

Densities and volumes of hydrous silicate melts: New measurements and predictions

Mohamed Ali M.A. Bouhifd, A.G. Whittington, Pascal Richet

► To cite this version:

Mohamed Ali M.A. Bouhifd, A.G. Whittington, Pascal Richet. Densities and volumes of hydrous silicate melts: New measurements and predictions. Chemical Geology, 2015, 418, pp.40-50. 10.1016/j.chemgeo.2015.01.012 . insu-01443455

HAL Id: insu-01443455 https://insu.hal.science/insu-01443455v1

Submitted on 6 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Densities and Volumes of Hydrous Silicate Melts:
2	New Measurements and Predictions
3	
4	M.A. Bouhifd ¹ , A.G. Whittington ² and P. Richet ³
5	¹ Laboratoire Magmas et Volcans, CNRS UMR 6524, Université Blaise Pascal, OPGC-IRD,
6	5 Rue Kessler, 63038 Clermont-Ferrand Cedex, France
7	² Department of Geological Sciences, 101 Geology Building, University of Missouri,
8	Columbia, MO 65211, USA
9	³ Institut de Physique du Globe de Paris, 1 Rue Jussieu, 75005 Paris, France
10	
11	

12

13 Abstract

14 The equilibrium molar volumes of four series of anhydrous and hydrous aluminosilicate 15 glasses and liquids (0 to 11 mol% H₂O) were determined at one bar between 300 and 1050 K. 16 The anhydrous compositions range from highly polymerized NaAlSi₃O₈ to depolymerized 17 synthetic iron-free analogues of tephrite and foidite magma compositions (NBO/T = 0.8 and 18 1.5, respectively). For each sample the volume was derived from the room-temperature 19 density of the glass and the thermal expansivity of the glass and supercooled liquid from 300 K to a temperature about 50 K higher than the standard glass transition. The partial molar 20 coefficient of thermal expansion of water in hydrous silicate glasses is about $(6.2\pm3.5)\times10^{-5}$ 21 K⁻¹, and in the melts ranges from 11×10^{-5} to 36×10^{-5} K⁻¹. The present molar volumes of 22 hydrous supercooled liquids are reproduced with the model of Ochs and Lange (1999) to 23 24 within 1.1%, except for the hydrous foidite series. This agreement confirms that the partial molar volume of water (\overline{V}_{H_2O}) near the glass transition cannot depend strongly on the 25 26 chemical composition of the silicate end-member, nor on water speciation. In order to 27 reproduce the molar volumes of the foidite series, a combined model (using Lange (1997) and 28 Courtial and Dingwell (1999) models and values derived from the new data) is used where an 29 excess volume term between SiO₂ and CaO is introduced. Finally, our experimental data are better fit if $\overline{V}_{H_{2O}} = 23.8 \pm 0.5 \text{ cm}^3 \text{ mol}^{-1}$ at 1273 K, and $\frac{d\overline{V}_{H_{2O}}}{dT} = 15.9 \pm 1.5 \text{ cm}^3 \text{ mol}^{-1} \text{ K}^{-1}$. 30 Contrasting trends are also observed for the configurational contributions to the expansivity 31

32 with a positive slope of $\frac{dV_i^{conf}}{dT}$ versus water for the most polymerized base compositions 33 (NBO/T ≤ 0.21) and a negative slope for the two most depolymerized base compositions with 34 NBO/T of 0.86 and 1.51.

35 1. Introduction

36 As a major component of magmatic melts, water owes its importance to the influence 37 it exerts on their physical and chemical properties, and hence on magma ascent and phase 38 equilibria. The density of silicate liquids is for instance a critical parameter to determine 39 the depth at which crystal-melt density inversions occur (Agee, 2008). Water has recently 40 been suggested to play a critical role in buoyancy triggered supervolcano eruptions 41 (Malfait et al., 2014*a*). Its exceptional effects on viscosity are now rather well documented: 42 for example, addition of 1000 ppm H_2O lowers the viscosity of pure SiO₂ by 10 orders of 43 magnitude in the glass transition range (e.g. Mysen and Richet, 2005; and references 44 therein). Even though effects on density are usually less extreme, water nonetheless 45 remains an important component due to its low molecular weight, so that a 5 wt% water 46 content translates into about 15 mol % on an oxide basis. The effect of dissolved water on 47 volume properties is thus necessarily significant (Burnham and Davis, 1971).

48 Following Bottinga and Weill (1970), various authors have empirically set predictive models of partial molar volumes (\overline{V}_i) and expansivities $(\partial \overline{V}_i/\partial T)$ of oxide components 49 50 over wide temperature and composition ranges (e.g., Bottinga et al., 1982; Knoche et al., 51 1995; Lange and Carmichael, 1987; Lange, 1997). For hydrous silicate glasses, a review of available density data indicated that the room-temperature partial molar volume of H₂O (\overline{V} 52 H_{2O}) is independent of glass composition with a value of 12.0±0.5 cm³ mol⁻¹ (Richet et al., 53 54 2000). This value is thus valid for polymerized, silica-rich to depolymerized, silica-poor 55 composition at 1 bar, but the partial molar compressibility of water markedly depends on composition, indicating that \overline{V}_{H_2O} may depend on melt composition at high pressure 56 (Malfait et al., 2011; Whittington et al., 2012). In fact, a compositionally dependent \overline{V}_{H_2O} 57 58 at high pressure has also been suggested based on the pressure dependence of water 59 solubility in silicate melts (Mysen and Acton, 1999; Mysen and Wheeler, 2000). For 60 instance the latter authors calculated a \overline{V}_{H_2O} in haploandesitic melts from solubility data 61 which was negatively correlated with Al₂O₃ content. Despite these indications Malfait et 62 al. (2014*b*) have shown that, within the experimental uncertainties of about 1.3%, the \overline{V} 63 H_{2O} is independent of the silicate melt composition.

Few volume measurements exist for hydrous silicate melts at atmospheric pressure (*e.g.* Burnham and Davis, 1971; Ochs and Lange, 1997; 1999; Bouhifd et al., 2001). From their own expansivity measurements for three samples and the high-temperature, highpressure measurements of Burnham and Davis (1971) for a hydrous albitic liquid, Ochs and Lange (1997, 1999) reported that dissolved water has a $\overline{V}_{H_2O} = 22.9 \pm 0.6$ cm³ mol⁻¹ at 1273 K and 1 bar.

The main aim of the present study was to expand the available database for the 1-bar density and volume of hydrous silicate glasses and liquids at high temperatures, knowing that derivation of the pressure dependence of silicate liquid volumes depends upon accurate 1 bar values as a function of temperature. Another aim of this work was to determine whether the results for \overline{V}_{H_2O} previously obtained are applicable to a composition range wider than that of their input data.

76 We have thus measured the thermal expansion of hydrous glasses and liquids of four 77 synthetic iron-free series modeled after albite, tephrite, trachyte, and basanite/foidite 78 (hereafter "foidite" with individual samples labeled "NIQ") whose compositions are 79 reported in Table 1. Also included in Table 1 is the sample selected in our preliminary 80 study to derive the partial molar volume of water in phonolitic glasses and liquids (Bouhifd 81 et al., 2001). The whole set of samples represent the range of polymerization states 82 relevant to natural magmas, and has been the subject of previous investigations of heat 83 capacity (Bouhifd et al., 2006; 2013), viscosity (Whittington et al., 2000; 2001; 2004; 84 2009), and compressibility (Richet et al., 2000; Whittington et al., 2012).

85

86 **2. Experimental methods**

87 The anhydrous glasses were synthesized from oxide and carbonate mixes through 88 repeated cycles of grinding and fusion at about 1600 °C. The chemical compositions are 89 reported in Table 1 as analyzed with the electron microprobe. The samples were then 90 hydrated at high temperatures at either 2 or 3 kbar in an internally heated vessel with the 91 procedure reported by Whittington et al. (2000). The hydration conditions and the water 92 contents measured by Karl-Fischer titration are given in Table 2. Samples of about 10 mg 93 were analyzed in this study, for which the uncertainty on the reported water content is 94 around 0.1 wt% H₂O (Behrens et al., 1996). The room-temperature densities of the glasses 95 included in Table 3 were measured by an Archimedean method with toluene as the 96 immersion liquid.

97 Because the samples were initially densified as a result of their high-pressure 98 synthesis, the density of the sample was again measured after each thermal expansion 99 measurement to determine the extent of possible volume relaxation. Likewise, we checked 100 by weighing that no water loss occurred on heating at the highest temperatures. For the 101 hydrous glasses, the densities of the initial and relaxed glasses after expansivity 102 measurements are listed in Table 3.

103 The dilatometry apparatus was described in detail by Sipp and Richet (2002). Briefly, 104 the furnace was made of two Fibrothal half shells (from Kanthal) and regulated with a 105 P.I.D. controller. Temperatures were measured with a Pt-Pt/Rh 10% thermocouple placed 106 next to the sample. Upon heating we measured the length of the sample as a function of 107 temperature as the difference between the displacement of two SiO₂ rods, one resting on 108 the sample and the other on a reference cylinder of SiO₂ glass. These measurements were 109 made to within about 0.2 μ m with linear variable differential transducers. Silica was 6

110 chosen as a reference material because its expansivity is approximately zero over the 111 studied temperature intervals.

112 Because glasses and liquids are isotropic, the volume coefficient of thermal expansion 113 α of all samples was obtained simply by multiplying the linear coefficient α_{linear} by 3:

114
$$\alpha_{\text{glass or liquid}} = 3 \times \alpha_{\text{linear}} = 3/L \left(\frac{\partial L}{\partial T} \right) = 3 \times \partial \ln \left(L \right) / \partial T \quad (1)$$

115 where L is the length of the sample and T its temperature. To determine the coefficients of 116 thermal expansion of glasses and liquids we have adopted the procedure described by 117 Toplis and Richet (2000) for anhydrous silicate melts. Contrasting with the usual method 118 with which samples are continuously heated through the glass transition, this procedure 119 ensures that measurements are made for supercooled silicate liquids that are in internal 120 thermodynamic equilibrium. The resulting improvement is that thermal expansion 121 coefficients can then to be derived in a rigorous way from the sample length measured. At 122 the beginning of the experiments the samples were heated continuously at a constant rate of 2 K min⁻¹ from room temperature to a temperature corresponding to a viscosity of 10¹³ 123 Pa s (T_{13}), known from our previous viscosity experiments. For liquids, this T_{13} was then 124 taken as a reference temperature at which the sample was first held until a constant length 125 126 was observed. The temperature of the sample was then increased or decreased by 10 K steps at 2 K min⁻¹ and kept constant until a new equilibrium length was reached. Different 127 128 temperatures over a range of \sim 50 to 70 degrees were studied in this manner. The time spent 129 at each temperature was variable, more time being required at lower temperatures because 130 of slower relaxation kinetics.

An important feature of this protocol is that two or more length changes can be measured for each temperature (i.e., upon heating and cooling), providing checks that the measured lengths do represent equilibrium values. This is the procedure described by Toplis and Richet (2000) for anhydrous samples, with the exception that we did not make a final measurement at T_{13} , to limit the duration of the experiment and thus reduce the risk of water exsolution. The slowness of water exsolution in the temperature interval investigated makes accurate measurements possible in the supercooled liquid state near the glass transition. Because length changes are measured with high precision, the expansivities are generally determined to better than 3% (Toplis and Richet 2000). In this work we have set a conservative upper limit of 5% for the experimental uncertainty.

141

142 **3. Results**

All experimental data for the thermal expansion of anhydrous and hydrous glasses andliquids are reported in Tables 4-5.

145

146 Thermal expansion of hydrous glasses

147 In the initial measurements made on unrelaxed samples, expansion began to be anomalously high at temperatures at which the viscosity was about 10¹⁶ Pa s as indicated 148 149 by extrapolation of the viscosity measurements by Whittington et al. (2000; 2001; 2004). 150 This anomaly signaled the onset of volume relaxation to the 1-bar density of the samples, 151 which were initially compacted as a result of their high pressure synthesis (Fig. 1). A 152 second measurement was then performed with the same heating rate on the relaxed sample 153 during which the sample length increased linearly with temperature up to T_{13} . No 154 variations of mass or room-temperature density were observed after this second 155 measurement.

For each glass we calculated the thermal expansion coefficient between room temperature and the highest temperature up to which expansion was linear, *i.e.*, up to the onset of volume relaxation for densified glasses and up to about T_{13} for relaxed glasses. The calculated thermal expansion coefficients of densified glasses are systematically higher than those of relaxed glasses by about 3 - 6 %, except for the sample "Teph 0.3" for
which a reverse effect is observed (*cf.* Table 5). These contrasts demonstrate that
differences in fictive pressures of only 2 or 3 kbar have minor but detectable effects on
glass expansivity.

- 164
- 165

Thermal expansion of hydrous liquids

166 The experiments were made on liquids over temperature intervals of up to 70 degrees 167 (cf. Fig. 2 a-d). Because the glass transition is lowered with increasing water contents, so 168 were the temperatures ranges investigated. Although minor penetration of the SiO₂ rod into 169 the sample took place at the highest temperatures, this effect was readily taken into account 170 with the procedure described by Toplis and Richet (2000) to determine the equilibrium 171 length. Within experimental uncertainties, the logarithm of the length varied linearly with 172 temperature for all supercooled liquids (see Fig. 2 for the hydrous Tephrite series). The 173 slopes of these lines thus represent the linear thermal expansion coefficient, which could 174 thus be determined from equation (1) and clearly increases with increasing water contents.

175 Possible water loss was a serious concern because the water contents of the samples 176 were much higher than the 1-bar solubility of water. However, no changes in sample 177 weight were observed after the experiments. As a more sensitive check, the viscosity of the 178 same supercooled liquids was measured in the same temperature ranges. No influence of 179 thermal history on the measured viscosities was apparent and the variations of the 180 viscosities with temperature were as smooth as for water-free samples. Owing to the 181 tremendous influence of water on viscosity, this excellent precision demonstrates 182 unequivocally, as discussed by Whittington et al. (2004), the lack of detectable water loss 183 during high-temperature measurements as long as the viscosity was higher than about 10^9 184 Pa.s. Similar observations were made in viscosity measurements on andesite samples 185 which had the same room-temperature infrared spectra prior to and after high-temperature186 viscometry (Richet et al., 1996).

187

188 Volume of dry and hydrous silicate glasses

189 From 300 K to the glass transition, the volume of each glass sample was calculated190 from:

191
$$V_{\text{glass}}(T) = V_{\text{glass}}(300 \text{ K}) \exp\left(\alpha_{\text{glass}}(T - 300)\right)$$
(2)

- 192 where V_{glass} (300 K) is the volume at 300 K, and α_{glass} is the thermal expansion coefficient
- 193 of the glass. The uncertainties on $V_{\text{glass}}(T)$ derived from equation (2) are given by:

194
$$\Delta V_{\text{glass}}(T) = V_{\text{glass}}(T) \left(\Delta V_{\text{glass}}(300 \text{ K}) / V_{\text{glass}}(300 \text{ K}) + (T - 300) \Delta \alpha_{\text{glass}} + \alpha_{\text{glass}} \Delta T \right)$$
(3)

- 195 From equation (3) the uncertainty in ΔV_g (T) is highest around the glass transition
- 196 temperature T_g . The contribution of $\alpha_g \times \Delta T$ on $\Delta V_g(T)$ is so small that it can be neglected.

For anhydrous glasses, the errors at T_g represent about 0.15 % of the molar volumes. For the hydrous glasses, the error is slightly higher, ~0.20 cm³ mol⁻¹, which represents ~0.7%

- 199 of volume at the glass transition temperature.
- 200

201 Volume of dry and hydrous silicate liquids

All experimental volumes with their corresponding uncertainties for hydrous and anhydrous samples are reported in Table 6. For liquids, the volume is given by:

204
$$V_{\text{liquid}}(T) = V_{\text{glass}}(T_{\text{g}}) \exp\left(\alpha_{\text{liquid}}(T - T_{\text{g}})\right)$$
(4)

205 where T_g is the glass transition temperature, V_{glass} (T_g), the volume at T_g is equal to V_{liquid}

206 (T_g) and α_{liquid} is the thermal expansion coefficient of the silicate liquid.

207 The uncertainties on these values are given by:

208
$$\Delta V_{\text{liquid}}(T) = V_{\text{liquid}}(T) \left(\Delta V_{\text{glass}}(T_{\text{g}}) / V_{\text{g}}(T_{\text{g}}) + (T - T_{\text{g}}) \Delta \alpha_{\text{liquid}} \right)$$
(5)

In the investigated temperature ranges the uncertainties on the supercooled liquid volumes are less than 0.2 cm³ mol⁻¹ which corresponds to about 0.7%. In equation (5) we assume $\Delta \alpha_g = \Delta \alpha_l = 5\%$ and we again consider that the contribution of $\alpha_{liquid} \Delta T$ to the error is too small to be taken into account. The uncertainties become unacceptably large if the data are extrapolated too far beyond the range of the measurements because of the ($T - T_g$) term. For all compositions studied, the volume increases markedly on heating above the glass transition, and this increase is the highest for the highest water contents (*cf.* Fig. 3 a-c).

Table 5 lists the linear fits made to our experimental data for glasses and supercooled liquids with the following equations:

218 For glasses:
$$V_{\text{glass}} (\text{cm}^3 \text{ mol}^{-1}) = a_{\text{glass}} + \left(\frac{dV}{dT}\right)_{glass} T (\text{K})$$
 (6)

219

220 and for liquids:
$$V_{\text{liquid}} (\text{cm}^3 \text{ mol}^{-1}) = a_{\text{liquid}} + \left(\frac{dV}{dT}\right)_{liquid} T (\text{K})$$
 (7)

Liquid volumes were calculated by using the viscosimetric or calorimetric glass transition temperature as the starting point and the experimentally determined expansivity over temperature intervals of 50 K.

224

4. Discussion

Following Bottinga and Weill (1970), one generally assumes that the 1-bar partial molar volumes of oxides in silicate liquids do not depend on composition over a range of 40-80 mol% SiO₂. Therefore, the density of a silicate liquid can be expressed by the following equation (8):

$$\rho_{liquid} (T) = \frac{\sum Xi \times Mi}{V_{liquid}(T)}$$

where X_i is the mole fraction of oxide *i*, M_i its gram formula weight, and $V_{liquid}(T)$ is the volume of the silicate liquid at temperature *T*. Likewise, the molar volume of a melt is

233
$$V_{liquid}(T) = \sum X_i \times \left[\overline{V}_i(T_{ref}) + \frac{d\overline{V}_i}{dT} \times (T - T_{ref})\right]$$
(9)

234 where $\overline{V}_i(T_{ref})$ is the partial molar volume of oxide *i* at reference temperature T_{ref} , and 235 $\frac{d\overline{V}_i}{dT}$ is the partial molar thermal expansivity of oxide *i*.

At high pressure, an additional term needs to be included to deal with the compressibility of silicate liquid components (*e.g.* Lange 1994) so that equation (7) becomes:

238
$$V_{liquid}(T) = \sum X_i \times \left[\overline{V}_i(T_{ref}) + \frac{d\overline{V}_i}{dT} \times (T - T_{ref}) + \frac{d\overline{V}_i}{dP} \times (P - P_{ref})\right]$$
(10)

where $\frac{d\overline{v}_i}{dP}$ is the partial molar compression of oxide *i*, *P* is the pressure and *P_{ref}* is the reference pressure (usually 1 bar). However, equation (10) cannot be extrapolated to GPa pressures because it does not account for the marked decrease of the compressibility with increasing pressures (Lange, 1994; Jing and Karato, 2009). Third-order Birch-Murnaghan equations of state have thus been used instead to describe the compression of volatilebearing silicate melts (*e.g.* Jing and Karato, 2009; Malfait et al., 2014*a*,*b*).

245

The most widely used density/volume calculation model for hydrous silicate melts is the one proposed by Ochs and Lange (1999), which is an extension to hydrous liquids of the model derived by Lange (1997) for anhydrous silicate melts from the glass transition to super-liquidus temperatures. Below, the experimentally determined volumes are compared with the predictions of the models of Lange (1997) and Ochs and Lange (1999) for anhydrous and hydrous supercooled melts, respectively.

252

253 Anhydrous supercooled silicate melts

As reported in Table 7, the model of Lange (1997) (with the partial molar volume for TiO₂ taken from Lange and Carmichael, 1987) reproduces the present volume data for most of the anhydrous melts to better than 1%, and trachyte volumes to about 1.3%. Hence these deviations are consistent with the stated uncertainties of the experimental data and of the model values.

259 The exception is the experimental dataset for the anhydrous foidite composition 260 which is the least silicic and most calcic composition, containing about 43 mol% SiO₂ and 261 27.6 mol% CaO (Table 7). Equation (9), which is widely used to predict the volume of 262 silicate melts at 1 bar, carries the assumption that molar volume follows a linear variation 263 with composition. To explain the foidite anomaly, we first note that the volume data 264 reported by Tomlinson et al. (1958) show a non-ideal mixing between CaO and SiO₂ in the 265 binary system CaO-SiO₂. Lange and Carmichael (1987) suggested an excess volume term 266 between CaO and SiO₂ for silicate melts in the CaO-MgO-Al₂O₃-SiO₂ system having a 267 molar fraction of CaO > 0.5. Courtial and Dingwell (1995) found a non-linear composition 268 dependence of molar volume in the system CaO-Al₂O₃-SiO₂. Combining the model of 269 Courtial and Dingwell (1999) valid for compositions in the system CaO-MgO-Al₂O₃-SiO₂, 270 which includes an excess volume term between CaO and Al₂O₃, with the partial molar 271 volumes for TiO₂, Na₂O and K₂O given by Lange (1997), reproduces the molar volume of 272 foidite composition within experimental uncertainties. The partial molar volumes for 273 oxides used in all the calculations are given in Table 7.

274

275 Hydrous supercooled silicate melts

276 For hydrous silicate melts, the model of Ochs and Lange (1999) reproduces the 277 present hydrous supercooled liquid volumes to within 1.15%. This agreement confirms that the partial molar of water ($\overline{V}_{\mathrm{H2O}}$) cannot depend strongly on the chemical composition of 278 279 the silicate end-member. However, the agreement between our experimental data and the 280 model of Ochs and Lange (1999) deteriorates with increasing water content (Table 7). To improve the prediction for our own experiments we derived new values for $\overline{V}_{
m H2O}$ and 281 $d\overline{V}_{H2O}$.

$$282 \qquad \frac{dV_H}{dT}$$

283 The starting point of this determination is the observation that, for all series of hydrous glasses, the trends in $\left(\frac{\partial V}{\partial T}\right)$ as a function of water content vary somewhat 284 systematically with the NBO/T of the anhydrous end-member (Fig. 4a). The highly 285 polymerized albite has a lower value of 0.70×10^{-3} cm³ mol⁻¹ K⁻¹ compared to foidite, the 286 most depolymerized composition, with a value of 1.51×10^{-3} cm³ mol⁻¹ K⁻¹. 287

Considering all data, we observe that $\left(\frac{\partial V}{\partial T}\right)$ increases linearly with increasing water 288 content, with partial molar values of $\frac{d\overline{v}_{H2O}}{dT}$ between 14.3×10⁻³ and 17.5×10⁻³ cm³ mol⁻¹ K⁻¹ 289 for our set of compositions. As an approximation, a constant $\frac{d\overline{V}_{H2O}}{dT}$ of (15.9 ±1.6)×10⁻³ cm³ 290 mol⁻¹ K⁻¹ could thus be assumed, a value 40% higher than the $(9.5\pm0.8)\times10^{-3}$ cm³ mol⁻¹ K⁻¹ 291 derived by Ochs and Lange (1999), as shown in Fig. 4b. We then used this new value for 292 $\frac{d\overline{V}_{H2O}}{dT}$ to determine a partial molar volume of 23.8±0.5 cm³ mol⁻¹ for water dissolved in 293 294 silicate melt at a reference temperature of 1273 K.

295 This volume at 1273 K is 4% higher than that derived by Ochs and Lange (1999), and combined with our higher $\frac{d\overline{V}_{H2O}}{dT}$, suggests that at 1473K the hydrous component in 296 melts has a volume of 27.0 cm³ mol⁻¹ rather than 24.8 cm³ mol⁻¹. In arc basalts, which 297 298 commonly contain ≥ 3 wt.% H₂O (~10 mol%), this difference between the two values translates to a difference of $\sim 20-25$ kg m⁻³ in the density of the liquid. Although a relatively 299 300 small uncertainty in the overall magma density, of the order of 1%, this difference is 301 equivalent to a pressure uncertainty of 1-2 kbars. Tholeiitic basalts are typically much drier, so the difference is smaller, of the order of 10 kg m⁻³ for 1 wt.% H₂O. However, even 302 303 this small difference can be critical when calculating whether plagioclase crystals should 304 be positively or negatively buoyant, as discussed by Ochs and Lange (1999).

Along with the partial molar volume and expansivity of other oxides reported by Lange (1997), the new values for water described above allow our data to be reproduced with a smaller error (see Table 7 for a comparison between both models). The present calibration covers water contents from 0 to about 3 wt% H₂O, and care should be exercised in extrapolating beyond this range. However it is notable that no previous study has detected any dependence of the partial molar volume properties of water (including compressibility and expansivity) on water content.

312

313

Effect of water on $lpha_{glass}$ and $lpha_{liquid}$

The present thermal expansion coefficients of the silicate glasses and liquids are plotted against water content in Fig. 5a-b. Within its 5% estimated uncertainty α varies linearly with water content up to about 11 mol% H₂O for both kinds of phases. Note that from the definition of α as $\frac{1}{v} \frac{dV}{dT}$, it is impossible for α to be a linear function of water content if partial molar volumes and thermal expansivities are also additive, as assumed in equation 10 and supported by the available data. Over the measured range of three or four 320 water contents per base composition, the variations in α are most reasonably described as 321 linear (Fig. 5). For hydrous glasses, all data show an expansivity increase as a function of 322 water content, except for the trachyte series where an apparently slightly negative slope is found ($10^5 \alpha = 2.4738 - 0.01790 x_{H_2O}$). For the trachyte series, a linear extrapolation of the 323 best fit of the data yields a value of 0.7×10^{-5} K⁻¹ for the partial molar thermal expansion 324 325 coefficient of water in glass. For the other compositions, the partial molar thermal expansion coefficient of H_2O in glass varies between 4.8×10^{-5} K⁻¹ to 9.4×10^{-5} K⁻¹. The 326 327 results also point to a small pressure dependence of the expansivity as determined from the 328 differences between the data for compacted and relaxed glasses, where compacted glasses 329 show a higher expansivity (Table 5).

330 In summary, the average of the partial molar thermal expansion cofficient of water in silicate glasses is about $(6.2\pm3.5)\times10^{-5}$ K⁻¹. This is consistent with several previous studies. 331 332 Shelby and McVay (1976), Jewell et al. (1990) and Jewell and Shelby (1992) demonstrated 333 the slight influence of water on thermal expansion for a variety of glasses containing 600 334 or 1850 ppm H_2O . The observations of Tomozawa et al. (1983) for hydrated $Na_2Si_3O_7$ glasses indicate that α_g is twice as great for a sample with 22 mol% H₂O than for the 335 water-free glass, which corresponds to a mean coefficient of about 4×10^{-5} K⁻¹ for the water 336 component. This value is very similar to the figure of 6×10^{-5} K⁻¹ derived from the data of 337 338 Ochs and Lange (1997) for hydrous albite glasses. Although there is some scatter in the 339 extrapolated values, there is no obvious systematic trend as a function of silicate composition. 340

For the liquids, all compositions show an increase of the thermal expansion coefficient as a function of water content. The derived partial molar thermal expansion coefficient of water for silicate melts range from 11×10^{-5} to 36×10^{-5} K⁻¹, and the average of $\bar{\alpha}_{H_2O}^{liq}$ for the hydrous melts studied is about $(24.5 \pm 10) \times 10^{-5}$ K⁻¹. No systematic variation of $\overline{\alpha}_{H_2O}^{liq}$ is observed with the NBO/T of the anhydrous end-members or any other characteristic of the silicate melt composition.

- 347
- 348 Configurational thermal expansion

349 The differences observed between the expansion of hydrated glasses and liquids 350 reflect the existence of configurational contributions to the expansivities of the liquids, which are nonexistent in the glasses. Linear fits of molar volume (cm³ mol⁻¹) and thermal 351 352 expansivity of glasses and supercooled liquids in the albite, tephrite, trachyte and foidite 353 hydrous compositions are reported in Table 8. Because no compositional effects were 354 observed for thermal expansion of glasses, as discussed above, the complexities affecting 355 melts must find their roots in the structural changes that begin to take place at the glass 356 transition. As discussed for the heat capacity or viscosity (e.g. Bouhifd et al., 1998; Richet, 357 1984; and references therein), the thermal expansivity of silicate liquids is made up of 358 vibrational and configurational parts. Hence one can write that:

359
$$\frac{dV_i}{dT} = \frac{dV_i^{vib}}{dT} + \frac{dV_i^{conf}}{dT}$$
(11)

360 where $\frac{dv_i^{vib}}{dT}$ and $\frac{dv_i^{conf}}{dT}$ are the vibrational and configurational contributions, respectively, 361 to $\frac{dv_i}{dT}$. The abrupt jump in thermal expansivity at the glass transition reflects the 362 contribution of $\frac{dv_i^{conf}}{dT}$.

Combining the results for the present glass compositions except the hydrous trachyte series we find that $\frac{dV_i^{vib}}{dT}$ is $(1.5\pm0.5)\times10^{-3}$ cm³ mol⁻¹ K⁻¹ for the water component. With respect to this vibrational contribution to expansivity, water behaves similarly to alkali oxides, with a partial molar value between that of Li₂O and Na₂O (Shelby and McVay, 1976; Richet et al., 2000). 368 For the configurational contribution to expansivity, we find two distinct trends versus 369 the water contents of the liquids: one for polymerized and the other for depolymerized 370 compositions (Fig. 6). For instance, for the three compositions with NBO/T \leq 0.21, a positive slope of $\frac{dV_i^{conf}}{dT}$ versus water content is observed. In contrast, a negative slope is 371 observed for the most depolymerized compositions with NBO/T of 0.86 and 1.51 (for the 372 373 anhydrous end-member). This contrast is consistent with other effects of dissolved water 374 that behave differently depending for polymerized or depolymerized compositions, at least 375 at atmospheric pressure. For instance, the partial molar heat capacity of OH⁻ for 376 depolymerized melts is close to double the value for polymerized melts (Bouhifd et al., 377 2013). Likewise the addition of water increases the Poisson's ratio for polymerized melts, 378 but decreases it for depolymerized melts (Malfait and Sanchez-Valle, 2013). All these 379 features thus support the idea that the solubility mechanisms of water strongly depend on 380 silicate composition and polymerization (e.g. Kohn, 2000; Mysen and Richet, 2005; Xue 381 and Kanzaki, 2006; Malfait and Sanchez-Valle, 2013; Robert et al., 2014; and references 382 therein). The fascinating enigma remains that despite this conclusion, the partial molar 383 properties of the dissolved hydrous component clearly do not depend on water speciation.

384

5. Conclusion

The \overline{V}_{H_2O} at atmospheric pressure can be considered as independent of silicate composition in glasses, and in supercooled liquids near the glass transition temperature, as reported previously by Richet et al. (2000), and Ochs and Lange (1999) and Bouhifd et al. (2001), respectively. This behaviour seems to be valid too at high pressure (up to about 20 GPa) (*e.g.* Malfait et al., 2014*b*; and references therein). This uniform volume of dissolved water in silicate melts will simplify the construction of general density model for H₂O bearing magmas at high pressure and high temperature. However, contrasting trends are

393	observed in this study for the configurational contributions to the expansivity with a
394	positive slope of $\frac{dV_i^{conf}}{dT}$ versus water for the most polymerized compositions and a
395	negative slope for the two most depolymerized compositions. Measurements at high water
396	contents and high temperatures are needed to explore theses effects further, and to
397	determine their importance for magmas inside the Earth.
398	

399

400

401 Acknowledgments. This work has been partly supported by the EU TMR network ERBFMRX 960063 "In situ hydrous melts." M.A. Bouhifd acknowledges the support of 402 403 "ClerVolc program" (the French Government Laboratory of Excellence initiative n°ANR-404 10-LABX-0006, the Région Auvergne and the European Regional Development Fund. 405 This is Laboratory of Excellence ClerVolc contribution number 133). This research was 406 also supported by the National Science Foundation through award EAR-0748411 to A.G. 407 Whittington. We thank Carmen Sanchez-Valle and Rebecca Lange and two anonymous 408 reviewers for constructive and helpful criticisms. 409

410 **References**

414

418

421

424

427

434

437

- 411 Agee, C. B., 2008. Compressibility of water in magma and the prediction of density
 412 crossovers in mantle differentiation. Philosophical Transactions of the Royal Society, A,
 413 366, 4239-4252.
- Behrens, H., Romano, C., Nowak, M., Holtz, F., Dingwell, D.B., 1996. Near-infrared spectroscopic determination of water species in glasses of the system MAlSi₃O₈ (M = Li, Na, K): an interlaboratory study. Chemical Geology 128, 41-63.
- Bottinga, Y., Weill, D.F., 1970. Densities of liquid silicate systems calculated from partial
 molar volumes of oxide components. American Journal of Science 269, 169-182.
- Bottinga, Y., Weill, D.F., Richet, P., 1982. Density calculations for silicate liquids. I. Revised
 method for aluminosilicate compositions. Geochimica et Cosmochimica Acta 46, 909-919.
- Bouhifd, M.A., Courtial, P., Richet, P., 1998. Configurational heat capacities: alkali vs.
 alkaline-earth aluminosilicate liquids. Journal of Non-Crystalline Solids 231, 169-177.
- Bouhifd, M.A., Whittington, A., Richet, P., 2001. Partial molar volume of water in phonolitic
 glasses and liquids. Contributions to Mineralogy and Petrology 142, 235-243.
- Bouhifd, M.A., Whittington, A., Roux, J., Richet, P., 2006. Effect of water on the heat
 capacity of polymerized aluminosilicate melts. Geochimica et Cosmochimica Acta 70,
 711-722.
- Bouhifd, M.A., Whittington, A.G., Withers, A.C., Richet, P., 2013. Heat capacities of hydrous
 silicate glasses and liquids. Chemical Geology 346, 125-134.
- 438 Burnham, C.W., Davis, N.F., 1971. The role of H_2O in silicate melts: I. P-V-T relations in the 439 system NaAlSi₃O₈- H_2O to 10 kilobars and 1000 °C. American Journal of Science 270, 54-440 79.
- 442 Courtial, P., Dingwell, D.B., 1995. Non-linear composition dependence of molar volume of 443 melts in the CaO-Al₂O₃-SiO₂ system. Geochimica et Cosmochimica Acta 59, 3685-3695.
 444
- Courtial, P., Dingwell, D.B., 1999. Densities of melts in the Cao-MgO-Al₂O₃-SiO₂ system.
 American Mineralogist 84, 465-476.
- 447
 448 Haggerty, J.S., Cooper, A.R., Heasley, J.H., 1968. Heat capacity of three inorganic glasses
 449 and liquids and supercooled liquids. Physics and Chemistry of Glasses 9, 47-51.
 - 450
 451 Jing, Z., Karato, S., 2009. The density of volatile bearing melts in the earth's deep mantle:
 452 The role of chemical composition. Chemical Geology 262, 100-107.
 - 453
 - Jewell, J.M., Shelby, J.E., 1992. Effects of water on the properties of sodium aluminosilicate
 glasses. Journal of American Ceramic Society 75, 878-883.
 - Jewell, J.M., Spess, M.S., Shelby, J.E., 1990. Effects of water concentration on the properties
 of commercial soda-lime-silica glasses. Journal of American Ceramic Society 73, 132-135.

459	
439 460	Knoche, R., Dingwell, D.B., Webb, S.L., 1995. Leucogranitic and pegmatitic melt densities:
461	partial molar volumes for SiO ₂ , Al ₂ O ₃ , Na ₂ O, K ₂ O, Rb ₂ O, Cs ₂ O, Li ₂ O, BaO, SrO, CaO,
462	
	MgO, TiO ₂ , B ₂ O ₃ , P ₂ O ₅ , F ₂ O ₋₁ , Ta ₂ O ₅ , Nb ₂ O ₅ , and WO ₃ . Geochimica et Cosmochimica
463	Acta 59, 4645-4652.
464	Kala C. 2000 The disculture methods of methods in eilisets melter a conthesis of meant
465	Kohn, S.C., 2000. The dissolution mechanisms of water in silicate melts: a synthesis of recent
466 467	data. Mineralogical Magazine 64, 389-408.
467 468	Lange, R.A., 1994. The effects of H ₂ O, CO ₂ and F on the density and viscosity of silicate
408 469	melts. Reviews in Mineralogy 30, 331-369.
409	mens. Reviews in wineralogy 50, 551-509.
471	Lange, R.A., 1997. A revised model for the density and thermal expansivity of K ₂ O-Na ₂ O-
472	CaO-MgO-Al ₂ O ₃ -SiO ₂ liquids from 700 to 1900 K: extension to crustal magmatic
473 474	temperatures. Contributions to Mineralogy and Petrology 130, 1-11.
474 475	Lange B.A. Cormichael J.S.E. 1087 Densities of No.O.K.O.Co.O.McO.Eco.Eco.O. Al.O.
	Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na ₂ O-K ₂ O-CaO-MgO-FeO-Fe ₂ O ₃ -Al ₂ O ₃ -
476	TiO_2 -SiO ₂ liquids: New measurements and derived partial molar properties. Geochimica et
477	Cosmochimica Acta 51, 2931-2946.
478	
479	Liu, Y., Nekvasil, H., Long, H., 2002. Water dissolution in albite melts: constraints from ab
480	initio NMR calculations. Geochimica et Cosmochimica Acta 66, 4149-4163.
481	
482	Malfait, W.M., Sanchez-Valle, C., 2013. Effect of water and network connectivity on glass
483	elasticity and melt fragility. Chemical Geology 346, 72-80.
484	
485	Malfait, W.M., Sanchez-Valle, C., Ardia, P., Médard, E., Lerch, P., 2011. Compositional
486	dependent compressibility of dissolved water in silicate glasses. American Mineralogist 96,
487	1402-1409.
488	
489	Malfait, W.M., Seifert, R., Petitgirard, S., Perrillat, J-P., Mezouar, M., Ota, T., Nakamura, E.,
490	Lerch, P., Sanchez-Valle, C., 2014a. Supervolcano eruptions driven by melt buoyancy in
491	large silicic magma chambers. Nature Geoscience 7, 122-125.
492	
493	Malfait, W.M., Seifert, R., Petitgirard, S., Mezouar, M., Ota, T., Sanchez-Valle, C., 2014b.
494	The density of andesitic melts and the compressibility of dissolved water in silicate melts
495	at crustal and upper mantle conditions. Earth and Planetary Science Letters 393, 31-38.
496	
497 408	Mysen, B.O., Acton, M., 1999. Water in H ₂ O-saturated magma-fluid systems: Solubility
498 499	behavior in K ₂ O-Al ₂ O ₃ -SiO ₂ -H ₂ O to 2.0 GPa and 1300 °C. Geochimica et Cosmochimica Acta 63, 3799-3815.
499 500	Acta 05, 5757-5815.
500 501	Mysen, B.O., Richet, P., 2005. Silicate Glasses and Melts: Properties and Structure. Elsevier,
502	Amsterdam.
502	
504	Mysen, B.O., Wheeler, K., 2000. Solubility behavior of water in haploandesitic melts at high
505	pressure and high temperature. American Mineralogist 85, 1128-1142.
506	

- Nowak, M., Behrens, H., 1995. The speciation of water in haplogranitic glasses and melts
 determined by *in situ* near-infrared spectroscopy. Geochimica et Cosmochimica Acta 59,
 3445-3450.
- 510
- 511 Ochs, F.A., Lange, R.A., 1997. The partial molar volume, thermal expansivity, and
 512 compressibility of H₂O in NaAlSi₃O₈ liquid: new measurements and an internally
 513 consistent model. Contributions to Mineralogy and Petrology 129, 155-165.
- 514

517

520

523

526

529

533

- Ochs, F.A., Lange, R.A., 1999. The density of hydrous magmatic liquids. Science 283, 13141317.
- 518 Richet, P., 1984. Viscosity and configurational entropy of silicate melts. Geochimica et 519 Cosmochimica Acta 48, 471-483.
- Richet, P., Lejeune, A.M., Holtz, F., Roux, J., 1996. Water and the viscosity of andesite melts.
 Chemical Geology 128, 185-197.
- Richet, P., Polian, A., 1998. Water as a dense icelike component in silicate glasses. Science281, 396-398.
- Richet, P., Whittington, A., Holtz, F., Behrens, H., Ohlohrst, S., Wilke, M., 2000. Water and
 the density of silicate glasses. Contributions to Mineralogy and Petrology 138, 337-347.
- Robert, E., Whittington, A., Fayon, F., Pichavant, M., Massiot, D., 2001. Structural
 characterization of water-bearing silicate and alumino-silicate glasses by high resolution
 solid state NMR. Chemical Geology 174, 291-305.
- Robert, G., Whittington, A., Stechern, A., Behrens, H., 2014. Heat capacity of hydrous
 basaltic glasses and liquids. Journal of Non-Crystalline Solids 390, 19-30.
- 536

Schmidt, B.C., Riemer, T., Kohn, S.C., Holtz, F., Dupree, R., 2001. Structural implications of
water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water
content and mixed alkali effect. Geochimica et Cosmochimica Acta 65, 2949-2964.

540

547

- Shelby, J.E., McVay, G.L., 1976. Influence of water on the viscosity and thermal expansion of
 sodium trisilicate glasses. Journal of Non-Crystalline Solids 20, 439-449.
- Shen, A., Keppler, H., 1995. Infrared spectroscopy of hydrous silicate melts to 1000 °C and
 10 kbar direct observation of H₂O speciation in a diamond-anvil cell. American
 Mineralogist 80, 1335-1338.
- 548 Silver, L.A., Ihinger, P.D., Stolper, E., 1990. The influence of bulk composition on the
 549 speciation of water in silicate glasses. Contributions to Mineralogy and Petrology 104,
 550 142-162.
- 552 Sipp, A., Richet, P., 2002. Kinetics of volume, enthalpy and viscosity relaxation in glass-553 forming liquids. Journal of non-Crystalline Solids 298, 202-212.
- 554

- Sowerby, J.R., Keppler, H., 1999. Water speciation in rhyolitic melt determined by *in-situ*infrared spectroscopy. American Mineralogist 84, 1843-1849.
- Stolper, E., 1982. Water in silicate glasses: an infrared spectroscopic study. Contributions to
 Mineralogy and Petrology 81, 1-17.
- Tomlison, J.W., Heynes, M.S.R., Bockris, J.O.M., 1958. The structure of liquid silicates: Part
 Molar volumes and expansivities. Transactions Faraday Society 54, 1822-1833.
- Tomozawa, M., Takata, M., Acocella, J., Watson, E.B., Takamori, T., 1983. Thermal
 properties of Na₂O.3SiO₂ glasses with high water content. Journal of Non-Crystalline
 Solids 56, 343-348.
- Toplis, M.J., Richet, P. 2000. Equilibrium density and expansivity of silicate melts in the glass
 transition range. Contributions to Mineralogy and Petrology 139, 672-683.
- 571 Whittington, A.G., Bouhifd, M.A., Richet, P., 2009. The viscosity of hydrous NaAlSi₃O₈ and 572 granitic melts: Configurational entropy models. American Mineralogist 94, 1-16.
- Whittington, A., Richet, P., Behrens, H., Holtz, F., Scaillet, B., 2004. Experimental temperature-X(H₂O)-viscosity relationship for leucogranites and comparison with synthetic silicate liquids. Transactions of the Royal Society of Edinburgh: Earth Sciences 95, 59-71.
- Whittington, A., Richet, P., Polian, A., 2012. Water and the compressibility of silicate glasses:
 a Brillouin spectroscopic study. American Mineralogist 97, 455-467.
- 582 Whittington, A., Richet, P., Holtz, F., 2000. Water and the viscosity of depolymerized 583 aluminosilicate melts. Geochimica et Cosmochimica Acta 64: 3725-3736.
- 584
 585 Whittington, A., Richet, P., Linard, Y., Holtz, F., 2001. The viscosity of hydrous phonolites
 586 and trachytes. Chemical Geology 174, 209-223.
- Xue, X.Y., Kanzaki, M., 2004. Dissolution mechanisms of water in depolymerized silicate
 melts: Constraints from ¹H and ²⁹Si NMR spectroscopy and *ab initio* calculations.
 Geochimica et Cosmochimica Acta 68, 5027-5057.
- Xue, X.Y., Kanzaki, M., 2006. Depolymerization effect of water in aluminosilicate glasses:
 Direct evidence from ¹H ²⁷Al heteronuclear correlation NMR. American Mineralogist 91, 1922-1926.
- 595

560

563

567

570

573

578

581

587

596 **Figure Captions**

Figure 1. Difference between the expansion of compacted and relaxed glasses at a heating rate of 2 K min⁻¹ for the sample "Trach 3.5" sample containing about 10 mol. % H₂O, which was synthesized at 3 kbar and 1300 °C. Note that a constant slope is observed up to T_{13} (temperature at which the viscosity is 10¹³ Pa.s) once a sample hydrated at a high pressure has relaxed to the 1-bar configuration.

603

597

Figure 2. Variations of sample lengths in natural logarithm with temperature for anhydrous and hydrated tephrite liquids. (a) Anhydrous tephrite liquid between 880 and 920 K; (b)
Teph 0.3 liquid (1.74 mol% H₂O) between 820 and 860 K; (c) Teph 1.5 liquid (5.22 mol% H₂O) between 750 and 800 K; (d) Teph 3 liquid (8.31 mol% H₂O) between 670 and 740 K. Vertical scales change between panels because the thermal expansion of hydrous liquids increases at higher water contents.

610

Figure 3. Molar volumes in the glass transition range for hydrous trachyte glasses and supercooled liquids. (a) Anhydrous trachyte glass and liquid; (b) Trach 1.5 (5.42 mol% H₂O) glass and liquid; (c) Trach 3.5 (10.12 mol% H₂O) glass and liquid. The studied temperature ranges are lower for higher water contents since the glass transition temperature decreases with increasing water content.

616

617 **Figure 4**. Thermal expansivity of hydrous melts versus water content (mol%). (a) 618 Experimental results up to about 11 mol%. (b) Extrapolation of the thermal expansivity to 619 water end-member. These extrapolations lead to $\frac{d\overline{V}_{H2O}}{dT} = 15.9 \pm 1.6 \text{ cm}^3 \text{ mol}^{-1} \text{ K}^{-1}$.

620

Figure 5. Coefficients of thermal expansion of hydrous (a) glasses; (b) liquids. All
compositions (apart from the hydrous trachyte glasses) show an increase of the coefficient
of thermal expansion with increasing water content.

624

Figure 6. Configurational contribution to expansivity for anhydrous and hydrous liquids studied in this work. The results for phonolite previously reported by Bouhifd et al. (2001) are also shown. Two different trends are observed: one for the polymerized hydrous melts (with NBO/T \leq 0.21), and the second one for depolymerized melts (with an NBO/T \geq

- 629 0.86). For polymerized hydrous melts, an increase of $\frac{dV_i^{conf}}{dT}$ versus water content is
- 630 observed, whereas the opposite trend is observed for depolymerized melts.

Figure 1.

Figure 2.

T (K)

Figure

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

	Albite	Tephrite	Trachyte	Foidite	Phonolite ^a
SiO ₂	75.30	51.32	69.00	42.98	65.40
Al_2O_3	12.07	8.39	10.54	5.92	12.72
Na ₂ O	12.62	6.93	6.95	7.26	10.03
K ₂ O	0.01	1.95	2.30	0.60	5.28
CaO		16.31	6.15	27.55	2.80
MgO		13.30	4.66	13.48	3.10
TiO ₂		1.79	0.40	2.20	0.66
gfw (g) ^b	65.381	61.468	64.324	59.573	66.810
Nc	3.242	2.872	3.103	2.708	3.196
NBO/T ^d	0.01	0.86	0.21	1.51	0.19

Table 1. Starting anhydrous compositions normalized to mole percent (mol%).

^aThe experimental results for phonolite hydrous compositions are reported in Bouhifd et al. (2001).

^bGram formula weight on the basis of one mole of oxides.

 ^{c}N is the number of atoms per gfw.

^dNon-Bridging Oxygen per Tetrahedra cations ratio.

Sample	H ₂ O ^a	Р	Т	t	
Sample	mol%	(kbar)	1 (°C)	(h)	
Albite					
Alb 0.					
Albite-1.3	3.78	2	1200	65	
Albite-2.2	6.47	2	1200	65	
Tephrite					
Teph 0.					
Teph 0.3	1.74	2	1300	18	
Teph 1.5	5.22	3	1300	48	
Teph 3	8.31	3	1300	45	
Trachyte					
Trach 0.					
Trach 1.5	5.42	2	1300	18	
Trach 3.5	10.12	3	1300	48	
Foidite					
NIQ 0.					
NIQ 1.2	4.03	3	1300	18	
NIQ 2.3	6.83	3	1300	18	
x =		-			

Table 2. Hydration conditions, water contents and densities of hydrated albite, tephrite, trachyte and foidite glasses.

^aWater content measured by Karl-Fischer titration (Whittington *et al.*, 2000).

Sample	H ₂ O mol%	gfw (g)	$ ho_{ m comp}$ (g/cm ³)	V ₀ (comp) (cm ³ /mol)	$ ho_{ m relax}$ (g/cm ³)	V ₀ (relax) (cm ³ /mol)	^a Diff%
Albite							
Alb 0.	0.0	65.385			2.371	27.577	
HAB0.6	2.39	64.249	2.387	26.916	2.376	27.041	0.46
Albite-1.3	3.78	63.596	2.384	26.676	2.373	26.800	0.46
Albite-2.2	6.47	62.322	2.375	26.241	2.366	26.341	0.38
HAB5.2	15.75	57.920	2.345	24.699	2.335	24.805	0.43
Tephrite							
Teph 0.	0.0	61.468			2.677	22.962	
Teph 0.3	1.74	60.712	2.686	22.603	2.677	22.679	0.34
Teph 0.8	2.92	60.200	2.682	22.446	2.671	22.538	0.41
Teph 1.8	4.46	59.530	2.674	22.263	2.661	22.371	0.49
Teph 1.5	5.22	59.201	2.677	22.115	2.664	22.223	0.49
Teph 2.2	7.29	58.301	2.661	21.909	2.644	22.050	0.64
Teph 3	8.31	57.855	2.656	21.783	2.644	21.882	0.45
Trachyte							
Trach 0.	0.0	64.328			2.456	26.192	
Trach 50	2.01	63.399	2.477	25.595	2.466	25.709	0.44
Trach 0.83	2.90	62.985	2.468	25.521	2.452	25.687	0.65
Trach 1.19	4.12	62.419	2.461	25.363	2.429	25.697	1.30
Trach 1.5	5.42	61.818	2.467	25.058	2.452	25.211	0.61
Trach 2.2	7.40	60.901	2.457	24.787	2.429	25.072	1.14
Trach 3.5	10.12	59.641	2.437	24.473	2.427	24.574	0.41
Trach 5	15.59	57.121	2.412	23.682	2.398	23.820	0.58
Foidite							
NIQ 0.	0.0	59.573			2.808	21.215	
NIQ 0.7	2.20	58.658	2.815	20.838	2.806	20.904	0.32
NIQ 1.	3.22	58.237	2.806	20.754	2.795	20.836	0.39
NIQ 1.2	4.03	57.899	2.801	20.671	2.790	20.752	0.39
NIQ 1.8	5.93	57.110	2.791	20.462	2.791	20.462	0.0
NIQ 2.3	6.83	56.736	2.789	20.343	2.766	20.512	0.83
Phonolite							
Phon 0.	0.0	66.810			2.457	27.192	
Phon 0.5B	0.78	65.428	2.472	24.468	2.464	26.554	0.32
Phon 1.6	5.65	64.052	2.460	26.037	2.458	26.059	0.08
Phon 2.2	7.53	63.135	2.458	25.686	2.450	25.769	0.33
Phon 3.2	10.91	61.486	2.438	25.220	2.433	25.272	0.21
Phon 5	15.49	59.251	2.412	24.565	2.406	24.626	0.25

Table 3. Water contents (mol%), gram formula weight on the basis of one mole of oxides, densities of compacted and relaxed glasses, and the corresponding 1 bar volumes.

^a Diff% corresponds to (V₀ (relax) - V₀ (comp)) × 100 / V₀ (relax).

 ρ_{comp} : densities of compacted glasses. ρ_{relax} : relaxed glass densities measured after first thermal expansion measurements up to T_{13} (temperature at which the viscosity is 10^{13} Pa.s).

T (K)	L(mm)	T (K)	L(mm)	T(K)	L(mm)	T(K)	L(mm)
Anhy. A	Albite	Albite	-1.3	Albite-	2.2		
995.6	4.7421	715.5	6.2238	650.3	4.2749		
1005.5	4.7429	725.5	6.2251	660.4	4.2759		
1015.6	4.7436	725.5	6.2250	670.4	4.2769		
1015.6	4.7438	735.5	6.2263	670.5	4.2770		
1025.6	4.7447	745.5	6.2275	680.4	4.2778		
1035.6	4.7455	755.5	6.2286	690.2	4.2788		
1035.7	4.7455						
1045.6	4.7464						
<u>Anhy. Te</u>	phrite	Teph	0.3	Teph	<u>1.5</u>	Teph	<u>13</u>
000.2	0 00 40	020.1	(0005	750.2	4 0277	(00.2)	1 (240
880.3	8.8040	820.1	6.8025	750.3	4.9377	680.3	4.6249
890.4	8.8061	820.2	6.8024	760.4	4.9388	690.4	4.6259
890.3	8.8057	830.1	6.8041	770.4	4.9402	700.5	4.6269
900.4	8.8081	840.2	6.8058	780.3	4.9412	700.5	4.6272
900.4	8.8078	840.2	6.8056	790.3	4.9426	710.5	4.6283
900.5	8.8080	850.1	6.8076	800.3	4.9438	720.4	4.6291
910.6	8.8102	850.2	6.8075			720.5	4.6294
910.6	8.8101	860.1	6.8092			730.5	4.6305
920.8	8.8124	860.2	6.8091			740.5	4.6316
<u>Anhy.</u>	<u>Frachyte</u>	Trach	1.5	Trach	<u>3.5</u>		
916.1	9.8768	730.4	4.2140	650.5	9.1137		
926.1	9.8792	740.3	4.2153	660.5	9.1162		
936.0	9.8815	740.3	4.2149	670.5	9.1185		
936.2	9.8809	750.4	4.2163	680.5	9.1211		
946.1	9.8838	760.3	4.2173	690.5	9.1238		
946.1	9.8832	770.1	4.2185	09 010	<i>)</i> _ 00		
956.1	9.8857						
956.1	9.8862						
966.1	9.8887						
966.1	9.8882						
<u>Anhy. I</u>	Foidite	NIQ	1.2	NIQ	2.3		
850.3	12.8889	760.3	4.0331	680.5	4.5551		
850.5	12.8889	700.3	4.0331	690.5	4.5563		
800.2 870.2	12.8919	780.3	4.0340	700.4	4.5574		
870.2 880.4	12.8947	800.2	4.0330	700.4	4.5572		
880.4 890.1		000.2	4.0309				
	12.9009			710.4	4.5586		
900.3	12.9038			710.4	4.5583		
				720.3	4.5595		

Table 4. Experimental length (L in mm) of super-cooled liquids as a function of temperature.

Table 5. Thermal expansion of the liquids and glasses (compacted and relaxed ones) and temperature intervals of the thermal expansion of liquids.

Sample	H ₂ O mol%	α_{glass}^{*} (10 ⁻⁵ K ⁻¹)	α_{glass}^{**} (10 ⁻⁵ K ⁻¹)	Diff. %	α_{liquid} (10 ⁻⁵ K ⁻¹)	ΔΤ (K)
Albite						
Alb 0.	0.		1.594		5.418	990 - 1050
Albite-1.3	3.78	2.036	1.937	+ 5%	5.900	715 - 755
Albite-2.2	6.47	2.109	2.006	+ 5%	6.701	650 - 690
Tephrite						
Teph 0.	0.		2.242		7.100	880 - 920
Teph 0.3	1.74	2.317	2.376	- 2%	7.220	820 - 860
Teph 1.5	5.22	2.602	2.455	+ 6%	7.424	750 - 800
Teph 3	8.31	2.525	2.467	+ 2%	7.271	670 - 740
Trachyte						
Trach 0.	0.		2.542		7.055	915 - 965
Trach 1.5	5.42	2.335	2.230	+ 5%	7.859	730 -770
Trach 3.5	10.12	2.505	2.371	+ 7%	8.296	650 - 690
Foidite***						
NIQ 0.	0.		2.422		6.946	850 - 900
NIQ 1.2	4.03		2.690		7.064	760 - 800
NIQ 2.3	6.83		2.897		7.212	680 - 720

*Thermal expansion coefficient of compacted glasses as synthesized (*cf.* Table 2). **Thermal expansion coefficient of relaxed glasses. ***Only thermal expansion experiments on relaxed glasses were performed. Diff.% corresponds to $(\alpha_{glass}^* - \alpha_{glass}^{**}) / \alpha_{glass}^*$.

Sample	<i>T</i> (K)	V _{exp}	$V_{cal} (1)^{a}$ O-L (99)	^b Diff%	V _{cal} (2) ^a This work	^b Diff%
. 11 • 4						
Albite	1030	27.00+0.20	27 72	0.65		
Anhydrous		27.90±0.20	27.72	0.65		
Albite	1040	27.91 ± 0.20	27.73	0.65		
	1050	27.93±0.20	27.74	0.69		
	1060	27.95±0.20	27.75	0.73		
	1070	27.96±0.20	27.76	0.73		
	1080	27.98±0.20	27.77	0.76		
Albite-1.3	780	27.05±0.19	27.13	-0.28	27.11	-0.21
	790	27.06±0.19	27.14	-0.27	27.12	-0.20
	800	27.08±0.19	27.15	-0.26	27.14	-0.20
	810	27.10±0.19	27.17	-0.25	27.15	-0.20
	820	27.11±0.19	27.18	-0.24	27.10	-0.20
	830	27.13±0.19	27.19	-0.22	27.18	-0.19
Albite-2.2	710	26.56±0.19	26.77	-0.78	26.70	-0.55
	720	26.58±0.19	26.78	-0.78	26.72	-0.56
	730	26.59±0.19	26.80	-0.77	26.74	-0.56
	740	26.61±0.19	26.81	-0.76	26.76	-0.56
	750	26.63±0.19	26.83	-0.74	26.78	-0.57
	760	26.65±0.19	26.84	-0.73	26.80	-0.57
ſephrite						
Anhydrous	930	23.29±0.16	23.06	0.97		
Tephrite	940	23.30±0.16	23.08	0.93		
·P	950	23.32±0.16	23.10	0.94		
	960	23.33±0.16	23.12	0.92		
	970	23.35±0.17	23.12	0.91		
	980	23.37±0.17	23.16	0.92		
Teph 0.3	880	22.99±0.16	22.91	0.37	22.91	0.36
opii 0.5	890	23.01±0.16	22.93	0.35	22.93	0.34
	900	23.02±0.16	22.95	0.34	22.95	0.32
	910	23.05±0.16	22.93	0.33	22.93	0.32
	920	23.05 ± 0.10 23.06±0.16	22.97	0.33	22.97	0.31
	920 930	23.00 ± 0.10 23.08±0.16	22.99	0.31	22.99	0.29
Coph 1.5	810	22.50±0.16	22.62	-0.54	22.61	-0.46
Teph 1.5	810 820	22.50 ± 0.16 22.52 ± 0.16		-0.34 -0.56		-0.40
			22.65		22.63	
	830	22.54±0.16	22.67	-0.59	22.66	-0.54
	840	22.55±0.16	22.69	-0.61	22.68	-0.58
	850	22.57±0.16	22.71	-0.63	22.71	-0.61
	860	22.59±0.16	22.74	-0.66	22.73	-0.65
Teph 3	750	22.13±0.15	22.34	-0.95	22.28	-0.69
	760	22.14±0.16	22.36	-1.00	22.31	-0.75
	770	22.16±0.16	22.39	-1.04	22.34	-0.82
	780	22.17±0.16	22.41	-1.07	22.37	-0.87
	790	22.19±0.16	22.44	-1.11	22.40	-0.93
	800	22.21±0.16	22.46	-1.15	22.43	-1.00
Frachyte						
Anhydrous	970	26.64±0.19	26.30	1.28		
Trachyte	980	26.66±0.19	26.31	1.31		
-	990	26.68±0.19	26.33	1.31		
	1000	26.70±0.19	26.34	1.35		

 Table 6. Comparison between measured and calculated hydrous liquid volumes (cm³/mol).

	1020	26.74±0.19	26.36	1.42		
Trach 1.5	760	25.47±0.18	25.62	-0.58	25.58	-0.44
	770	25.49±0.18	25.64	-0.57	25.60	-0.44
	780	25.51±0.18	25.65	-0.55	25.62	-0.44
	790	25.53 ± 0.18	25.67	-0.54	25.64	-0.44
	800 810	25.55±0.18 25.57±0.18	25.69 25.70	-0.53 -0.51	25.66 25.68	-0.44 -0.44
	810	25.57±0.18	25.70	-0.51	23.08	-0.44
Trach 3.5	680	24.80±0.17	25.08	-1.13	24.79	-0.65
110011 510	690	24.82±0.17	25.10	-1.12	24.81	-0.67
	700	24.84±0.18	25.12	-1.12	25.01	-0.70
	710	24.86±0.18	25.14	-1.12	25.04	-0.72
	720	24.88±0.18	25.16	-1.12	25.06	-0.75
	730	24.90±0.18	25.18	-1.12	25.09	-0.77
Foidite*		01 54:0 15	21 10	2.04	01.55	0.10
Anhydrous	920	21.54±0.15	21.10	2.04	21.57	-0.13
Foidite	930	21.55 ± 0.15	21.12	1.99	21.59	-0.17 -0.17
	940 950	21.57±0.15 21.58±0.15	21.14 21.16	1.98 1.93	21.61 21.63	-0.17
	950 960	21.60 ± 0.15	21.10	1.93	21.05	-0.22
	970	21.61±0.15	21.10	1.92	21.65	-0.22
	510	21.01=0.15	21.21	1.07	21.07	0.20
NIQ 1.2	800	21.03±0.15	20.75	1.33	21.15	-0.57
	810	21.05±0.15	20.78	1.29	21.18	-0.60
	820	21.06±0.15	20.80	1.25	21.20	-0.67
	830	21.08±0.15	20.82	1.20	21.23	-0.70
	840	21.09±0.15	20.85	1.16	21.25	-0.77
	850	21.11±0.15	20.87	1.11	21.28	-0.80
	750	20.70+0.15	20.55	1 10	20.07	0.44
NIQ 2.3	750	20.78±0.15	20.55	1.12	20.87	-0.44 -0.48
	760 770	20.80±0.15 20.81±0.15	20.57 20.60	1.07 1.01	20.90 20.93	-0.48 -0.57
	780	20.81±0.15 20.83±0.15	20.60	0.96	20.93	-0.62
	790	20.83±0.15 20.84±0.15	20.65	0.90	20.90	-0.02
	800	20.86±0.15	20.68	0.85	21.02	-0.76
Phonolite						
Anhydrous	920	27.62±0.19	27.37	0.90		
Phonolite	930	27.65±0.19	27.39	0.95		
	940	27.67±0.19	27.40	0.96		
	950	27.69±0.19	27.42	0.98		
	960	27.71±0.19	27.44	0.99		
	970	27.73±0.19	27.45	1.00		
Phon 0.8	850	26.92±0.19	26.99	-0.27	26.99	-0.26
1 11011 0.8	860	26.92 ± 0.19 26.94 ±0.19	20.99	-0.27	26.01	-0.20
	870	26.97±0.19	27.01	-0.23	27.03	-0.23
	880	26.99±0.19	27.05	-0.22	27.05	-0.23
	890	27.01±0.19	27.07	-0.20	27.07	-0.22
	900	27.03±0.19	27.08	-0.19	27.09	-0.21
Phon 1.6	730	26.35±0.18	26.51	-0.61	26.47	-0.43
	740	26.38±0.19	26.53	-0.60	26.49	-0.43
	750	26.40±0.19	26.56	-0.58	26.51	-0.43
	760 770	26.43±0.19	26.58	-0.56	26.54	-0.42
	770 780	26.45 ± 0.19 26.48±0.10	26.60 26.62	-0.55	26.56 26.59	-0.42 -0.42
	/ 80	26.48±0.19	20.02	-0.53	20.39	-0.42
Phon 3.2	620	25.53±0.18	25.75	-0.89	25.60	-0.23
1 11011 J.2	630	25.55 ± 0.18 25.55±0.18	25.78	-0.89	25.62	-0.23
	640	25.58±0.18	25.80	-0.86	25.65	-0.26
	650	25.61±0.18	25.83	-0.85	25.68	-0.27

660	25.64±0.18	25.85	-0.84	25.72	-0.29
670	25.66±0.18	25.88	-0.83	25.74	-0.30

^a V_{cal} (1) is calculated using the model of Lange (1997) and Ochs and Lange (1999). V_{cal} (2) is calculated using the model of Lange (1997) and our new values for $\overline{V}_{H_{2O}}$ and $\frac{d\overline{v}_{H_{2O}}}{dT}$. For the foidite serie V_{cal} (2) is calculated using the following equation:

 $V_{liquid}(T) = \sum X_i \times \left[\overline{V}_i(T_{ref}) + \frac{d\overline{V}_i}{dT} \times (T - T_{ref})\right] + X_{SiO2} X_{CaO} \left[\overline{V}_{SiO2-CaO}(T_{ref}) + \frac{d\overline{V}_{SiO2-CaO}}{dT} \times (T - T_{ref})\right]$

 b Diff% corresponds to $(V_{exp}-V_{cal})\times 100$ / $V_{exp}.$

Oxide	\overline{Vi} (cm ³ /mol)	$d\overline{Vi} / dT$ (cm ³ /m	nol K) Reference
$T_{\rm ref} = 1073 {\rm K}$			
SiO_2	26.86	0.	Lange (1997)
Al_2O_3	37.42	0.	Lange (1997)
MgO	9.57	3.27 10 ⁻³	Lange (1997)
CaO	14.10	3.74 10 ⁻³	Lange (1997)
Na ₂ O	23.88	7.68 10 ⁻³	Lange (1997)
K_2O	38.22	12.08 10 ⁻³	Lange (1997)
TiO ₂ *	28.32	0.	Lange and Carmichael (1987)
TiO ₂ *	23.87	0.	Lange and Carmichael (1987)
$T_{\rm ref} = 1273 {\rm K}$			
H ₂ O	22.89	9.55 10 ⁻³	Ochs and Lange (1999)
H ₂ O	23.80	15.85 10-3	This work
$T_{\rm ref} = 1873 {\rm K}$			
SiO_2	27.297	1.157 10 ⁻³	Courtial and Dingwell (1999)
Al_2O_3	36.666	-1.184 10 ⁻³	Courtial and Dingwell (1999)
MgO	12.662	1.041 10 ⁻³	Courtial and Dingwell (1999)
CaO	20.664	3.756 10 ⁻³	Courtial and Dingwell (1999)
SiO ₂ -CaO	-7.105	-2.138 10 ⁻³	Courtial and Dingwell (1999)

Table 7. Parameters of the liquid volume equation (9)

*The partial molar volume of TiO_2 is 28.32 cm³/mol and 23.87 cm³/mol in sodium and calcium silicate liquids, respectively (Lange and Carmichael, 1987).

Sample		dV/dT) _{glass} ³ cm ³ mol ⁻¹ K	$\Delta T (\mathbf{K})^{\mathbf{a}}$	a _{liquid} (10	$(dV/dT)_{liquid}$ ³ cm ³ mol ⁻¹		$T_{12} (K)^{t}$
Albite			·	· · · · ·			
Alb 0.	27.444	0.44	300-1000	26.353	1.50	990-1050	1032
Albite-1.3	26.644	0.52	300-700	25.802	1.60	715-755	784
Albite-2.2	26.181	0.53	300-640	25.191	1.79	650-690	712
Tephrite							
Teph 0.	22.806	0.52	300-860	21.754	1.65	880-920	933
Teph 0.3	22.516	0.54	300-810	21.526	1.67	820-860	878
Teph 1.5	22.058	0.55	300-740	21.149	1.67	750-800	814
Teph 3	21.719	0.54	300-660	20.910	1.62	670-740	750
Trachyte							
Trach 0.	25.990	0.67	300-900	24.824	1.87	915-965	970
Trach 1.5	25.041	0.57	300-720	23.951	2.00	730-770	760
Trach 3.5	24.398	0.58	300-640	23.396	2.06	650-690	680
Foidite							
NIQ 0.	21.059	0.52	300-830	20.156	1.50	850-900	916
NIQ 1.2	20.583	0.56	300-740	19.848	1.48	760-800	800
NIQ 2.3	20.333	0.60	300-670	19.656	1.50	680-720	750

Table 8. Linear fits of the molar volume (cm³/mol) of glasses and liquids and thermal expansivity of glasses and liquids in the albite, tephrite, trachyte and foidite hydrous compositions.

^a Temperature interval for the experiments for the glasses and super-cooled liquids. ^b T_{12} (K) is the temperature at which the viscosity is 10^{12} Pa.s.