1979).

If the other polarisation mode is absent, then a small-
amplitude wiggle of PA also appears for the non-bifurcated O-
mode beam. This occurs because the single-mode deflections de-
pend on the asymmetry (or skewness) of the PA distributions at
a fixed-phase. In the case of the single-peaked microbeam, the
asymmetry is produced by the outer wings of its radiation pat-
tern (Fig. 13). Because of the beam’s extension, a narrow dipin
emissivity (thick solid line in panel a) results in the horizontal
break in the grey PA distribution shown in panel b. The result-
ing fixed-φ histograms of PA, which are plotted every 1◦ below
the grey PA band, are clearly skewed in opposite directions on
either side ofφ = 0◦. The net PA then exhibits a wiggle similar

Fig. 13. Origin of the zigzag-shaped PA wiggle in the case of the
filled-in microbeam of the O mode. The layout is similar to that
of Fig. 5, except for the fixed-phase PA distributions which are
plotted at 1◦ phase intervals in panel b. The minimum inη‖ pro-
duces the single-minimum dip in the net O-mode intensity (I‖,
thin solid line in a) as well as the blank gap in the non-bifurcated
grey PA band (panel b). The PA wiggle is again produced by the
imbalance of the PA averaging.

to the one for the bifurcated beam, albeit of a smaller ampli-
tude. Close toφ = 0◦, where the flux is low, the PA distribution
becomes double (the fixed-phase PA histograms in Fig. 13b are
normalised to the same peak value).

In the presence of both modes, however, the total PA has
different properties than in the previously described case of the
void convolved with the bifurcated microbeam. This occurs be-
cause the void inη‖ produces a single dip inI‖, with the min-
imum value (I‖ = Imin

‖
) at the centre (φ = φmin = 0), whereas

the maximum deflection of PA occurs in the wings of the feature
(atφmax , φmin).4 Therefore, when the contribution of the other
mode (X) is increasing,I⊥ first reachesI‖ at φmin and produces
the orthogonal PA jump there before it is able to considerably
distort ψ at φmax. If the modes are strictly orthogonal outside
the notches (ψ⊥ = ψB andψ‖ = ΨB), a large-amplitude wig-
gle similiar to those shown in Fig. 7d can only appear for finely
tuned parameters:L⊥ ≈ L‖(φmin) (andL⊥ < L‖) with accuracy
of the order of 1%. Otherwise, the wiggle’s amplitude does not
increase considerably or the PA jumps by 90◦ atφmin. For modes

4 The subscript ‘min’ refers to the minimum flux of the primary po-
larisation mode (hereI‖), whereas ‘max’ to the maximum deflection of
this primary mode PA from the reference PA (here∆ψ‖ = ψ‖ − ΨB). If
the void is inη‖, we have a single notch withφmin , φmax. For a narrow
void in η⊥, we have double notches withφmin ≈ φmax.
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Fig. 14. Influence of the secondary polarisation mode (this time
it is the X mode) on the polarisation of a single notch domi-
nated by the primary O mode. A Gaussian void in emissivityη‖
of width ση = 2.53◦ is now applied only for the O-mode emis-
sion. The layout is analogous to that of Fig. 7, except in panel
d the modes are not precisely orthogonal (ψ⊥ = ΨB − 85◦). The
contribution of the X mode does not much increase the ampli-
tude of the PA wiggle in panel c (cf. Fig. 7c). The slight non-
orthogonality of 5◦ (panel d) transforms the zigzag-shaped wig-
gle into a one-directional U-shaped distortion of PA (imagine a
variant of Fig. 10c with the vector C shorter than A and B). List
of parameters:ψ‖ = −0.6φ, ρcrv = 104 cm,ν = 1 GHz.

that are not exactly orthogonal (ψ⊥ , ψB), the bidirectional de-
flection of PA (i.e. the wiggle of Fig. 14c) quickly acquires a
U-shaped form (Fig. 14d), i.e. it becomes a feature with a sin-
gle minimum instead of either the zigzag shape or the W shape.
This occurs because the total PA is mostly determined by the U-
shaped drop in the net O-mode flux (see the curve forI‖ (≈ L‖)
in panel a) and much less by the small zigzag deflection of the
net PA (panel c). As shown in Fig. 10c, the total PA is mostly
determined by the amount of the linearly polarised flux of the
primary mode, rather than its PA. This flux (L‖) is minimal at
the centre of the U-shaped feature, hence the largest deflection
of the total PA occurs there (Fig. 14d). Thus, the total PA also
follows a U-shaped curve, just like theI‖ (or L‖) does.

We then conclude that the lack of emission at the centre of
the microbeam facilitates the appearance of the wiggle-shaped
deflections of PA in the average profiles. This is consistent with
the fact that the profiles of PSR J0437−4715 and B1821−24A

Fig. 15. Modelled polarisation of a bright narrow component
projecting from an isotropic background emission. The PA curve
exhibits a flattening under the component (panel d), caused by
the fixed PA attributed to the microbeam. A small uniform con-
tribution of the O mode (I‖ = 0.04Imax

⊥ ) produces the off-centred,
one-directional distortion of PA (thick line in d). Used parame-
ters:ψ‖ = ψB + 85◦, ρcrv = 5× 104 cm.

contain both the wiggle-shaped PA deflections and the bifurcated
features (the notches and the bifurcated emission components).

4.5. PA deflections at profile emission components

In the case of PSR B1821−24A, some small distortions of PA
appear under its two brightest components (P1 and P2), both of
which are double. The wiggle of PA at the second brightest peak
(P1 atφ = −105◦ in Fig. 1) looks deceptively similar to the mod-
elled distortion described for the absorption features (Figs. 6c,
and 7c,d). On the other hand, the brightest peak in the profile
of B1821−24A (P2 atφ = 0 in Fig. 1), has the PA which de-
flects in one direction only (no zigzag) and the deflection is not
phase-aligned with the peak; instead, it is located on its leading
side.

As shown in Fig. 15, the fixed-PA microbeam model can eas-
ily produce off-centred one-directional PA distortions, albeit not
of the type observed for the peaks of B1821−24A. Fig. 15 has
been calculated for a slightly wider maximum in the X-mode
emissivity,η⊥ = 0.1 + 0.9 exp(−0.5(φ/2◦)2), to reproduce the
nearly unresolved main component of B1821−24A (P2). When a
small amount (only 0.04Imax

⊥ ) of a quasi-perpendicularO mode is
added (ψ‖ = ψB +85◦), the linear polarisation fraction stays very
high within the component (panel c) and the total PA makes a
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single deflection on its leading wing (thick line in d). The zigzag
disappears because the convolution of the two modes aligns the
off-notch trend of the total PA with the net X-mode PA in the
trailing half of the component.

This result is somewhat similar to the observed one; how-
ever, unlike in the observation, the PA in Fig. 15 is decreasing
with increasing pulse phaseφ, i.e. the PA gradientS = dψB/dφ
is negative. Had we changed the sign ofS to the observed (pos-
itive) value, the one-directional deflection would move to the
trailing side of the peak, in conflict with the observation. Had
we additionally changed the sign of the modal non-orthogonality
(takingψ‖ = ψB − 85◦), the total PA deflection would move to
the leading side, but it would be protruding upward, again in-
consistent with data. The reason is that the addition of a bright
X-mode component to a low-level X-mode background always
results in a flattening of the net PA gradient under the added com-
ponent (thin solid line in Fig. 15d); whenever the microbeam
width is larger than (or comparable to) the width of the peak
in η⊥, the added component contributes the fixed PA value, so
a brightening in a profile should always be associated with the
flattening of the PA curve. In contrast with this implication, the
PSR B1821−24A (though not J0437−4715) exhibits increased
|S | under the bright emission components. A possible reason for
this discrepancy may involve unrecognised single-pulse effects
(cf. Melrose et al. 2006).

An observational detail that may be of great importance is
that a single orthogonal-mode jump (atφ ≈ 70◦ in Figs. 1b and
2b) separates the P2 from the double notches in B1821−24A.
Therefore, if the notches are interpreted as the signature of the
bifurcated X-mode beam, the highly-polarised P2 (and also P1,
with its PA being an extrapolation of the linear trend observed
near P2) should be dominated by the O-mode emission in the
form of the filled-in (non-bifurcated) beam. The bifurcations of
the P1 and P2 should then probably be interpreted in terms of
macroscopic properties of the emitter or in terms of propagation
effects. A possible origin of such macroscopic bifurcations has
been suggested in Dyks & Rudak (2015, see figure 12 therein).

Our model of polarisation (based on a wide microbeam) im-
plies that any changes in flux in the profile must be unavoidably
accompanied by small deviations of PA from the RVM. When
the profile emission components extend for wide intervals of
phase, and when the flux changes slowly, then the PA distor-
tions are not visible as clear local features; however, the net PA
is not likely to precisely follow the RVM-based value. This is
shown in Fig. 16 where the X-modeη⊥ has the form of a wide
triangle (thick solid in panel a). The gradual distortion ofthe net
PA (flattening near the flux maximum) is visible in panel b.

4.6. Double-peaked PA distributions

The presented model is supported by the existence of the bifur-
cated features in the profiles of B1821−24A and J0437−4715.
Superficially, however, one might expect a stronger supportto
come from a direct observation of the double-peaked PA distri-
butions, such as shown in grey in Fig. 5b. The peaks of the pure
X-mode PA distributions are separated by∆|dψB/dφ|, where
∆ is the observed scale of double features. In most cases dis-
cussed before|dψB/dφ| ∼ 1, thus the separation is of the order
of a few degrees. We have searched for the PA bifurcations in
J0437−4715 using the polarisation calibrated single-pulse data
described in detail in Osłowski et al. (2014). The search wasun-
successful, even within this part of the profile which contains
bifurcated features.

Fig. 16. Polarisation of a very wide emission structure with the
triangular emissivity pattern shown in panel a (thick solidline).
The net PA (solid line in panel b) nearly followsψB, but not
exactly.

This can be understood, however, and does not pose a prob-
lem for our model because the flux detected at any moment is
a convolution of several intrinsic signals (not to mention the in-
strumental noise) which can strongly affect the observed two-
dimensional (φ, ψ) distributions. Specifically, the flux in each
peak of the double PA distribution (as observed at a fixed phase)
corresponds to emission from two different (but nearby) phases,
and two different (but closely located) emission points in the
magnetosphere. For example, at the phase C in Fig. 5, one of
the PA peaks originates from phase B, and another one from
phase D. If the two emitting points permanently contribute both
these PA peaks, only their average (close toψB) will be de-
tectable at any moment in single-pulse observations. Therefore,
for the PA bifurcation to be visible even in the pure X mode,
non-simultaneous contributions of flux from both phases should
occur. During one star rotation, the flux at the considered phase
would have to be strongly dominated by emission from one
phase (e.g. B), during another rotation by the other phase (D).
The bifurcation will be lost if the contributions are comparable
and simultaneous. Since we discuss two nearby pulse phases and
a laterally extended emission region, such temporal separation
of emission seems unlikely, which explains why the PA bifurca-
tions are not observed.

Thus, to see the bifurcation, the flux which contributes to
one PA peak has to be received in different pulses (or at least
in different samples) than the flux which contributes to the other
PA peak. The PA values in both peaks may therefore be affected
by the instrumental noise of different sign or strength. This ad-
ditionally increases the difficulty of detection of the PA bifur-
cation, even when the conditions of the previous paragraph are
fulfilled.

The detection may even be made more difficult by the si-
multaneous emission in both polarisation modes. In this case
we observe the instantaneous total PA determined by the degree
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of their non-orthogonality (and by the relative amounts of both
modes).

We then conclude that the clear bifurcation of the X-mode
PA, such as illustrated in Fig. 5b, is not likely to be detected un-
less several ‘purifying’ conditions are met. The main condition
requires that the emission in each PA peak occurs in the above-
described successive way, belonging either to the first or tothe
second PA peak. This is further complicated by the real-timein-
strumental noise, and the possible contribution of the O mode.
Our model is then consistent with the ubiquitous lack of the PA
bifurcations in pulsar data.

4.7. Multiple PA bands in pulsars

The issue of simultaneous emission of both polarisation modes
is related to the possibility of observation of several non-
orthogonal PA stripes on the (φ, ψ) plane. This phenomenon is
reported, for example, for B1237+25 observed at 327 MHz at the
Arecibo Observatory (Smith et al. 2013). A distinct PA stripe,
which looks like a wiggle which is not parallel to the PA stripe
of the primary mode, is observed under the central componentin
the profile of this object. If the primary mode is assumed to fol-
low the RVM, the distinct additional wiggle may be interpreted
as the PA stripe corresponding to the simultaneous emissionof
both modes. The primary PA stripe would then represent the
undisturbed PA of the primary mode emitted mostly alone.

In the simplest case there are three distinct situations in
which only the primary or secondary mode is emitted, or both
modes are emitted simultaneously. Then at least three PA stripes
can be produced on the (φ, ψ) plane, one corresponding to the
primary mode, another to the secondary mode (if it happens tobe
emitted alone ), and a third stripe for the simultaneous emission
of both modes. The location of the last (non-RVM) stripe is de-
termined by the intrinsic degree of non-orthogonalityand the rel-
ative flux in both modes. As shown in Melrose et al. (2006), for
a well-defined (sharp) extra PA stripe, the radiation emitted si-
multanously must be characterised by a preferred (frequently oc-
curring) combination of these parameters. Otherwise the PAbe-
comes randomised (McKinnon and Stinebring 1998). Examples
of such randomisation can sometimes be found in single-pulse
PA data; see e.g. the profile of B1919+21 in Hankins & Rankin
(2010) and . Thorough analysis of mode mixing effects is pre-
sented in van Straten & Tiburzi (in preparation).

5. Discussion

To account for observed PA distortions, a CR-based model can
be set up which assumes emission into a bifurcated beam of non-
negligible angular extent and polarised at a fixed angle withre-
spect to the localB-field. This elementary beam (a microbeam)
is convolved with an emissivity profile which represents thelat-
eral extent of the emission region, and it is supplemented with a
contribution of the secondary polarisation mode.

A model of such a type is capable of qualitatively reproduc-
ing the polarisation behaviour of several dissimilar features in
the profiles of B1821−24A and J0437−4715. This provides ad-
ditional support for the stream-shaped geometry of the pulsar
emission region, and for the fan-shaped geometry of the pulsar
beams (Michel 1987; DRD10; DR12; Wang et al. 2014; Dyks &
Rudak 2015). It also shows that CR is a useful mechanism for
interpreting the pulsar radio emission.

However, the model cannot reproduce the steepening of PA
under emission components, nor the large drop in the polarisa-
tion degree at the centre of notches in B1821−24. The notches

may be created by a single non-emitting plasma stream embed-
ded in a laterally extended emission region, or as a dense ob-
scuring stream, located above the emission region (see fig. 12
in DRD10). If the bifurcation of the notches originates from
the extraordinary-mode nature of the microbeam, then the non-
emissive interpretation is favoured because the X-mode radia-
tion does not interact with the plasma in the superstrongB-field;
hence, it should not be absorbed or obscured. It is possible that
the ‘dark’ stream is responsible for the giant pulses observed
near the centre of the notches (Figs. 1 and 2 in BPDR). The
stream may either be directly generating the giant pulse emis-
sion, or it may be reprocessing the background radiation of the
surrounding emitter, e.g. via scattering of the radio photons. In
either case the new type of radiation may have different polari-
sation properties from the surrounding background which could
produce the extra depolarisation. It is important to note that
such a contribution of extra emission at the centre of the dou-
ble notches can mislead our modelling efforts since the height of
the central maximum of double notches is the main factor which
determines the width of the void in emissivityη⊥.

The model predicts that the intrinsic bifurcation of the PA
distribution at a fixed phase is unlikely to be detectable, unless
special conditions are satisfied. These include not only thenearly
pure X-mode emission (mostly free from the noise and the O
mode), but also a sequential (non-simultaneous) detectionof flux
from two nearby pulse longitudes (those which contribute each
PA peak at a considered pulse phase). The proposed model is
therefore consistent with the lack of the PA bifurcations inthe
pulsar data.

Generally, the model illustrates the key importance of the
circum-RVM distribution of PA for the shape of the average PA
curve. Since the spread of PA at a fixed phase is intrinsic, it is
worth thinking in terms of a PA band or stripe instead of a PA
curve. These fixed-phase PA distributions are unlikely to besym-
metrical around the RVM-based value, and any small deviations
of one mode are amplified by the existence of the other polarisa-
tion mode. This can lead to large PA deflections in the averaged
profiles, and to the PA randomisation in single pulses.

This work suggests that in several pulsars the angular scale
of the microbeam is not negligible in comparison to the angular
gradients of emissivity in the emission region. Many observed
distortions from the RVM may result from the microscopic PA
becoming recognizable despite the convolution with the spatial
extent of the emitter.

The data reproduction achieved through the by-eye fitting de-
scribed in Sect. 4 is qualitative only, and the main reason for
this are the guessed and simple forms ofη⊥ and η‖. Instead,
the observed polarised intensity profiles likely do not correspond
to any simple analytical functions. For example, the notches in
J0437−4715 seem to coincide with a broad emission bump su-
perposed on a monotonically declining flux, whereas the BTC
consists ofη⊥ andη‖, which cannot be described by a simple
exponential or linear function. A possible solution to thisprob-
lem would be to split the observed average profile into two fully
polarised orthogonal modes, then deconvolve the microbeam
from the mode-separated profiles to learn the approximate form
of η⊥ and η‖. Another development that may be needed is a
three-dimensional code capable of simulating an oblique tra-
verse through the fan beams (hence including the apparent asym-
metry of the microbeam). Moreover, the single-pulse population
effects (Melrose et al. 2006) have already been shown to cru-
cially affect the apparent polarisation. They seem to be the most
important ingredient that may need to be included in the mod-
elling to achieve close agreement with the data. Thus, the ques-
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tion of whether complicated average PA curves (such as that of
J0437−4715) can be disentangled into their pure RVM form, re-
mains open.
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Observatory is operated by the Paris Observatory, associated
with the French Centre National de la Recherche Scientifique
(CNRS). This work was supported by the National Science
Centre grant DEC-2011/02/A/ST9/00256.

References

Barnard, J. J. & Arons, J. 1986, ApJ, 302, 138
Beskin, V. S. & Philippov, A. A. 2012, MNRAS, 425, 814
Bilous, A. V., Pennucci, T. T., Demorest, P., & Ransom, S. M. 2015, ApJ, 803,

83 (BPDR)
Blaskiewicz, M., Cordes, J. M., & Wasserman, I. 1991, ApJ, 370, 643
Cheng, A. F. & Ruderman, M. A. 1979, ApJ, 229, 348 (CR79)
Dai, S., Hobbs, G., Manchester, R. N., et al. 2015, MNRAS, 449, 3223
Dyks, J. 2008, MNRAS, 391, 859
Dyks, J. & Rudak, B. 2012, MNRAS, 420, 3403 (DR12)
Dyks, J. & Rudak, B. 2015, MNRAS, 446, 2505
Dyks, J., Rudak, B., & Demorest, P. 2010, MNRAS, 401, 1781 (DRD10)
Dyks, J., Rudak, B., & Rankin, J. M. 2007, A&A, 465, 981
Edwards, R. T. & Stappers, B. W. 2004, A&A, 421, 681
Edwards, R. T., Stappers, B. W., & van Leeuwen, A. G. J. 2003, A&A, 402, 321
Gil, J., Lyubarsky, Y., & Melikidze, G. I. 2004, ApJ, 600, 872
Hankins, T. H. & Rankin, J. M. 2010, AJ, 139, 168
Hibschman, J. A. & Arons, J. 2001, ApJ, 546, 382
Hobbs, G., Miller, D., Manchester, R. N., et al. 2011, PASA, 28, 202
Hotan, A. W., van Straten, W., & Manchester, R. N. 2004, PASA,21, 302
Karastergiou, A. 2009, MNRAS, 392, L60
Komesaroff, M. M. 1970, Nat, 225, 612
Konopinski, E. J. 1981, Electromagnetic fields and relativistic particles (New

York, McGraw-Hill)
Kumar, D. & Gangadhara, R. T. 2012, ApJ, 746, 157
Liu, K., Desvignes, G., Cognard, I., et al. 2014, MNRAS, 443,3752
Luo, Q. 2004, MNRAS, 352, 1208
Lyubarsky, Y. 2008, in American Institute of Physics Conference Series, Vol.

983, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, ed.
C. Bassa, Z. Wang, A. Cumming, & V. M. Kaspi, 29–37

McKinnon, M. M. & Stinebring, D. R. 1998, ApJ, 502, 883
McLaughlin, M. A. & Rankin, J. M. 2004, MNRAS, 351, 808
Melrose, D. 2003, in Astronomical Society of the Pacific Conference Series, Vol.

302, Radio Pulsars, ed. M. Bailes, D. J. Nice, & S. E. Thorsett, 179
Melrose, D., Miller, A., Karastergiou, A., & Luo, Q. 2006, MNRAS, 365, 638
Michel, F. C. 1987, ApJ, 322, 822
Mitra, D. & Li, X. H. 2004, A&A, 421, 215
Navarro, J., Manchester, R. N., Sandhu, J. S., Kulkarni, S. R., & Bailes, M. 1997,

ApJ, 486, 1019
Osłowski, S., van Straten, W., Bailes, M., Jameson, A., & Hobbs, G. 2014,

MNRAS, 441, 3148
Petrova, S. A. & Lyubarskii, Y. E. 2000, A&A, 355, 1168
Radhakrishnan, V. & Cooke, D. J. 1969, Astrophys. Lett., 3, 225
Ramachandran, R. & Kramer, M. 2003, A&A, 407, 1085
Rankin, J. M. & Ramachandran, R. 2003, ApJ, 590, 411
Rankin, J. M. & Rathnasree, N. 1997, Journal of Astrophysicsand Astronomy,

18, 91
Rybicki, G. B. & Lightman, A. P. 1979, Radiative processes inastrophysics (New

York, Wiley-Interscience)
Smith, E., Rankin, J., & Mitra, D. 2013, MNRAS, 435, 1984
Stinebring, D. R., Cordes, J. M., Rankin, J. M., Weisberg, J.M., & Boriakoff, V.

1984, ApJS, 55, 247
Tinbergen, J. 2005, Astronomical Polarimetry (Cambridge,Cambridge

University Press)
van Straten, W. 2004, ApJS, 152, 129
van Straten, W. 2009, ApJ, 694, 1413
Wang, C., Lai, D., & Han, J. 2010, MNRAS, 403, 569
Wang, H. G., Pi, F. P., Zheng, X. P., et al. 2014, ApJ, 789, 73
Wang, P. F., Wang, C., & Han, J. L. 2012, MNRAS, 423, 2464

Wang, P. F., Wang, C., & Han, J. L. 2015, MNRAS, 448, 771
Wright, G. A. E. 2004, MNRAS, 351, 813


	1 Introduction
	2 Observed polarisation of profiles with double features
	2.1 Observations of B1821-24A with the Nançay Radio Telescope
	2.2 Linear polarisation of PSR J0437-4715

	3 A model for the polarisation angle deflections
	3.1 Numerical method

	4 Results
	4.1 Origin of PA deflections at double notches
	4.2 Polarisation of notches in the presence of two modes
	4.3 Interpreting the polarisation of PSR J0437-4715
	4.4 Non-bifurcated microbeam
	4.5 PA deflections at profile emission components
	4.6 Double-peaked PA distributions
	4.7 Multiple PA bands in pulsars

	5 Discussion

