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Abstract-Olivine-dominated (70-80 modal %) achondrite meteorite Lewis CIiff (LEW)
88763 originated from metamorphism and limited partial melting of a FeO-rich parent
body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/
Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to
winonaites, has aD'’O value of 1.19 0.10%., and low bulk-rock Mg/(Mg +Fe) (0.39),
similar to the FeO-rich cumulate achondrite Northwest Africa (NWA) 6693. The similar
bulk-rock major-, minor-, and trace-element abundances of LEW 88763, relative to some
carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and®’0s/*®%0s (0.1262),
implies a FeO- and volatile-rich precursor composition. Lack of fractionation of the rare
earth elements, but a factor of approximately two lower highly siderophile element
abundances in LEW 88763, compared with chondrites, implies limited loss of Fe-Ni-S melts
during metamorphism and anatexis. These results support the generation of high Fe/Mg,
sulbde, and/or metal-rich partial melts from FeO-rich parent bodies during partial melting.
In detail, however, LEW 88763 cannot be a parent composition to any other meteorite
sample, due to highly limited silicate melt loss (0 ta<<5%). As such, LEW 88763 represents
the least-modibed FeO-rich achondrite source composition recognized to date and is distinct
from all other meteorites. LEW 88763 should be reclassiped as an anomalous achondrite
that experienced limited Fe,Ni-FeS melt loss. Lewis Cliff 88763, combined with a growing
collection of FeO-rich meteorites, such as brachinites, brachinite-like achondrites, the
Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important
implications for understanding the initiation of planetary differentiation. Specibcally,
regardless of precursor compositions, partial melting and differentiation processes appear to
be similar on asteroidal bodies spanning a range of initial oxidation states and volatile
contents.

INTRODUCTION displayed by partially melted achondrites emphasize the
wide range of chondritic parental materials and the

Partially melted OprimitiveO achondrite meteorites complex temporal relationship of melting and cooling

offer insights into the earliest stages of planetary experienced by their parent bodies (e.g., Mittlefehldt
differentiation, as they provide evidence for limited et al. 1998). In turn, the processes of melting, volatile-
melting and melt segregation in early-formed asteroids. depletion, and metal-silicate equilibration on small

The

textural, lithological, and chemical diversity asteroidal bodies have potential collateral effects on the
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accretion of larger planets, which ultimately coalesce are revealed on differentiation initiated in FeO-rich,
from smaller bodies during planetary growth (Day partially melted asteroids formed from carbonaceous
2015). Partially melted achondrites include chondrite-like sources.
metamorphosed- and anatectic-chondritic materials,
such as winonaites (Prinz et al. 1980; Benedix et al. SAMPLE AND METHODS
1998) and acapulcoites (e.g., Mittlefehldt et al. 1996), to
lithologies that have witnessed variable degrees of A polished thick section (LEW 88763, 14; total
partial melting, melt extraction, or are themselves surface area= 0.27 cnf) and a bulk-rock fragment
partial-melt products, such as lodranites (e.g., (LEW 88763, 20; total sample weight= 0.202 g) of
Mittlefehldt et al. 1996; McCoy et al. 1997), ureilites LEW 88763 were obtained from the Meteorite Working
(e.g., Warren et al. 2006; Goodrich et al. 2007; Bischoff Group. Petrography of the polished thick section was
et al. 2014), brachinites and brachinite-like achondrites performed using a Nikon petrographic microscope in
(e.g. Mittlefehldt et al. 2003; Day et al. 2012; Gardner- plane-polarized, cross-polarized, and reRected light,
Vandy et al. 2013; Keil 2014), or the oligoclase-rich including production of photomicrograph maps in all
meteorites GRA 06128/9 (e.g., Day et al. 2009, 2012; light formats. Modal abundances were calculated using
Shearer et al. 2010). the photomicrograph maps in conjunction with Image J
While many of these meteorite groups are debned, processing software (methods similar to those in Day
by among other things, the high Mg/(Mg+Fe) of their et al. 2006). Cropped maps contained>4,000,000 pixels
silicates (e.g., winonaites, acapulcoite-lodranites, and were converted to gray scale before being processed
ureilites; e.g., Mittlefehldt et al. 1998), an increasing with Image J. Modes were obtained using a color
array of meteorites are being recognized with more contrast thresholding method, where thresholds were
ferroan compositions, suggestive of evolution from selected based on knowledge of the mineral phases in
distinctive sources. These FeO-rich meteorite typesthe sample. Threshold selections were conbrmed by
include the brachinites, brachinite-like achondrites, cross-calibration with petrography and major mineral
and GRA 06128/9 meteorites (Day et al. 2012), the chemistry.
recrystallized primitive achondrite Tafassasset Both  major and minor element mineral
(Gardner-Vandy et al. 2012) and the poikilitic cumulate compositions were obtained from the polished thick
NWA 6693 (Warren et al. 2013). High-FeO partially section at the University of Tennessee using a Cameca
melted achondrite meteorites are important materials SX-100 electron probe micro-analyzer. All analyses were
for understanding inherent variation in oxygen fugacity made with an accelerating potential of 15 keV and a
and volatile abundances in the early solar system, as beam size of 1l m. Beam currents were 30 nA for
well as for examining the nature of precursor olivines, pyroxenes, and spinels; 20 nA for FeNi metals
OchondriticO parental materials forming planets and and Fe sulbdes; and 10 nA for feldspars. Both natural
planetesimals. and synthetic standards were used to calibrate the EMP
One particular FeO-rich meteorite, Lewis CIliff and standards were measured throughout analytical
88763, is an olivine-dominated stone that was found in sessions to ensure data quality. Background and peak
the Antarctic ice in 1988. It was a small meteorite counting times used were 2880 s and standard PAP
(29 1.69 0.6 cm) with an original mass of 4.1 g and (ZAF) correction procedures were used. Detection limits
has been described as a Brachina-like achondrite with a for silicates and spinels were<0.03 wt% for SiO», TiO,,
dark crystalline interior and fusion crust covering 95% Al,Os;, MgO, CaO, and Na,O; <0.04 wt% for K0,
of the sample (Lindstrom 1991). Further study of LEW V.03, and Cr,Ogz; <0.05 wt% for Cr,O3; MnO, FeO,
88763, notably by Swindle et al. (1998), found the and P,Os; <0.06 wt% for NiO; and <0.1 wt% for BaO.
meteorite to be mainly composed of olivine with For FeNi metal and troilite, detection limits were <0.03
accessory augite, pigeonite, plagioclase, chromite, wt% for Si, P, Mg, Al, and Ti; <0.04 wt% for S, Fe,
whitlockite, ilmenite, troilite, and taenite. These authors Cr, Mn, and Mg; and <0.05 wt% for Co and Ni.
considered that LEW 88763 was an Oolivine-dominated Bulk-rock major and trace element abundances
primitive achondrite [whose] chondritic major element were determined using pressure-assisted digestion of
chemistry and high abundance of siderophile elements LEW 88763 powder in TeRon Parr bomb vessels at the
suggests that it is more primitive than brachinites.O In Scripps Isotope Geochemistry Laboratory (SIGL). The
light of recent discoveries (e.g., GRA 06128/9; NWA powder was digested at 170C in Optima grade
6693) and recognition of a variety of ferroan partially concentrated HF (4 mL) and HNO3 (1 mL) for >72 h
melted achondrite meteorites (e.g., brachinites and in a processing oven along with total procedural blanks,
brachinite-like achondrites), we revisit the petrology and terrestrial basalt standards and the CV3 chondrite
geochemistry of LEW 88763. In doing so, new insights meteorite, Allende (the fragment measured was
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originally obtained by D. Lal), used as an internal quantities (in picograms) of 4.2 1.3 [Re], 2.8 0.3
standard in the SIGL and for cross-comparison with [Pd], 2.0 0.9 [Pt], 13.3 1.3 [Ru], 0.3 0.2 [Ir], and
other Allende aliquots presented in the literature. 0.2 0.1 [Os]. These blanks resulted in negligible
Samples were sequentially dried and taken up in corrections to samples<1%).
concentrated HNOs to remove Ruorides, followed by Oxygen isotope analysis of LEW 88763 was
dilution and doping with indium to monitor performed at the Institut de Physique du Globe-Paris.
instrumental drift during analysis. Major and trace Analytical methods are similar to those documented in
element abundance analyses were obtained using aRumble et al. (1997). BrieRy, prior to analysis, silicate
ThermoScientipc ICAP Qc quadropole inductively grains were separated from each other under alcohol in a
coupled plasmamass spectrometer in low resolution tungsten-carbide mortar and pestle, ultrasonicated in
mode. Analyses were standardized versus referencedilute HCl at room temperature for 240 s to remove
material BHVO-2 that was measured throughout the weathering products, washed with MilliQ water, dried,
analytical run. In addition, four reference materials were and were then separated into magnetic and nonmagnetic
analyzed as OunknownsO (Allende, BIR-1, BHVO-2, and fractions. Nonmagnetic fractions of the meteorite samples
BCR-2) in order to address matrix matching, external were analyzed using laser Buorination along with the San
reproducibility, and accuracy. For major and trace Carlos olivine and garnet standard UWG-2 from the Gore
elements, reproducibility, of the reference materials was Mountain mine, Adirondack Mountains, New York
generally better than 6% (RSD). (Valley et al. 1995). Oxygen isotopic ratios’{0/*¢0, where
Osmium isotope and HSE abundance analyses were X = *¥0 or ’0O) are measured versus an international
performed at the SIGL using methods described in Day standard, V-SMOW (standard mean ocean water), and
et al. (2015). Homogenized powder aliquots of LEW expressed ind notation, according to the following
88763, Allende, and total procedural blanks were equation: &*O = 10009 ([*O/**0)/[*0O/**0gd 1). From
digested in sealed borosilicate Carius tubes, with the delta notation values, D'’O (in per mil, representing
isotopically enriched multi-element spikes ®Ru, 1°%Pd, deviation from the terrestrial fractionation line and given by
18Re, 1%%0s, *4r, 19Pt), and 6 mL of a 1:2 mixture of the following equation: DO =d'O  ([(d*®0/1000 +
multiply TeRon distilled HCI and HNO 5 that was treated  1)°%?* 1] 9 1000) was then calculated. Values off*®0
with H,0, to expunge Os. Samples were digested to awere normalized to UWG-2 garnet with d*®0 = 5.75% .
maximum temperature of 270°C in an oven for 96 h. Measurement of the San Carlos olivine and UWG-2 garnet
Osmium was triply extracted from the acid using CC|] standard aliquots that were measured gave (in per mil) 2 SD
and then back-extracted into HBr (Cohen and Waters uncertainties ond*’O = 0.09, ond*®0 = 0.17, and for
1996), prior to puribcation by microdistillation (Birck DO = 0.004 0.018 (2 ; n = 18). In-run uncertainties
et al. 1997). Rhenium and the other HSE were recovered for individual measurements were<0.06& for d'’O and
and puribed from the residual solutions using standard <0.038 for d*O.
anion exchange separation techniques. Isotopic
compositions of Os were measured in negative-ion mode RESULTS
on a ThermoScientibc Triton thermal ionization mass
spectrometer at the SIGL. Rhenium, Pd, Pt, Ru, and Ir Petrography and Mineral Chemistry
were measured using a Cetac Aridus 1l desolvating
nebulizer coupled to a ThermoScientibc ICAP g ICP-MS. Petrography and mineral chemistry of polished
OfRRine corrections for Os involved an oxide correction; section LEW 88763, 14 agrees well with a prior study of
an iterative fractionation correction using the meteorite (Swindle etal. 1998). The section
1920s/*%%0s = 3.08271; a'°®0s spike subtraction; and represents a slice through the meteorite where two sides
Pnally, an Os blank subtraction. Reported precision for have an uneven distribution of fusion crust, one side of
18710518805, determined by repeated measurement of the which is ~2001 m thick, and the other of which is
UMCP Johnson Matthey standard was better than ~501 m thick (Fig. 1). The uneven distribution is
0.2% (2 SD; 0.11390 20;n = 5). Measured Re, Ir, Pt, consistent with LEW 88763 representing a fragment of
Pd, and Ru isotopic ratios for sample solutions were a larger meteoroid that broke up during entry, or
corrected for mass fractionation using the deviation of preferred aerodynamic orientation during atmospheric
the standard average run on the day over the natural entry. Darkened regions of alteration, Pne-grained
ratio for the element. Reproducibility on HSE analyses matrix, and porosity make up nearly 50% of the
using the iCAP g was better than 0.5% (2 SD) for polished section (Table 1). Major mineral phases
0.5 ppb solutions, and all reported values are blank observed were olivine {80 modal %, after removal of
corrected. The total procedural blanks 6 = 2) run with  the dark matrix and fusion crust), high- and low-Ca
the samples had ®’0s/*®*®0s = 0.401 0.010, with pyroxene (9.5%), plagioclase 6%), and opaque
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phases {3%) including chromite (1.3%), FeNi metal

(0.5%), and troilite (1.3%).
observed in LEW 88763, 14.

No phosphates were

Fig. 1. Photomosaics of LEW 88763, 14 in (a) plane-
polarized, (b) cross-polarized, and (c) reRected light. Boundary
of the fusion crust (FC) is shown as a dashed white line in (a)
and (c). Note the apparent darkening of the interior of the
meteorite closest to the fusion crust (a, b) and the high
concentration of bright sulbde/metals in the center of the
meteorite (c). Arrows in (a) and (b) denote possible relict
chondrule (see text for details).

Table 1. Mineral modes in LEW 88763 (in %).

LEW LEW LEW

88763, 14 88763, 14 88763, 1¥F
Olivine 42.2 81.6 71
Pyroxene 4.9 5.8 7
Plagioclase 3.0 9.5 10
Opaque phases 15 3.1 6
Chromite 0.6 1.3 -
FeNi 0.3 0.5 -
FeS 0.6 1.3 -
Fusion crust/matrix 46.8 - -
Cracks/alteration - - 7
Total 100 100 101

@Normalized to remove fusion crust.
bFrom Swindle et al. (1998).

Olivine grains are subhedral to anhedral, generally
do not exceed 0.4 mm in diameter, and are of generally
uniform size. All other mineral phases are generally less
than 0.25 mm in diameter and are typically interstitial to,
or trapped within, olivine (Fig. 2). Swindle et al. (1998)
measured higher modal abundances of plagioclase and
opaque phases in polished section LEW 88763, 11, but
also found that crystals were anhedral but of relatively
uniform size. A few Pne-grained regions with oval shape
occur within LEW 88763, 14 that may correspond to
relict chondrules (Fig. 1), as also observed by Gardner-
Vandy (2012). The meteorite has an overall texture that
is less equilibrated than many brachinites (e.g., Warren
and Kallemeyn 1989; Mittlefehldt et al. 2003; Day et al.
2012; Keil 2014), and is texturally similar to some
members of the winonaite meteorite group (e.g., Mount
Morris, Winona; Benedix et al. 1998; Corder et al. 2014).

Silicate mineral compositions measured in LEW
88763, 14 conbrm the FeO-rich nature of the meteorite
(Swindle et al. 1998) with Fgso o2 Olivine (n = 14),
and low-Ca pyroxene (W3 13ENg7o 10 N=7)
and high-Ca pyroxenes (WQgo 0sENass 02 N =6)
with a high ferrosillite component, with olivine and
pyroxene compositions being approximately in
equilibrium (Table 2; Fig. 3). These average two
pyroxene compositions correspond to an equilibration
temperature of ~1080 50 °C (Anderson et al. 1993).
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Fig. 2. Back-scatter electron images of regions of LEW 88763, 14, illustrating the presence of interstitial orthopyroxene (opx),

clinopyroxene (cpx), plagioclase (pl), chromite (cr), troilite (tr),

J. M. D. Day et al.

and metal (FeNi). Lower images (c) and (d) are darkened to

emphasize distribution of FeNi metals and troilite in the meteorite.

Mineral compositions in LEW 88763, 14 for feldspar
(An30_1 G.ZAbGG.S 54, N= 15), CI’-Spinel (Cr#: 81.0
0.9; n = 16), taenite (44.2 1.2 wt% Fe, 53.1 0.8 wt
%; n = 14), and troilite (0.9 wt% Ni; n = 15; Table 3)
are similar to mineral compositions measured in LEW
88763, 11 (Swindle et al. 1998).

Bulk-Rock Major and Trace Element Composition

In addition to reported values of major, minor, and
trace elements in LEW 88763 by Nakamura and
Morikawa (1993) and Swindle et al. (1998), we report
48 elemental abundances for LEW 88763, 20 (Table 4).
The new data are generally consistent with previously
published data (Fig. 4), with the exception of some of

the rare earth elements (REE), Sr, Se, and Ni measured

by Swindle et al. (1998). Differences in Se and Ni

probably reRect different proportions of metal and
sulbde in portions of the meteorite that were measured
(cf. ~3% versus~6% modal opaques in LEW 88763, 14
and, 11; Table 1) whereas, the new REE data form a
coherent, Rat, Cl chondrite-like pattern and are more
similar to isotope dilution REE abundances measured
by Nakamura and Morikawa (1993). Our analysis of
LEW 88763 indicates a positive Eu anomaly (E&
Eu = 1.11), whereas Nakamura and Morikawa (1993)
measured a negative Eu anomaly, indicting uneven
distribution of plagioclase any phosphate in the
meteorite. This is consistent with both the uneven
distribution of plagioclase in LEW 88763 (Table 1) and
the presence of phosphate in LEW 88763, 11 (Swindle
et al. 1998), but its absence in LEW 88763, 14.
Abundances of Al, Fe, Mg, Ca, P, and Cr in LEW
88763 are similar to carbonaceous chondrite Allende,
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Fig. 3. Pyroxene quadrilateral and olivine forsterite content
diagrams for LEW 88763 versus primitive achondrites
including: acapulcoite-lodranite-winonaites (A-L-W), ureilites,

brachinites (Brach.), Tafassasset (Tf.), NWA 6693, the GRA
06128/9 meteorites, and NWA 011. Other meteorite data from
Benedix et al. (1998), Mittlefehldt et al. (1998), Yamaguchi
et al. (2002), Floss et al. (2005), Day et al. (2012), Gardner-
Vandy et al. (2012), and Warren et al. (2013).

whereas Na and Mn abundances are factors of
approximately two to three times higher, and Co and
Ni contents are a factor of approximately two lower,
than in chondrites. The Mg/(Mg+Fe) ratio of LEW
88763 is 0.39 and is within the range of Mg/(MgFe)
for bulk samples of Allende (0.38-0.41; Table 4). These
results are similar to those obtained by Swindle et al.
(1998), who argued for limited differentiation of a
chondritic precursor to produce LEW 88763. Some
volatile and moderately volatile elements show strong
depletions relative to CI chondrite compositions,
including Pb, Cs, Sn, Ge, and Zn.

Highly Siderophile Element Abundances and Re-Os
Isotopes

Highly siderophile elements (HSE: Os, Ir, Ru, Pt,
Pd, Re) are within the lower range of chondrites and
within approximately a factor of two of the abundances
measured in Cl chondrite Orgueil (Table 5; Fig. 5).
Slight depletions, relative to Os, Ir, and Ru, are evident
for Pt, Pd, and Re. The measured®’0s/*®0s for LEW

J. M. D. Day et al.

Oxygen Isotopes

New oxygen isotope values obtained for LEW 88763
(Table 6; Fig. 6) are consistent with values reported in
previous studies indicatingD'’O of 1.14 to 1.26&,
with a mean of 1.19 0.10% based on six analyses of
the meteorite from this study, Clayton and Mayeda
(1996), and Greenwood et al. (2012). The oxygen isotope
systematics of LEW 88763 are, therefore, most consistent
with the oxygen isotope signatures of the acapulcoite-
lodranite clan (d'%0 = 3.4  0.8%0, d*’O = 0.7  0.5%o,
DO = 1.1 0.4%; 2r; data from Clayton and
Mayeda 1996), and with NWA 6693 D''O = 1.08%o;
Warren et al. 2013).

DISCUSSION
Effects of Weathering on LEW 88763

Lewis CIiff 88763 shows indications of terrestrial
weathering, with minor alteration of some sulbde grains
and the effect of frictional heating, leading to a
concentric discoloration to the interior of the meteorite
(Fig. 1). LEW 88763 has been shown to contain no
excess“*e, but has a K-Ar age 4.5 Ga and a cosmic-
ray exposure age of 2628 Ma (Swindle et al. 1998); the
residence time on Earth is unconstrained. Assuming
derivation from a reservoir with uniform initial
18710s/*8%0s, it would be anticipated that LEW 88763
would plot near a primordial **’Re-*¥’Os isochron (e.g.,
Smoliar et al. 1996), as is the case for the portions of
Allende that were measured (Fig. 5b). However, this is
not true, and, instead, LEW 88763 lies to the left of the
isochron, with chondritic measured *2’0s/*®%0s
unsupported by low Re/Os. This non-isochronous
behavior is similar to that observed for some ureilites
(Rankenburg et al. 2007), brachinites, and brachinite-
like achondrites (Day etal. 2012). In the case of
brachinites and brachinite-like achondrites, it has been
demonstrated that low Re/Os refRects mobility of Re
within the meteorites, due to terrestrial alteration (Day
et al. 2012; Hyde et al. 2014). Rhenium, rather than Os
mobility with the meteorites, is indicated by the
variability in Re concentrations and Re/Os measured

88763 is similar to carbonaceous chondrites, including among different splits of achondrite meteorites (e.g.,
Allende, at 0.1262 (Fig. 5b). However, the low Zag [b]), from the alteration of sulbde and metal.
measured *®'Re/*®%0s (0.26) leads to supra-chondritic Consequently, this would mean portions of LEW 88763
initial 8’0s/*®%0s, assuming an ancient crystallization are likely to have high Re/Os due to addition of Re,
age >4.5 Ga (e.g., Swindle et al. 1998; assumed at 4.56and both high and low Re/Os has been observed
in Table 5), implying recent disturbance of the Re-Os in aliquots of ureilite and brachinite meteorites
isotope  system. Consequently, calculated [Rg¢ (Rankenburg et al. 2008; Day et al. 2012).
concentration, based on the assumption of a chondritic The susceptibility of sulbdes and metalsthe
initial *8’0s/*®®0s at the time of sample formation, is primary hosts of the HSE in the studied samples-to
higher than measured Re in LEW 88763. terrestrial aqueous alteration is well documented in
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Table 3. Average compositions of metal and sulPde mineral phases (in wt%) in LEW 88763.
Si S Fe Co Ni P Mn Mg Al Ti Total Ni/Co FelCo FelS
FeNi Av. 0.05 0.02 441 1.79 53.1 <0.03 0.01 0.02 0.17 <0.03 99.3 29.7 247 -
n=15 2 0.03 0.01 122 0.05 0.76 — 0.01 0.03 0.09 0.01 0.8 1.03 0.96 —
FeS Av. 001 36.1 62.1 0.14 0.90 <0.03 0.01 <0.03 <0.03 <0.08 99.2 - - 1.72
n=15 2 0.01 0.24 0.63 0.06 0.57 — 0.01 - - - 0.4 - - 0.04

chondrites (e.g., Horan et al. 2010) and sulbde- and
metal-rich achondrites (e.g., Shearer et al. 2010; Day
et al. 2012; Hyde et al. 2014). However Os, Ir, Ru, Pt,
and Pd do not appear to have been modibed within the
meteorite. From our measurements and those of
Swindle et al. (1998), U is anomalously elevated in

LEW 88763 relative to Cl chondrite suggesting
potential modipcation of U through terrestrial
alteration. For other elements, there is no clear

indication for modibcations from terrestrial alteration,

such as during hot-desert alteration, where LREE
modibcation can be particularly problematic (e.g.,
Barrat et al. 1999; Crozaz et al. 2003). For example, Sr
and Ba are in chondritic abundances in LEW 88763 and
there is no pronounced Ce-anomaly. Therefore, it is

is consistent with the REE pattern for LEW 88763 that
is nearly Rat and similar to Cl chondrites and the
Brachina meteorite. In contrast, some other FeO-rich
partially melted achondrites (e.g., NWA 6693;
Tafassasset) appear to be REE-depleted cumulates or
strongly depleted melt residues, rather than
metamorphosed chondritic compositions (Fig. 7).

The HSE are sensitive monitors of Fe-Ni-S melt
loss and parameterization has been produced to
describe HSE fractionation during differentiation of a
chondritic composition (Chabot and Jones 2003). Fe-
Ni-S melt loss, while evident in LEW 88763, to describe
the factor of approximately two lower absolute
siderophile (e.g., Se, Ni, Co) and HSE abundances
compared with chondrites, was not extensive and did

assumed that other geochemical systematics are alsonot greatly fractionate Pd/Os, Ir/Os, or Pt/Os (Fig. 8).

unaffected by weathering in the meteorite.

Partial Melting and Metamorphic Constraints on LEW
88763

Lewis Cliff 88763 experienced limited melt loss and

essentially represents a metamorphosed and anatectic-

chondritic composition. Pyroxene thermometry indicates
that temperatures >1000°C were reached during
formation, consistent with the near-absence of
structures indicative of accreted nebular components.
For example, relict chondrules were not observed in the

These ratios in LEW 88763 are remarkably similar to

carbonaceous chondrites, especially CR chondrites,
which are characterized by typically higher Ir/Os and

lower measured '#’0s/*®®0s than in enstatite or

ordinary chondrites (e.g., Walker et al. 2002; Horan

et al. 2003; Fischer-G@dde etal. 2010). Modeling

illustrates that, at most, a few percent of Fe-Ni-S melt

loss was experienced by LEW 88763 during anatexis.

A Carbonaceous Chondrite Precursor Composition

LEW 88763 is a residue after limited partial

study of Swindle et al. (1998), have been observed by melting, similar to the origin of some winonaites (e.g.,
Gardner-Vandy (2012), and some oval structures in Benedix et al. 1998), with which it shares strong textural
LEW 88763, 14, which are 1 mm in diameter, could be similarities. On the other hand, LEW 88763 has lower
tentatively assigned as relict chondrules (Fig. 1). These Mg/(Mg +Fe) compared with winonaites and, while
observations suggest temperatures sufbcient to inducesimilar to brachinite meteorites, it has a more negative

Fe-Ni-S melting (~988 °C) and, potentially, enabled the
onset of silicate melting $1050°C; e.g., Jurewicz et al.
1991, 1995; Feldstein et al. 2001; Gardner-Vandy et al.
2013; Usui et al. 2015), but may not have completely
destroyed relict structures.

Modeling of the REE abundances reveals extremely
limited partial melt loss (0 to <<5%) to explain the
composition of LEW 88763 (Fig. 7). The uncertainty on
the estimate of partial melt loss comes from the choice
of model parameters and starting compositions. It is
therefore likely that any onset of silicate melting led to
localized redistribution of silicate phases, rather than
extraction of a signibcant silicate melt component. This

DO value than any of these meteorite groups. The low
DY0 ( 1.1% ) and *®’0s/*®¥0s (0.1262) values of LEW
88763 also preclude possible genetic links with ordinary
(D0 = >0& ; '®'0s/*®®s=~0.128) or enstatite
chondrite groups O''0 = ~0& ; %’0s/*%%0s = ~0.128).
Many aspects of the chemistry of LEW 88763 indicate
that the chondritic source involved in its genesis was
similar to carbonaceous chondrites. The low Mg/
(Mg+Fe) of LEW 88763 (0.39) is similar to the CV3
carbonaceous chondrite Allende. Interelement ratios of
the HSE, including long-term Re/Os, as measured by
1870s/'®80s, are similar to carbonaceous chondrites.
Finally, the oxygen isotope systematics of LEW 88763
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Fig. 4. Cl chondrite normalized multi-element diagram for
LEW 88763, 20, measured in this study relative to aliquots of
LEW 88763 measured in previous studies (Nakamura and
Morikawa [1993] and Swindle et al. [1998]). CI chondrite
normalization is from McDonough and Sun (1995). Note, the
normalization value for U is 0.00741 g g *, whereas measured
U in the Allende CV3 chondrite from this study was ~60%
higher (0.01231g g %).

are within the range of CR, CH, CB, and possibly CV-

CK, or CM carbonaceous chondrites groups (e.g.,
Clayton and Mayeda 1996). For example, comparison
of the elemental abundances of LEW 88763 ordered
by condensation temperature, illustrates that it is
similarly volatile- and moderately volatile element-rich

compared with Allende, as well as with other FeO-rich
partially melted achondrite meteorites (Fig. 9). The

preponderance of evidence is that LEW 88763 represents

a metamorphic product from a carbonaceous chondrite
source composition, with the strongest existing similarities
to CR chondrites.

Implications for Melting Processes in FeO-Rich Parent
Bodies

Due to the differing compatibility of Fe and Mg
during partial melting, Mg is generally retained in the
residue, relative to Fe. This simple relationship is a
foundation for the fundamental understanding of

1759

et al. 2012), with the Oeucrite-likeO meteorite NWA 011
perhaps representing an example of a potential extrusive
melt product of such a system (Fig. 10).

As noted by Warren et al. (2013), LEW 88763 and
NWA 6693 share similar oxygen isotope characteristics,
with LEW 88763 representing an achondrite that
experienced limited partial melting, whereas NWA 6693
is interpreted as an igneous cumulate. It is impossible,
however, for NWA 6693 to be a direct melt product
of LEW 88763. This is because LEW 88763 has
experienced partial melting that is too limited to generate
a NWA 6693-like composition, and instead, LEW 88763
represents the least-modibPed FeO-rich achondrite source
composition recognized to date. Thus, while NWA 6693
and LEW 88763 may originate from the same (genetic)
parent body, they indicate that complex melting processes
are potentially exhibited on individual parent bodies. For
example, the origin of LEW 88763 and NWA 6693 from
the same parent body can potentially be reconciled if
melting was restricted due to relatively late parent-body
construction as2®Al was almost extinct, or due to impact
disruption (Rubin 2007). A possible scenario includes the
variable heating of an asteroidal parent body sufbcient to
lead to nascent (sulbde-rich?) core formation, partial-melt
residues, and high Fe/Mg cumulates and melts, but
equally to leave portions of the asteroid partially
heated and metamorphosed or, potentially, completely
unmetamorphosed. Many aspects of models for melting
processes on asteroidal parent bodies appear to be
common to both FeO-rich, as well as more reduced
partially melted achondrites.

Whatever the exact relationship of FeO-rich
primitive achondrites to one another, the identibcation
of LEW 88763 as a metamorphosed and anatectic melt
from a carbonaceous chondrite source has some
important implications for general models of planetary
differentiation. First, the distinction between chondritic
and achondritic materials subjected to metamorphism
and anatexis becomes yet more diffuse. Lewis CIiff
88763 has chemical similarities to some carbonaceous
chondrites, yet the mineralogy of LEW 88763 is
dominated by olivine. The relationship is similar to
winonaites, which are interpreted as metamorphosed

melting processes in planetary bodies and explains the chondrites and have high Mg/(Mg+Fe) (Benedix et al.

lower Mg/(Mg +Fe) in melts relative to (mantle) source
residues in Earth, Mars, or the Moon (e.g., Fig. 10). The
observation of similar D'*’O values between brachinites

1998). Second, the possible relationship between LEW
88763 and NWA 6693, suggested fronD*’O, indicates
that yet another FeO-rich asteroidal parent body

and the GRA 06128/9 oligoclase-rich achondrites has led generated Fe-rich partial melts on an asteroid (e.g., Day
to models of the generation of olivine-rich residues and et al. 2009, 2012; Gardner-Vandy et al. 2012). It is
feldspar-rich melts during 13-30% partial melting of a remarkable that an increasing number of FeO-rich
FeO-rich parent body (Day et al. 2009, 2012). Similar achondrites are being recognized with variable and low
relationships have been invoked for FeO-rich achondrite D'’O values. Given that carbonaceous chondrites have
Tafassasset and the CR chondrites, although they cannot generally lower D*’O values than ordinary or enstatite
be directly related by partial melting (Gardner-Vandy chondrites, this relationship implies that asteroidal
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Fig. 5. a) Cl chondrite normalized highly siderophile element 1 2 3 4 5 6 7 8 9
abundances for LEW 88763 (this study and Swindle et al.
1998) and Allende versus chondritic meteorites and b) Re-Os 8180 (%0)
isotope diagram showing the 4.568 Ga IIIAB iron reference

isochron (Smoliar et al. 1996). Chondrite normalization and Fig. 6. Oxygen isotope systematics of LEW 88763 compared

chondrite data from Horan et al. (2003). with other primitive _achondrites plotted as (a) d*®o versus
. . d*0O and (b) d*°O versus D'O. BLA = brachinite-like
Table 6. Oxygen isotope composition of LEW 88763. achondrites; ~ HED = howardite-eucrite-diogenites;  Acap-

d®o dlo DO Reference and Lodran = acapulcoite-lodranites. Terrestrial fractionation line

Sample type %) (%) (%) remarks (TFL;  d'0 =0.5249 d'®0); carbonaceous _ chondrite
, anhydrous mineral like (CCAM; d*’0 = 0.9419 d®0  4);
LEW 88763, 20 2389  0.115 1.136 This study and ordinary (H, L, LL), enstatite (E), and carbonaceous
Repeat 2380 0111 1.135 chondrite (CM, CV, CR, CH, CB) belds from Clayton (2010).
Repeat 2.449 0.061 1.221 Cl chondrite compositions plot off the top right of (a).
Average 2.406 0.096 1.164 Published data are from Clayton and Mayeda (1996), Day
2 SD 0.075 0.060 0.099 et al. (2009, 2012), Greenwood et al. (2012), Gardner-Vandy
LEW 88763 2.47 0.10 1.19  Untreated, 2 et al. (2012), Warren et al. (2013), and references therein.
replicates
‘(s?zeg\gfg)d Fe-rich melts and Mg-rich residues on asteroidal parent
LEW 88763 237 0.03 1.26  Clayton and bod|e_s with \{a_rl_able FeO, and he_n_ce ve_ma_ble oxygen
Mayeda (1996) fugqcny and_ initial source.composmons, |nd|qates_that
Grand mean 2.41 0.07 1.19  This study, partial melting and Fe-rich melt segregation is a
2 SD 0.08 0.11 0.10 Greenwood common process associated with differentiation
et al. (2012), initiation on all planetary bodies.
Clayton and

Mayeda (1996) A Note on the Classi cation of LEW 88763

parent bodies sampled as meteorites today, were Despite long-known and extensive evidence to the
constructed from a range of chondritic precursor contrary (e.g., Swindle et al. 1998), LEW 88763 remains
compositions. Alternatively, evidence for generation of classibed in the Meteoritical Bulletin Database as a
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Fig. 7. Cl chondrite rare earth element diagram for LEW 88763 versus REE patterns obtained for GRA 06128/9 and Brachina
(Day et al. 2009), the average composition of NWA 6693 (Warren et al. 2013), and Tafassasset (Gardner-Vandy et al. 2012;
Gopel et al. 2015). Also shown is a ClI chondrite melting model (Pg. 12 of Day et al. 2012) illustrating 430% partial melting
required to explain the GRA 06128/9 REE compositions. For LEW 88763, very limited silicate melting (0 te<<5%) is required

to explain the heavy REE compositions. Model uses modal proportions of olivine, orthopyroxene, clinopyroxene, and plagioclase
of 0.67/0.18/0.04/0.11 and subequal melting of phases, up to plagioclase exhaustion.

Fig. 8. Plot of Pd/Os versus Ir/Os for LEW 88763 with calculated compositions of metal residues. Also shown are chondrite (Horan
et al. 2003; Fischer-®dde et al. 2010), GRA 06128/9, brachinite, brachinite-like achondrite (Day et al. 2009, 2012), and ureilite
HSE compositions (Rankenburg et al. 2008). The melt calculations model the composition of residues that result from single
episodes of batch melting. The starting HSE composition is the bulk composition of Orgueil with concentrations adjusted assuming
that all of the HSE were originally in metal and that metal comprises 5% of the bulk. Curves show compositions of residues
resulting from no sulfur, and 25% sulfur. Fractions of residue are labeled and are in increments of 5%. Solid metal-liquid metal D
values were calculated using the parameterization of Chabot and Jones (2003). The thick curve denotgdd Os that is two times
greater than parameterized values required to explain brachinite and GRA 06128/9 Pd/Os and Ir/Os. LEW 88763 has Pd/Os, Ir/Os,
and Pt/Os (data not shown) similar to some carbonaceous chondrites, notably CR chondrites (e.g., EET 92042). GQarbonaceous
chondrites; EC = enstatite chondrites; OC= ordinary chondrites. Details of the models are provided in Day et al. (2012).

brachinite or Brachina-like meteorite, with a note that observations of a texture similar to winonaites; nearly
Othe meteorite is an achondrite, very similar to Brachina chondritic refractory elemental abundances; and oxygen
in texture and mineral compositions.O However, isotope compositions strongly dissimilar to brachinites
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Fig. 9. 50% condensation temperature (K) from Lodders
(2003) versus elemental concentration in LEW 88763, Allende
(this study), Brachina (Day et al. 2012), Tafassasset (Gardner-
Vandy et al. 2012), and NWA 6693 (Warren et al. 2013)
double-normalized to CI chondrite (McDonough and Sun
1995) and Fe content.
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Fig. 10. Forsterite composition versus DO diagram.
Forsterite contents in lunar, terrestrial, and martian igneous
products reRRect residues or cumulates (typically, high Mg/
[Mg+Fe]), or differentiated melts (typically, lower Mg/
[Mg+Fe]) that fall on the same mass-dependent three-oxygen
isotope fractionation line. The same relationship, of residues

and differentiated melts, respectively, has been suggested for

brachinites and the oligoclase-rich meteorites, GRA 06128/9
(Day et al. 2009, 2012). LEW 88763 has similaD'’O to

(D17O =~ 0.2; Day etal. 2012) demand that LEW NWA 6693, which is interpreted as a cumulate rock from a

88763 should be reclassibed, likely as an anomalous

ferroan parental composition (Warren et al. 2013), whereas

LEW 88763 can be interpreted as a metamorphosed chondrite

achondrite that experienced limited metal/sulPde l0ss. that experienced limited Fe-Ni-S loss, perhaps offering another

While further work to elucidate Cr and Ti isotopic
composition in LEW 88763 may provide a depPnitive
link with other achondrite meteorites, including NWA

6693 (Warren et al. 2013), the message from these

potential link between asteroidal melt products and partial

residues. Similar relationships are also possible for CR
chondrites, Tafassasset, and possibly even the differentiated
melt product, NWA 011 (e.g., Yamaguchi et al., 2002; Floss
et al. 2005; Gardner-Vandy et al. 2012). Oxygen isotope data

meteorites are that common processes are evidentfor chondrite meteorites are from Clayton (2010) and data for

between parent bodies formed from different initial
source compositions.

CONCLUSIONS

Achondrite meteorite Lewis CIiff (LEW) 88763 is
an olivine-dominated stone containing ~6 modal %
pyroxene; ~10% modal plagioclase; and~3-6 modal %
chromite, FeNi metal, and troilite. Exposure to the
terrestrial atmosphere led to a variable thickness fusion
crust, as well as concentric alteration of the interior of
the meteorite from the fusion crust. The strongest
evidence for recent terrestrial modibcation is the low
Th/U and Re/Os of the meteorite, implying
mobilization of U and Re within the meteorite during
residence on the Antarctic ice. Achondrite LEW 88763

Mars, the Moon, ureilites, winonaites,
lodranites are from Warren et al. (2013).

and acapulcoite-

including Pd/Os, Pt/Os, 1Ir/Os, and measured
18710s/*%80s  (0.1262) ratios, implies a volatile-rich
precursor composition, similar to some carbonaceous
chondrite groups. Lack of strong fractionation of the
rare earth elements, but a factor of approximately two
lower highly siderophile element abundances in LEW
88763, compared with carbonaceous chondrites, implies
limited loss of a sulbde melt during metamorphism and
anatexis. These results support the generation of high
Fe/Mg partial melts from FeO-rich parent bodies
during partial melting.

In detail, LEW 88763 cannot
composition to any meteorite recognized

be a parent
in the

has something of a Osplit-personality,O having (1) terrestrial collection, due to limited silicate melt loss

textures similar to winonaites; (2) a low D*’O value

( 1.1%90) and a low bulk-rock Mg/(Mg +Fe) ratio

(0.39), similar to the FeO-rich cumulate Northwest
Africa (NWA) 6693; and (3) near-chondritic abundances
of many major, minor, and trace elements, including the
rare earth elements. The similar bulk-rock major,
minor, and trace element abundances of LEW 88763,

relative to some carbonaceous chondrites (e.g., Allende),

(0 to <<5%) and an extracted melt that was likely
dominated by Fe-Ni-S. This meteorite represents the
least-modibed FeO-rich achondrite source composition
recognized to date in the meteorite collection.
Combined with evidence of partial melting processes in
FeO-rich meteorites such as brachinites, brachinite-like
achondrites, the Graves Nunataks 06128/9 meteorites,
Northwest Africa 6693, and Tafassasset, the origin of
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LEW 88763 has important implications for the
initiation of planetary differentiation. First, regardless
of precursor compositions (e.g., ordinary, enstatite, or
carbonaceous chondrite source composition), partial
melting and differentiation processes appear to be
similar on asteroidal bodies spanning a range of initial
oxidation states and volatile contents. Second, the range
of DO in FeO-rich achondrites ¢ 0.2 to 1.8 %o)
implies the generation of volatile-rich and oxidized
asteroids through the combination of both *’O-poor
(carbonaceous) and ’O-rich  (ordinary/enstatite)
chondritic sources.
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SUPPORTING INFORMATION Fig S1: Comparison plot of concentrations

measured by ICP-MS (this study) versus concentrations
Additional supporting information may be found in  measured using neutron activation analysis (Swindle
the online version of this article: et al. 1998).




