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Chapter 1

Introduction

Chronological modelling with « ChronoModel »

• Events:
ChronoModel is based on the concept of “Event”. An Event is a point in time
for which we can define a hierarchical Bayesian statistical model.
An event is determined by its unknown calendar date. In ChronoModel, dif-
ferent types of measurement may be combined in order to estimate the date
of the event of interest. These measurements may be 14C ages in radiocarbon,
paleodose measurements in luminescence, inclination, declination or intensity
of the geomagnetic field in archeaomagnetism, typo-chronological references or
Gaussian measurements.

• Phases:
A Phase is a group of Events. It is defined on the basis of archaeological,
geological, environmental,... criteria we want to locate in time. Unlike “Event”
model, the Phase does not respond to a statistical model: indeed we do not know
how Events can be a priori distributed in a phase. However, we can estimate
the beginning, end or duration of a phase from the Events that are included in
it. Prior information may be added : the Events of a phase may be constrained
by the known duration or a hiatus between two phases may be inserted (this
imposes a temporal order between the two groups of Events).

• Temporal order relationships :
Events and/or Phases may be linked by temporal order relationships. These
order relations are defined in different ways: by the stratigraphic relationship
(physical relationship observed in the field) or by criteria of stylistic, technical,
architectural etc. development which may be a priori known.

1
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Chapter 2

Bayesian modelling

2.1 Event model

2.1.1 Definition of the model

In ChronoModel, an event is determined by its unknown calendar date θ. Assuming
that this event can reliably be associated with one or several suitable samples, out
of which measurements can be made and calendar dates can be obtained, the Event
model combines these calendar dates, assumed to be contemporaneous, in order to
estimate the unknown calendar date θ.

The following equation shows the stochastic relationship between θ, the calendar
date associated with the event of interest, and t1, ...tn, the calendar dates obtained
from the n measurements, Mi, assumed to be related to the event.

ti = θ + σi εi (2.1)

where εi ∼ N(0, 1), for i = 1 to n. ε1, ..., εn are independent and σ1, ..., σn are the
unknown standard deviation parameters.
Such a model means that each calendar date, ti, assumed to be related to the event
of interest and contemporaneous to the other calendar dates tj,∀j 6=i, can be affected
by errors σi that can come from different sources [1, 2]. Moreover, conditionally on θ
and on σ2

i , ti is independent of all tj, for j 6= i.

ChronoModel is actually based on a bayesian hierarchical model. Such a model can
easily be represented by a directed acyclic graph (DAG) that defines the dependencies
between the variables of the model [3]. A DAG is formed by nodes and edges. A node

3



4 CHAPTER 2. BAYESIAN MODELLING

can either represent an observation (data) or a parameter, that can be stochastic or
deterministic. An edge is a directed arc that represents dependencies between two
nodes. The edge starts at the parent node and heads to the child node. This rela-
tionship is often a stochastic one (single arc) but it may also be a deterministic one
(double arc). The DAG can be read as follow, each node of the DAG is, conditionally
on all its parent nodes, independent of all other nodes except of its child nodes.
The following DAG is a representation of the Event model implemented in ChronoModel.

θ

i = 1 to n

σ2
i

ti

Figure 2.1 – DAG representation of the Event model. Directed edges represent stochastic relation-
ships between two variables, blue circles represent unknown parameters. Rectangular plates are used
to show repeated conditionally independent parameters.

Prior information about θ and σ1, ...σn are defined in section 2.1.2. Then the like-
lihood function is defined in section 2.1.3. According to the likelihood, three main
types of data information may be implemented into ChronoModel: a single measure-
ment with its laboratory error, a combination of multiple radiocarbon measurements
or an interval referring to a typo-chronological reference. These different types are
explained in section 2.1.3. Then the wiggle matching case, specific to the radiocarbon
dating method, is explained in section 2.1.4. Finally, the case where several events
are related by a temporal order contraint is explained.

2.1.2 Prior information about θ and σ1, ..., σn

Without any other constraints than the beginning, τB, and the end, τE, of the study
period (τB and τE are fixed parameters), the unknown calendar date θ is assumed to
have a continuous uniform distribution on the study period. Hence the prior density
function of θ is:

p(θ) =
1

τE − τB
1[τB ,τE ](θ) (2.2)

The variances σ2
i , for i = 1 to n, are assumed to have a shrinkage uniform distribution
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[4, 5]. Their prior density function is the following one:

p(σ2
i ) =

s20
(s20 + σ2

i )
2

(2.3)

where
1

s20
=

1

n

n∑
i=1

1

ŝ2i
(2.4)

with ŝ2i = Var(ti|Mi) the variance of the posterior distribution of ti obtained after indi-
vidual calibration (See section 2.1.3.2) or ŝ2i = Var(ti|ti,A, ti,B) the variance estimated
out of a typo-chronological reference (See section 2.1.3.5).

2.1.3 Likelihood

2.1.3.1 Observations

In ChronoModel, these different types of measurement may be combined in order to
estimate the date of the event of interest. The measurement may represent :

• a 14C age in radiocarbon

• a paleodose measurement in luminescence

• an inclination, a declination or an intensity of the geomagnetic field in archeao-

magnetism

• a typo-chronological reference (for instance, an interval of ceramic dates)

• a Gaussian measurement with known variance

If needed, these measurements, Mi, may be converted by ChronoModel into calendar
dates using appropriate calibration curves.

2.1.3.2 Individual calibration

Most measurements have to be calibrated into calendar dates. This is the case of radio-
carbon, archeaomanetism, paleodose or even Gaussian ages. ChronoModel may con-
vert these measurements into calendar dates using an appropriate calibration curve.
If the observation about ti comes from only one measurement that needs to be cali-
brated, then the DAG presented in Figure 2.2 applies.
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ti

µi

s2i
Mi

Figure 2.2 – DAG representation of an individual calibration, that is the conversion of one measure-
ment into a calendar date.
Directed edges represent stochastic relationships between two variables, blue circles represent model
parameters, pink rectangular nodes represent stochastic observed data, pink triangles represent ob-
served and deterministic data.

Let’s use the following notations: Mi is the measurement made by the laboratory and
s2i , its variance. In ChronoModel, Mi is assumed to follow a normal distribution with
mean µi, the true age, and with a variance s2i , the laboratory error. This may be
expressed by the following equation :

Mi = µi + si ε
Lab
i (2.5)

where εLabi ∼ N(0, 1).
We assume that µi follows a normal distribution with mean gi(ti) and variance σ2

gi
(ti),

where gi is the function of calibration associated with the type of measurement ofMi.

µi = gi(ti) + σgi(ti) ε
Cal
i (2.6)

Hence pooling Equations 2.5 and 2.6 together,

Mi = gi(ti) + si ε
Lab
i + σgi(ti) ε

Cal
i = gi(ti) + Si ε

LabCal
i (2.7)

where εLabCali ∼ N(0, 1) and S2
i = s2i + σ2

gi
(ti).

So, conditionally on ti,Mi follows a normal distribution with mean gi(ti) and variance
S2
i .

2.1.3.3 Individual calibration and reservoir effect

This is a special case of radiocarbon dating. If needed, a reservoir effect may be added
to a measurement Mi. Hence, the DAG 2.3 applies.
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ti

µi

s2i +R2
i

Mi −∆i

Figure 2.3 – DAG representation of an individual calibration, that is the conversion of one measure-
ment into a calendar date, including a reservoir effect ∆i and its error Ri.
Directed edges represent stochastic relationships between two variables, blue circles represent model
parameters, pink rectangular nodes represent stochastic observed data, pink triangles represent ob-
served and deterministic data.

2.1.3.4 Calibration from multiple measurements

Let’s say we have K measurements Mk from a unique sample. For example, a sample
may have been sent to K different laboratories. All these measurements refer to
the same true radiocarbon age µ. In that case, the Bayesian model first gathers all
information about µ before calibrating. Hence, ∀k = 1, ..., K,

Mk = µi + sk ε
Lab
k (2.8)

where ∀k = 1, ..., K, εLabk ∼ N(0, 1) and εLab1 , ..., εLabK are independent.
Now, as described by Ward and Wilson (1978) [6], a pooled mean,M , and the variance
of the pooled age, s2, may be calculated as follow:

M = (
K∑
k=1

Mk

s2k
)/(

K∑
k=1

1

s2k
)

s2 =
1∑K

k=1

1

s2k

Now, as all Mk refer to the same µi, we have

M = µi + s2
K∑
k=1

εLabk /sk

µi = gi(ti) + εCali



8 CHAPTER 2. BAYESIAN MODELLING

where εCali ∼ N(0, σ2
g(ti)) and gi is the function of calibration.

Hence,

M = gi(ti) + s2
K∑
k=1

εLabk /sk + εCali = gi(ti) + εLabCalMult (2.9)

where εLabCalMult ∼ N(0, S2) and S2 = s2 + σ2
gi

(ti). So, conditionally on ti, the
calibrated measurement has a normal distribution with mean gi(ti) and variance S2

i .
Figure 2.4 represents the corresponding DAG.

ti

µi

k = 1 to K

s2k
Mk

Figure 2.4 – DAG representation of a calibration from multiple measurements. Arrows represent
stochastic relationships between two variables, blue circles represent model parameters, pink rect-
angulars represent stochastic observed data, pink triangles represent deterministic observed data.
Rectangular plates are used to show repeated conditionally independent parameters.

Be aware that the pooled mean M is not robust to outliers. However, the test
proposed by Ward and Wilson [6] is usually not valid as its requires to combine at
least 30 measurements.

2.1.3.5 Typo-chronological reference

Let’s say that a typo-chronological information is a period defined by two calendar
dates ti,A and ti,R, with the constraint ti,A < ti,R.
The distribution of (ti,A, ti,R) conditional on ti is given by the following equation

p(ti,A, ti,R|ti) = λ2e−λ(ti,R−ti,A)1ti,A<ti<ti,R (2.10)

where λ is a positive constant. Figure 2.5 represents the corresponding DAG.

2.1.4 The wiggle-matching case

This case is specific to radiocarbon dating and dendrochronology. Let’s say that we
have n radiocarbon datings referring to the unknown calendar date θ shifted by a
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ti

ti,A ti,R

Figure 2.5 – DAG representation of a typo-chronological information. Arrows represent stochas-
tic relationships between two variables, blue circles represent model parameters, pink rectangulars
represent stochastic observed data.

known quantity called δi. Then, the stochastic relationship between ti and θ is given
by the following equation:

θ

i = 1 to n

σ2
i

ti

δi

Figure 2.6 – DAG representation of the event model including a wiggle matching. Directed edges
represent stochastic relationships between two variables, blue circles represent model unknown pa-
rameters. Rectangular plates are used to show repeated conditionally independent parameters.

ti = θ − δi + σi ε
CM
i (2.11)

where εCMi ∼ N(0, 1) for i=1 to n and εCM1 , ..., εCMn are independent.

δi may either be a deterministic or a stochastic parameter. Then ti + δi follows a
normal distribution with mean θ and variance σ2

i .
If δi is stochastic, then its prior distribution function may have a uniform distribution
on [d1i, d2i].

p(δi) =
1

d2i − d1i
1[d2i,d1i](δi)

or a Gaussian distribution with mean µδ,i and variance σ2
δ,i.

p(δi) =
1√

2πσδ,i
exp(−1

2
(
δi − µδ,i
σδ,i

)2)

In that case, the associated DAG is presented in Figure 2.6.
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2.1.5 Temporal order constraints

Several events may be linked by a temporal order, such as stratigraphic constraints.
Let’s say that three events happened successively in time. Then their true calendar
dates are assumed to verify the following relationship:

θ1 < θ2 < θ3

Bounds, such as historical dates or so called Terminus post quem / terminus ante
quem 1, may also be introduced in order to constrain one or several events. Let’s say
that the three events are assumed to happen after a special event with true calendar
date θB. Then the following relationship holds :

θB < θ1 < θ2 < θ3

2.2 Phases

2.2.1 Definition of a phase

A phase is a group of events defined on the basis of objective criteria such as ar-
chaeological, geological or environmental criteria. As we do not know how events are
distributed in a phase, no model for the phase is computed in ChronoModel. The
phase only reflects the group of events included in it.
However, using ChronoModel, we may have information about the beginning, the end
and the duration of a phase.
Moreover, we may include prior information about the duration of a phase or about
a hiatus between two successive phases.

2.2.2 Beginning, end and duration of a phase

The following information are given for each phase:
The beginning of a phase, α, reflects the most ancient event among the r events
included in the phase:

α = min(θj, j=1...r)

The end of a phase, β, reflects the most recent event among the r events included
in the phase:

β = max(θj, j=1...r)

1Latin for "Limit after / before which"
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The duration, τ , is the time between the beginning and the end of a phase:

τ = β − α

The posterior distribution of all these elements may be approximated by MCMC
methods (See section 4 for more details) and statistical results such as the mean, the
standard deviation and so on, may be estimated.

2.2.3 Prior information about the duration of a phase

The duration of a phase, τ , may be known from prior information. Let’s say a phase
lasted τ years. In ChronoModel, that means that the time elapsed between the earliest
event of the phase and the latest event of the phase is at most of τ years. Hence, if
there are r events in a phase, θj, j=1...r, they have to verify the following constraint :

max(θj, j=1...r)−min(θj, j=1...r) ≤ τ

2.2.4 Prior information about a succession of phases

Succession or stratigraphic constraints between two phases may be included. These
constraints of succession, called hiatus, may be of known duration imposing a temporal
order between both groups of events.

2.2.4.1 Temporal succession between phases

Let’s say that a phase P , containing rP events, is constrained to happen before a
phase P ∗, containing rP ∗ events. Then, in ChronoModel, this means that all events
of phase P are constrained to happen before the events included in phase P ∗. The
following equations should be verified by all the events included in both phases.

∀i ∈ [(1, rP )], ∀j ∈ [(1, rP ∗)], θPi < θP
∗

j

or
max(θPi, i=1...rP

) < min(θP
∗

j, j=1...rP∗ )

or
min(θP

∗

j, j=1...rP∗ )−max(θPi, i=1...rP
) > 0
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2.2.4.2 Prior information about a hiatus

Prior information about a hiatus may be included in ChronoModel. Let say we have
a hiatus of γ years between two phases : a phase P and a phase P ∗. In Chronomodel,
that means that the time elapsed between events of phase P are and events of phase
P ∗ is at least of γ years. Consequently, all the events of phase P and phase P ∗ have
to verify the following constraint :

min(θP
∗

j, j=1...rP∗ )−max(θPi, i=1...rP
) ≥ γ > 0



Chapter 3

Use of ChronoModel

3.1 Installation

From the website (www.chronomodel.fr), you may download the software adapted to
your computer.

• For MAC. Click on the "MAC Download" button. Then double-click on the
package to install the software. Following the wizard window, the software is
installed in the Applications directory. Once done, the logo of ChronoModel
should be seen in the Applications directory.

• For Windows. Click on the "Windows Download" button. Then double-click
on the .EXE to install the software.

• For Linux. The usual way is to install Qt on your computer and compiling your-
self the application. Chronomodel is hosted on GitHub.com. You can clone the
repository by typing : clone https://github.com/Chronomodel/chronomodel.git

13

http://www.chronomodel.fr/
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3.2 Description of the icons of the main window

The design of ChronoModel is implementing with the following idea : Information
are in the middle of the interface and tools are around.
This section gives a description of all icons contained in the top of the window.
On the left hand side of the main window, three icons help managing projects and
two icons help managing modelling actions.

To create a new project.

To open a pre-existing project. ChronoModel projects are saved using the
extension file *.CHR

To save the current project.

To undo the last actions.

To redo the last actions.

In the middle of the window, the icons refer to the different steps of the modelling
with ChronoModel.

To design the model.

To open the MCMC settings window.

To run the bayesian modelling.

To show the results of the modelling.

To show summaries of the MCMC methods used for this modelling and its
results.

Then on the right hand side of the window:
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To active or unactive the context-sensitive tips seen in yellow bubbles. By
defaults, Help is active.

To reach the user manual on the web site.

To open the ChronoModel website.

3.3 Creating / Opening a project - Defining the study

period

After having launched ChronoModel, the following interface appears (See Figure 3.1).

Figure 3.1 – ChronoModel interface

In order to create a new project, click on on the left hand side of the window.
This action opens a new window asking you to name this new project and to save it
in a chosen directory.
Once done, a dialog box appears and asks to define the study period (see Figure 3.2).
This is actually the first thing to do otherwise no other action will be allowed. The

Figure 3.2 – Dialog box to define the study period

study period is the period under which you assume that the unknown calendar dates
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of the events are likely to be. These pieces of information may be modified by filling
the following boxes on the right hand side of the window (See Figure 3.3). The study

Figure 3.3 – Study period definition window

period should be given in the date format BC/AD 1 as the bayesian modelling is
computed in this date format. The "Apply" button will stay red as long as the study
period is undefined and become green afterwards.

For the example, let’s use a study period from 0 to 2 000 (BC/AD). Now the interface
looks like Figure 3.4, the left hand side part represents the events’ scene and the right
hand side part gives different types of information that will be further detailed in the

following sections. The tab gives information about events and associated

datings. The tab allows to import a .CSV file containing informations about
datings and to export all datings used in the modelling of the current project. The

tab shows the phases’ scene.

Figure 3.4 – The interface of ChronoModel when starting a new project. On the left handside of the
window, the events’ scene, on the rigth handside, data information and phases structure.

1Before Christ / Anno Domini
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To open a pre-existing project, use the button on the top left of the window and
then choose the project. ChronoModel projects are saved with the extension .CHR.

3.4 Creating events, bounds and constraints

3.4.1 Creating a new event

To create a new event, select on the left hand side of the events’ scene (see
Figure 3.4). A window will be opened asking you to name that new event. For the
example, let’s call it "My event 1". A default color is given to this new event but you
may wish to change it. Click on the color chosen by default and select a new color
from the "Colors" window.

After validation, the event appears in the events’ scene (See Figure 3.5). Now, when
the event is selected in the event’s scene, that is when the event is circled by a red line,
the event’s properties may be seen on the right hand side of the window, using the

tab. From there, the name, the color and the MCMC method associated
with this event might be changed (See Section 4 for more details on MCMC methods).

3.4.2 Including measurements

An event may be associated with data information such as measurements or typo-
chronological references. There are two ways to insert data with ChronoModel:

Using the tab
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Figure 3.5 – Chronomodel window showing the new event in the events’ scene

Select the event in which you want to add a measurement. An event is selected if it
is surrounded by a red line. Then select a measurement type by clicking on one mea-
surement icon on the right hand side of the Properties tab and include information
measurement by measurement. Details are given for each type of measurement in the
followings.

Using the tab
Click on "Load CSV file ..." to include information from a CSV file. However, the
CSV file has to be organised according to the type of measurements included (more
details are given in the followings). Then, you may drag a selected line to the corre-

Figure 3.6 – Inclusion of information dragged from a CSV file
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sponding event.

Be aware that by default ChronoModel reads a CSV file using a coma as cell sep-
arator and a dot as a decimal separator. In the Application Settings presented in
Figure 3.7, these options may be changed.

Figure 3.7 – Application settings

3.4.2.1 Radiocarbon dating (14C)

Clicking on , the radiocarbon extension window will be opened (See Figure
3.8). Within this window, you can insert the reference name of the measurement,
the age value given by the laboratory ("Age"), its associated standard error ("Er-
ror"), the reservoir effect ∆R with its associated standard error ∆RError (data
base: http://radiocarbon.pa.qub.ac.uk/marine/).

Reference curves
In ChronoModel, several calibration curves are already implemented. These curves
are listed in Table 3.1. When adding a radiocarbon dating, you may select one of
these reference curves using the drop-down menu.
Other curves may be included in ChronoModel from the Application settings. Figure

http://radiocarbon.pa.qub.ac.uk/marine/
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Figure 3.8 – The radiocarbon measurement extension window with advanced options

3.9 shows the window from which it is possible to add a new reference curve.

Figure 3.9 – Application settings - Reference curves for C14 datations
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Name Reference
Uwsy98 Stuiver et al. 1998 [7]
IntCal04 Reimer et al. 2004 [8]
Marine04 Hughen et al. 2004 [9]
ShCal04 McCormac et al. 2004 [10]
IntCal09 Reimer et al. 2009 [11]
Marine09 Reimer et al. 2009 [11]
IntCal13 Reimer et al. 2013 [12]
Marine13 Reimer et al. 2013 [12]
ShCal13 McCormac et al. 2013 [13]

Table 3.1 – Reference curves for C14 datations implemented in ChronoModel

Advanced options
You may want to include a wiggle matching or you may want to change the MCMC
method used to sample out of the posterior distribution of the calibrated date as-
sociated with that dating (See 4 section for more details). To do that, click on the
"Advanced" menu from the same window (See Figure 3.8).
The default MCMC method used for radiocarbon datings is the Metropolos Hastings
algorithm using a distribution that mimics the individual calibration density as a pro-
posal. Two other proposals may also be selected, the prior distribution and a Gaussian
adaptative random walk (See Section 4 for more details on MCMC methods).
The wiggle matching may be fixed or included within a range of values or even have
a Gaussian distribution defined by its mean value and its standard error. By default,
the wiggle matching is set to 0.

Once the measurement is validated, its details appear in the Properties tab as shown
in Figure 3.10 and might be changed by double-clicking on its name from the list of
measurements.

Combining radiocarbon datings
Several radiocarbon measurements referring to a unique sample may be "combined".
These radiocarbon measurements should have the same reference curve for the cal-
ibration and the same MCMC method. To "combine" several measurements, select
the associated event in the events’ scene, then select the Properties tab. Now select

all measurements to be combined from the list of measurements and click on
at the bottom of the window (See section 2.1.3.4 for more details on the combine

function). Now a unique measurement appears marked by . Click on
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Figure 3.10 – Events’ scene and Properties.

to split the measurements.
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3.4.2.2 Archeomagnetism dating (AM)

Click on to open the extension window associated with archeomagnetism
datings, as displayed in Figure 3.11. Within this window, you can insert the refer-
ence name of the measurement, you can choose the magnetic parameter (inclination,
declination or intensity) and insert values, you can also choose the reference curve for
the calibration process.

Figure 3.11 – The archeomagnetism extension window with advanced options

• If you choose Inclination : enter its value and its alpha 95 value. The associated
error is then calculated by

α95

2.448

• If you choose Declination : enter its value, the value of the Inclination associated
and its associated alpha 95 value. The associated error on the declination is
calculated by

α95

cos(Inclination) ∗ 2.448

• If you choose Intensity : enter its value and its Error.

Reference curves
Several reference curves are implemented in ChronoModel. They are listed in Table
3.2. Other curves may be included in ChronoModel from Application settings. See
Figure 3.9 that shows the windows allowing to add a new reference cur
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Name Reference
Gal2002Sph2014_D Hervé et al. [14, 15]
Gal2002Sph2014_I Hervé et al. [14, 15]
Gws2003uni_F Hervé et al. [14, 15]
Bulgaria_D Kovacheva et al. [16]
Bulgaria_I Kovacheva et al. [16]
Bulgaria_F Kovacheva et al. [16]

Table 3.2 – Reference curves implemented in ChronoModel

Advanced options
You may want to change the MCMC method used to sample out of the posterior
distribution of the calibrated date associated with that dating (See 4 section for more
details on MCMC methods). The default MCMC method used for archeomagnetism
datings is the Metropolos Hastings algorithm using a distribution that mimics the
individual calibration density as a proposal. Two other proposals may also be selected,
the prior distribution and a Gaussian adaptative random walk.

3.4.2.3 Luminescence dating (TL/OSL)

Click on to open the TL/OSL extension window as shown in Figure 3.12.
A TL/OSL measurement is defined by its name, its Age, its error and the year of
reference.

Reference year
The function of calibration associated is then g(t) = t0 − t, where t0 is the reference
year.

Advanced options
You may want to change the MCMC method used to sample out of the posterior
distribution of the calibrated date associated with that dating (See 4 section for more
details on MCMC methods). The default MCMC method used for TL/OSL datings
is the Metropolos Hastings algorithm using a Gaussian adaptative random walk as
a proposal. Two other proposals may also be selected, the prior distribution and a
distribution that mimics the individual calibration density.
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Figure 3.12 – The paleodose measurement in luminescence extension window with advanced options

3.4.2.4 Gaussian dating (Gauss)

Click on to open the Gauss extension window as presented in Figure 3.13.
A Gaussian dating is defined by its name, its mean and its error. A Gaussian date is
assumed to be defined in date format BC/AD.

Reference curve
For Gaussian datings, the calibration process follows a quadratic function g(t) =

a ∗ t2 + b ∗ t+ c.
If a = c = 0 and b = 1, then g(t) = t that is the calibration function is the identity
function (that is no calibration). This is the default choice corresponding to the op-
tion "None".
You may also custom your own calibration curve using the option "Build your equa-
tion". The parameters a, b, and c may be changed.
Since ChronoModel version 1.3, a third option is implemented. You may load a CSV
file containing a different calibration curve. To do that, select the last option "Use
custom curve file" and choose a file from the drop-down menu. If your file is not al-
ready included in ChronoModel, use the "Application settings" windows to add/delete
another file. See Figure 3.9 that shows the windows allowing to add a new reference
curve for radiocarbon datings.

Advanced options
You may want to change the MCMC method used to sample out of the posterior
distribution of the calibrated date associated with that dating (See 4 section for more
details on MCMC methods). The default MCMC method used for Gaussian datings
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is the Metropolos Hastings algorithm using a Gaussian adaptative random walk as
a proposal. Two other proposals may also be selected, the prior distribution and a
distribution that mimics the individual calibration density.

Figure 3.13 – The Gaussian measurement extension window with advanced options

3.4.2.5 Typo-chronological reference (Typo Ref.)

Click on to open the Typo-reference extension window (See Figure 3.14).
A Typo-reference is defined by its Name, its Lower date and its Upper date, with the
constraint that the Lower date is the more ancient date.

Advanced options
You may want to change the MCMC method used to sample out of the posterior
distribution of the calibrated date associated with that dating (See 4 section for more
details on MCMC methods). The default MCMC method used for typo-chronological
reference is the Metropolos Hastings algorithm using a Gaussian adaptative random
walk as a proposal. The other proposal that may also be selected is the prior distri-
bution.
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Figure 3.14 – The Typo-reference extension window with advanced options

3.4.2.6 Importing data using a CSV file

Data may also be imported using a CSV file from the tab.

Any CSV file may be imported by clicking on .
However, CSV files have to be organised in a specific way depending on the type of
measurements (the type of the dating process). Each of the following information
should be written in the same row but in a separate cell.

Gaussian measurements:
Cell 1 : GAUSS, the type of measurement
Cell 2 : Name, the name of the dated sample
Cell 3 : Age, the mean of the Gaussian measurement
Cell 4 : Error (sd), the standard error of the Gaussian measurement
Cell 5 : Ref. curve, one of the following options : "none" (if no calibration is needed)
or "equation" (when specifying an equation) or the name of the file containing the
reference curve to be used.
Now, if "none" or a CSV file is declared,
Cell 6 : any text will be considered as a comment
Now, if "equation" is declared,
Cell 6 : a, Cell 7 : b and Cell 8 : c
where a, b and c refer to the calibration curve. Indeed, in that case the equation of
the calibration curve is the following one:

g(t) = a ∗ t2 + b ∗ t+ c

The content of any following cells will be ignored (so these can be used for comments).
See Figure 3.15 for an example.



28 CHAPTER 3. USE OF CHRONOMODEL

Figure 3.15 – Example of a CSV file containing Gaussian datings

Thermoluminescence measurements:
Cell 1 : TL/OSL, the type of measurement
Cell 2 : Name, the name of the dated sample
Cell 3 : Age, the value of the measurement
Cell 4 : Error (sd), the standard error of the measurement
Cell 5 : Reference year, the year of the dating of the sample
The content of any following cells will be ignored (so these can be used for comments).
See Figure 3.16 for an example.

Figure 3.16 – Example of a CSV file containing TL/OSL datings

Radiocarbon measurements:
Cell 1 : 14C, the type of measurement
Cell 2 : Name, the name of the dated sample
Cell 3 : Age, the value of the measurement
Cell 4 : Error (sd), the standard error of the measurement
Cell 5 : Reference curve, the name of the file containing the reference curve associ-
ated with the measurement
Cell 6 : Reservoir effect, the value of the reservoir effect if any
Cell 7 : Error of the reservoir effect, the value of the error associated, if any
Cell 8 : Wiggle matching type if any : "fixed", "range" or "gaussian"
Any other word will be ignored by ChronoModel.
Cell 9 : Wiggle matching value, the value if "fixed", the lower value if "range" or the
mean value if "gaussian"
Cell 10 : Wiggle matching value, the higher value if "range" or the standard error
value if "gaussian"
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The content of any following cells will be ignored (so these can be used for comments).
See Figure 3.17 for an example.

Figure 3.17 – Example of a CSV file containing radiocarbon datings

Archeomagnetism measurements:
Cell 1 : AM, the type of measurement
Cell 2 : Name, the name of the dated sample
Cell 3 : Type, "inclination", "declination" or "intensity"
Cell 4 : Inclination value
Cell 5 : Declination value
Cell 6 : Intensity value
Cell 7 : Error (sd) or alpha 95, the degree of alpha 95 associated with the inclination
/ declination value or the standard error associated with the intensity value
Cell 8 : Reference curve, the name of the file containing the reference curve associ-
ated with the measurement
The content of any following cells will be ignored (so these can be used for comments).
See Figure 3.18 for an example.

Figure 3.18 – Example of a CSV file containing archeomagnetism datings

Typo-chronological reference:
Cell 1 : Typo ref., the type of measurement
Cell 2 : Name, the name of the dated sample
Cell 3 : Lower date
Cell 4 : Upper date
The content of any following cells will be ignored (so these can be used for comments).
See Figure 3.19 for an example.
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Figure 3.19 – Example of a CSV file containing a Typo-chronological reference

Be aware that the cell separator and the decimal separator of CSV files
have to be those specified in the Application settings of ChronoModel oth-
erwise the CSV file will not be loaded.

Figure 3.20 displays an example of a CSV file loaded in ChronoModel. This file con-
tains 4 data : 2 radiocarbon measurements, an inclination measurement in archeo-
magnetism and a Gaussian date. When a data line is selected, the labels of each
column is refreshed according to the type of data.

Figure 3.20 – CSV file loaded in ChronoModel - 14C type

Figure 3.21 – CSV file loaded in ChronoModel - AM type

Now, once the CSV file is loaded, data may be included in an already existing
event. To do that, select the data line to be included, click on the associated name
and then drag and drop it in the event. Multiple selection may also be done. Click
on the type of the first dataline to be included, then press and keep pressing "Ctrl"
key (or the equivalent for MAC) while selecting the other datalines. Then click on
one of the selected line and drag and drop them all in an event.
You may also drag and drop one or several data lines directly into the events’ scene.
ChronoModel will create an event for each dataline. The name of the events will be
the name of the dataline included.

If a line appears in green, that means that the data has been attributed
to an event. If the line is colored in green, that means that the data has
not been attributed due to errors. In this case, ages and errors should be
checked and modified before any use in ChronoModel. .
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3.4.2.7 Calibration process

For each measurement, it is possible to see the result from the individual calibration
process. First, select the associated event from the events’ scene. Then select the

measurement from the tab and click on at the bottom of the window.
For instance, Figure 3.22 displays the calibration process of a radiocarbon measure-
ment. Several statistical results according to the distribution of the calibrated date
are summaries (See section 5.2.4 for more details on statistics). The level of the HPD
regions may be changed from this window.

Unclick to see the events’ scene again.

Figure 3.22 – Calibration process of a radiocarbon datation

3.4.2.8 Deleting / Restoring a measurement

To delete a measurement from an event, first select the event in the event’s scene
by clicking on its name. The event will be selected only if it is surrounded by a red

line. Then using the tab, you may select the measurement to be deleted

and then click on the icon situated on the right hand side of the window to
delete it from this event.
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A deleted measurement may be restored in a selected event. Click on icon
at the bottom of the window and choose the measurement to be restored from the
list of deleted measurements.

3.4.3 Creating a new bound

To create a new bound in the events’ scene, select on the left hand side of
the window. A new window will be opened asking you to name this new bound. For
example, let’s call it "My bound 1".

After validation, the bound appears in the events’ scene (See Figure 3.23). Now, when
the bound is selected in the event’s scene, the bound’s properties may be seen on the

right hand side of the window, in the tab. From there, its name and its
color might be changed and values may be added. A bound may either have a fixed
value or have a uniform distribution within a range of values. These options may be
changed from that window as well.

3.4.4 Deleting / Restoring an event or a bound

An event or a bound may be deleted from the events’ scene first by selecting the event

and then by clicking on the icon placed on the left hand side of the events’
scene. An event is deleted with all its measurements.

Any element deleted may be restored by clicking on the icon on the left
hand side of the events’ scene. Then the element to be restored may be picked from
the new window presenting all deleted elements (bounds or events). See Figure 3.24
An event containing measurements is restored with all its measurements.
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Figure 3.23 – Creation of a new bound in the events’ scene

Figure 3.24 – Window presenting all events or bounds that may be restored

3.4.5 Creating / Deleting a constraint

From the events’ scene, stratigraphic or succession constraint may be added between
any two elements (events and bounds). To create such a constraint, first select the
oldest element of the succession. This selected element should now be surrounded by
a red line. Now, click and keep clicking on the "Alt" key from your keyboard. A black
arrow should now be seen in the events’ scene. Now select the youngest element of the
succession. To validate the constraint, you need to click on the name of the second
element before releasing the "Alt" key. The arrow should be seen in black heading
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from the oldest element to the youngest one.

Figure 3.25 – Events’ scene showing a constraint between a bound and an event

To delete a constraint, move the mouse over the corresponding black arrow. This
arrow should become red and a cross should appear in the middle of the arrow. You
may now click on the cross, to begin the deleting process. A confirmation box should
appear to validate the deleting action..

Figure 3.26 – Events’ scene showing a constraint ready to be deleted

Figure 3.27 – Confirmation box to delete a constraint

3.4.6 Using the grid

By default, the events’ scene is white. A grid may be added using the icon
situated on the left hand side of the window.
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3.4.7 Using the overview

The overview may be useful when many elements are created in the event’s scene. To

watch the events scene from an overview use the icon placed on the left hand
side of the window.

3.4.8 Exporting the image of the events’ scene

You may also export the image of the events’ scene by clicking on the icon and
save it either in PNG format or in Scalable Vector Graphics (SVG) format. In both
cases, you will need to name the image and to choose the directory where to save the
image (see Figure 3.28). If you choose the PNG format, you will be ask for the image
size factor and the number of dots per inch.

Figure 3.28 – Dialog box used to name the image and to choose the directory where to save the
image.

3.4.9 Exporting data from the project

All measurements included in the current project may be exported in a CSV file using

from the tab.
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3.5 Creating phases and constraints between phases

In ChronoModel, the events’ scene and the phases’ scene are separated in order to
keep the design of the model comprehensible. Indeed an event may belong to several
phases. Moreover, the phases’ scene may be placed side by side with the events’ scene,
in order to have a complete look at the design of the model.

The phases’ scene may be seen from the tab placed on the right hand side
of the window. See Figure 3.29.

Figure 3.29 – View of the events’ scene and the phases’ scene

3.5.1 Creating a new phase

To create a phase, click on the icon on the right hand side of the window. This
action will open a new dialog box presented in Figure 3.30.
This dialog box asks for the name and the color given to the phase and its maximum
duration. By default, the duration of the phase is unknown. If prior information
about the maximum duration are available, it may be included in the model. See
Figure 3.30.
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Figure 3.30 – Dialog box to include prior information about the maximum duration of the phase

3.5.2 Modifying / Deleting a phase

To modify a phase, double-click on its name and the dialog box presented in Figure
3.30 will be reopened.

To delete a phase, select the phase to be deleted by clicking on its name and then

click on the icon on the left hand side of the window.

3.5.3 Including / Removing events or bounds

Events may be included in a phase. You may select one or several events or bounds
from the events’ scene and then click in the white square on the left of the phase’s
box. The Figure 3.31 presents the inclusion of a bound in a phase. As a result, the
color of the phase appears on the bottom of the event ’s (or the bound’s) box, and the
name and the color of the event (or the bound) appear at the bottom of the phase’s
box.

Figure 3.31 – Including a bound in a phase
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Several events or bounds may be included in a same phase. An event or a bound may
also belong to several phases. Figure 3.32 illustrates these cases. We may see that
"My phase 1" contains two elements : "My event 1" and "My bound 1". "My bound
1" belongs to both phases as both colors appear at the bottom of its box, and a cross
appears in the white square of each phase’s box.

Figure 3.32 – Including several events in a phase and an event in different phases

To remove an element from a phase, first select the element from the events’ scene,
then click on the cross associated in the phase from which this element should be
remove. Once the element is removed from a phase, its name does not appear any
more in the phase’s box and the phase’s color does not appear any longer in the
element’s box.

3.5.4 Creating / Deleting a constraint between two phases

A succession constraint may relate two phases. To do that, first select the "oldest"
phase. Press and keep pressing the "Alt" key from your keyboard. Then move the
arrow up to the "youngest" phase and click on its name. Now, you may release the
"Alt" key and a black arrow should be seen between both phases heading from the
oldest phase to the youngest one. Figure 3.33 displays an example.

In ChronoModel, a hiatus expresses the minimum time elapsed between two phases.
By default, the hiatus between these phases is unknown. However, if prior informa-
tion about the hiatus are available, it might be included in the model.
In order to include prior information about a hiatus, double-click on the constraint
(the black arrow) to be modified, and then fill the dialog box shown in Figure 3.34.

To delete a constraint, double-click on it to see the dialog box shown in Figure 3.34
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Figure 3.33 – Example of the phases’ scene showing a constraint between two phases

and click on "Delete constraint".

Figure 3.34 – Dialog box to modify a hiatus between two phases

3.5.5 Using the grid

By default, the phases’ scene is white. A grid may be added using the icon
situated on the right hand side of the window.

3.5.6 Using the overview

The phases’ scene may also be seen from an overview using the icon situated
on the right hand side of the window.

3.5.7 Exporting the image of the phases’ scene

The image of the phases’ scene may be saved by clicking on the icon placed on the
right hand side of the window. You may save it either in PNG format or in Scalable
Vector Graphics (SVG) format. In both cases, you will need to name the image and
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to choose the directory where to save the image (see Figure 3.28). If you choose the
PNG format, you will be ask for the image size factor and the number of dots per
inch.



Chapter 4

Numerical methods

In Bayesian modelling, posterior densities and their marginal densities are of interest.
In general, we cannot derive posterior distributions analytically. However, posterior
distributions are always known up to proportionnality.
Let’s define by θ the parameter of interest and by y the data sample. The posterior
distribution p(θ|y), is known up to proportionnality, by multiplying the prior and
likelihood functions as follow:

p(θ|y) ∝ p(θ)p(y|θ)

We can build up a sample of θ from p(θ|y) even if we only know p(θ|y) up to propor-
tionality using simulation methods based on Markov chain Monte Carlo (MCMC).

4.1 Markov chain Monte Carlo

Monte Carlo methods aim at estimating numerical values using repeated random sam-
pling. By the law of large numbers, integrals described by the expected value of some
random variable can be approximated by taking the empirical mean of independent
samples of the variable. However, independent samples are usually difficult to com-
pute. That is why Markov chains, more easily computed, are usually implemented.

A Markov chain is a sequence of random variables θ(1), θ(2), ..., θ(I), for which, for
any t, the distribution of θ(t) given all previous θ’s depend only on the recent value,
θ(t−1) [17, 18]. Under regularity conditions, when I becomes large, the Markov chain
converges to its stationary (or equilibrium) distribution. When a Markov chain has
reach its equilibrium (or its stationary state), any sample from the Markov chain is a
sample from the stationary distribution.
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Now, for any posterior distribution p(θ|y), it is possible to build a Markov chain θ(1),
θ(2), ..., θ(I), whose stationary distribution is the posterior distribution p(θ|y). Once
the equilibrium state is reached, any sample from the Markov chain may be used to
estimate the posterior density, the posterior mean ...

As the sampling is done sequentially, with the distribution of the sampled draws
depending on the past value drawn, correlation between successive values is high. To
reduce this correlation, it is required to thin the Markov chain and use a subsample
to estimate the posterior density distribution.

4.2 Building a Markov chain in multiple dimensions:

the Gibbs sampler

A convenient algorithm useful in many multidimensional problems is the Gibbs sam-
pler [17, 18].
Let’s say we want to approximate the joint posterior probability density function,
p(θ1, θ2, ..., θd|y). The algorithm starts with a sample of initial values (θ

(0)
1 , θ

(0)
2 , ..., θ

(0)
d )

randomly selected. The first step of the algorithm is to update the first value by
sampling a candidate value of θ(1)1 knowing θ(0)2 , ..., θ

(0)
d from the full conditional dis-

tribution p(θ1|θ(0)2 , ..., θ
(0)
d ). The next step is to find a candidate value θ(1)2 knowing

θ
(1)
1 , θ

(0)
3 , ..., θ

(0)
d using the full conditional distribution p(θ2|θ(1)1 , θ

(0)
3 , ..., θ

(0)
d ). And so

on... Then the dst step is to find a candidate value for θ(1)d knowing θ(1)1 , θ
(1)
2 , ..., θ

(1)
d−1.

This process is then iteratively repeated.

When the number of iterations, I, becomes large, the distribution of the sample
(θ(0)i , ..., θ

(I)
i ) becomes extremely close to the marginal posterior distribution of θi.

In practical terms, this means that if we can simulate a Markov chain for θi until
it reaches its equilibrium, then any sample from this Markov chain may be used to
estimate information about the marginal posterior distribution.

4.3 Drawing from full conditional posterior distribu-

tions

Again, full conditional posterior distributions are not always easy to simulate. Algo-
rithms are required to approximate these posterior distributions. In ChronoModel,
two main algorithms are implemented, the rejection sampling method (also called
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acceptance-rejection) and the Metropolis Hastings algorithm. Both algorithms
requires a proposal density function that should be easily sampled from in order to
generate new candidate values. For the rejection sampling algorithm, it is common
to use, if possible, the prior function or the likelihood as a proposal function. For the
Metropolis-Hastings algorithm, a common choice is to use a symmetric density, such
as the Gaussian density.
Depending on the type of the parameter, event θ, calibrated date ti, variance of cal-
ibrated date σ2

i or bound θB, different methods are proposed. These methods are
described here in turn.

4.3.1 Full conditional posterior distribution of the event θ

Three different methods can be chosen.

• Rejection sampling with a Gaussian proposal [19]

• Rejection sampling with a Double exponential proposal [19]

• Metropolis-Hastings algorithm with an adaptative Gaussian random
walk [20]

The two first methods are exact methods. We recommend to use one of them.

4.3.2 Full conditional posterior distribution of calibrated dates

ti

In this case, three different methods can be chosen.

• Metropolis-Hastings algorithm using a density that mimics the indi-
vidual calibration density
This method is adapted for multimodal densities, such as calibrated measures.

• Metropolis-Hastings algorithm using the parameter prior distribution
This method is recommended when no calibration is needed, namely for TL/OSL,
gaussian measurements or typo-chronological references.

• Metropolis-Hastings algorithm using an adaptative Gaussian random
walk
This method is adapted when the density to be approximated is unimodal. The
variance of this proposal density is adapted during the process.
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4.3.3 Full conditional posterior distribution of the variance of

a calibrated date σ2
i

As the full conditional density is unimodal, the Metropolis Hastings algorithm can be
implemented here. The proposal density involved is an adaptative Gaussian random
walk [20]. The variance of this proposal density is adapted during the process.

4.3.4 Full conditional posterior distribution of a wiggle match-

ing δi

If the δi is fixed, no sampling is needed.
If the δi has a uniform distribution on [δm, δM ] or if it has a Gaussian distribution,
then the rejection sampling is used in order to sample out of the full conditional. In
both cases, the proposal is a Gaussian distribution.

4.3.5 Full conditional posterior distribution of a bound θB

If the bound is fixed, no sampling is needed.
If the bound has a uniform distribution, the full conditional distribution is also a
uniform distribution.

4.4 MCMC settings

The Gibbs sampler described above generates a Markov chain for each parameter.
These Markov chains are samples of the marginal posterior distribution of each pa-
rameter.
Each Markov chain starts with a given starting value, uses a burn-in phase to forget
about this starting value, uses an adaptative phase to adapt all random walk vari-
ances. Then, and only then, all values of the chains are used to make estimates of the
posterior distribution.
The number of iterations desired for each phase may be modified using MCMC set-
tings. Figure 4.1 shows the dialog box containing the MCMC settings. Each of these
settings is describe here in turn.

4.4.1 Burn

The BURN-in period is used to start the algorithm. As successive values of a
Markov chain depend on the last value, a number of iterations are needed to "forget"
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Figure 4.1 – MCMC settings

the initial value. We recommend to use at least 1 000 iterations.

4.4.2 Adapt

During the ADAPT period, variances of all adaptative Metropolis-Hastings Gaus-
sian random walks are calibrated so that the corresponding acceptance rates are close
to 43%. The adaptation period goes on with another batch until the acceptance rate
calculated on the last batch is included between 40% and 46% unless the maximum
number of batches is reached.

4.4.3 Acquire

In this period, all Markov chains are assumed to have reached their equilibrium dis-
tribution. Of course, this has to be checked and the next section provides useful tools
that can help controlling whether the equilibrium is actually reached. If so, Markov
chains may be sampled and information about conditional posterior distributions may
be extracted.
Sampling from these Markov chains need to be carefully made. Indeed, successive
value of a Markov chain are not independent. In order to limit the correlation of the
sample, we can choose to thin the sample by only keeping equally spaced values.

4.4.4 Thinning

Successive values of Markov chains are not independent. The idea is to sample a large
amount of values and then, once equilibrium reached, to keep every m values. m

should be chosen so that remaining values may be considered as independent.
In order to check the correlation between two successive values of the sample kept
from the ACQUIRE period, autocorrelograms may be seen in the "Autocorrelation
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tab" of the Results part. Hence, it is recommended to start with the default thinning
interval and to change it if one autocorrelogram is not correct.

4.4.5 Starting values

Each Markov chain starts with a starting value that is randomly selected among all
solutions compatible with constraints.
Starting values may be fixed using a seed for each chain.

4.4.6 Number of chains

It is recommended to run several chains in parallel using different starting values
when examining a new problem. This may be used to state whether the equilibrium
is reached before the end of the ADAPT period.



Chapter 5

Results

After having gone through the running process , the results tab appears . Now,
before any interpretations, the Markov chains have to be checked in order to known
whether they have reach their equilibrium before the acquire period.

5.1 Checking the Markov chains

When Markov chains are generated, two points have to be verified : the convergence
of the chains and the absence of correlation between successive values. If the Markov
chain has not reach its equilibrium, values extracted from the chains will give inap-
propriate estimates of the posterior distribution. If high correlation remains between
successive values of the chain, then variance of the posterior distribution will be bi-
ased. Here are some tools to detect whether a chain has reach its equilibrium and
whether successive values are correlated. We also give indications about what can be
done in these unfortunate situations.

By default, results shown correspond to the date density functions. To see results
corresponding to individual standard deviations (σi), select "Individual std deviation"
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under the "Results options" section . Now, in order to see information
about all dates included in an event, click on on the right hand side of the
window.

5.1.1 Is the equilibrium reached ? Look at the history plots.

Unfortunately, there is no theoretical way to determine how long a burn-in period
needs to be. The first thing to do is to observe the history plot of the chains (dates
and variances) and to inspect it for signs of convergence. Figure 5.1 displays an
example where the Markov chain explored a first state in the neighbourhood of the
starting value. Then during the ADAPT period (orange period), the Markov chain
finally found its equilibirum state that was very different from the starting state.
History plots should have good mixing properties during the ACQUIRE period
(green period). They should not show tendencies or constant stages as shown in the
example of Figure 5.2.

Figure 5.1 – Illustration of the use of the BURN-in period and the ADAPT period.

Producing parallel Markov chains, all with different starting values, can help de-
ciding whether a chain has reached its equilibrium. When the equilibrium is reached,
the posterior distributions estimated by each chain should be similar.
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Figure 5.2 – History plot with good mixing properties

What should be done if equilibrium is not reached ? First, the number of
iterations of the BURN period (red period) should be augmented. A higher number
of iterations per batch may also be used.
It might also be of help to change the algorithm used to draw values from full condi-
tional posterior distributions (the MCMC method selected for each parameter).

5.1.2 Correlation between successive values ? Look at the au-

tocorrelation functions.

A Markov chain is a sequence of random variables θ(1), θ(2), ..., for which, for any t,
the distribution of θ(t) given all previous θ’s depend only on the recent value, θ(t−1)

[17, 18]. Hence, a high correlation between two consecutive values is expected. How-
ever, correlation will biased the estimations. That is why thinning the Markov chains
is required.
To check whether the chain is correlated, observe the autocorrelation plot. The auto-
correlation function should have an exponential decrease. Only the first autocorrela-
tion should be high (at lag 0), the remaining correlations should be negligible. Figure
5.3 displays several autocorrelation functions having a good behaviour.

What should be done if correlation is high ? By default, the thinning in-
terval from the MCMC settings is 10, that is only one value out of 10 is kept from the
Markov chains. This thinning interval should be long enough to reduce the correlation
between successive values. If not, it should be increased.

5.1.3 Look at the acceptance rates.

The Metropolis Hastings algorithm generates a candidate value from a proposal den-
sity. This candidate value is accepted with a probability. An interesting point is the



50 CHAPTER 5. RESULTS

Figure 5.3 – Examples of autocorrelation functions that fall quickly enough under the 95% confidence
interval

acceptance rate of these candidate values. This rate gives an idea of the adequation
of the MCMC method used. This rate should not be too low or too high. However,
there are no theoretical criterion except for adaptative Metropolis Hastings Gaussian
random walk.
The theoretical optimal rate for the adaptative Gaussian random walk is 43% [20].
In ChronoModel, this algorithm is used to draw values from the full conditional pos-
terior density of individual variances. But this method may be also choosen for other
parameters.
Figure 5.4 displays an example of acceptance rates that are close to 43% (within the
interval of 40% and 46%). Acceptance rates of each adaptative Gaussian random walk
should be checked.

Figure 5.4 – Examples of acceptation rates close to 43%

Be careful, if all batches are used in the adapt period, this might tell that all adapta-
tive Gaussian random walks did not reach the optimal interval. To see that, use the

icon on the top of the window. From there in the MCMC part, the number of
batches used is stated. Figure 5.5 displays an example where only 18 batches out of
100 were used. That means that all adaptative Gaussian random walks reached the
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optimal interval within these 13 batches.

Figure 5.5 – Reading the number of batches used.

What should be done if the acceptance rates are not close to 43% ? From
the MCMC settings, ask for a longer number of iterations per batch.

5.2 Marginal posterior densities

If all Markov chains have reached their equilibrium and are not autocorrelated, then
the statistical results may be interpreted. These results are estimated using the val-
ues of the Markov chains drawn during the Acquire period. By default, results are
estimated using values from the concatenation of all chains when several chains were
requested.

5.2.1 Estimations

5.2.1.1 Marginal posterior density

When a sample is obtained, let say X1, ..., Xn, the posterior density f is estimated
using a Gaussian kernel :

f̂n(x) =
1

nhn

n∑
i=1

K(
Xi − x
hn

)

where n is the sample size and K the gaussian density with mean 0 and variance 1.
The value of hn, called the bandwidth, is defined by the Silverman criterion :

hn = bandwidth const. ∗ s ∗ n−1/5
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For Gaussian data, the above equation is optimal when the bandwidth const. = 1.06

[21]. That is why the default value is 1.06, however it may be changed from the
Results options (See Figure 5.6).

This estimation is done on a grid with fixed stepsize. The number of points in this grid
is optimal if diatonic. By default, it has 1024 points (1010). This number of points is
called Grid length and may be decreased or increased from the Results options (See
Figure 5.6).

Figure 5.6 – Results options

5.2.1.2 Credibility interval (CI)

Once the Markov chain of the parameter of interest is obtained, the credibility interval
is constructed using the empirical quantile function. In ChronoModel, a 100(1−α)%
credibility interval is the shortest interval, defined by two empirical quantile function
values, out of which α% of the Markov chain remains.
Figure 5.7 shows an example of a confidence interval.
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Figure 5.7 – Example of confidence interval (the region in red)

5.2.1.3 Highest posterior density (HPD) region

In ChronoModel, highest posterior density regions are estimated by

J = {x ∈ Grid|f̂n(x) ≥ k}

The value of k is chosen so that

δ ∗
∑
x∈J

f̂n(x)

where δ is the grid stepsize.
However, a better estimation would be the one developped by Samworth and Wand
[22].
Figure 5.8 shows an example of a HPD region.

Figure 5.8 – Example of a HPD region (the region in red)
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5.2.2 Date format

Results may be seen in different date formats. This might be changed from the
"Application Settings" of ChronoModel.

• BC/AD : Before Christ / Anno domini

• Age cal. BP : Ages calibrated before present. Corresponds to 1950 - t in BC/AD

• Date cal. BP : Ages calibrated before present. Corresponds to t in BC/AD -
1950

• Age cal. B2K : Ages calibrated before 2000. Corresponds to 2000 - t in BC/AD

• Date cal. B2K : Ages calibrated before 2000. Corresponds to t in BC/AD -
2000

5.2.3 Graphical results

When the model does not include phases, by default, only marginal posterior distri-
butions of events or bounds are shown. To see marginal posterior distributions of all

calendar dates, use the icon on the left hand side of the window. To
see marginal posterior distributions of individual standard deviations, click on "indi-
vidual std deviations" under "Results options".

Figure 5.9 – Marginal posterior densities of two events

For any parameter (event, dates and individual standard deviations), the marginal
posterior density is associated with its HPD region and its credibility interval as shown
in Figure 5.9. HPD regions, regions with the highest probability density, are shown
under the curves. Crediblity intervals (CI) are actually the shortest credible intervals
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and are shown above the posterior densities by a thicked line. CI may also be hidden,
see options under "Post. distrib. options"
By default, HPD regions and credibility intervals are given at 95%. This might be
changed under "Post. distrib. options".
By default, results (statistics and posterior density estimations) are given from the
concatenation of all chains, but posterior densities may also be seen for each chain
using the "MCMC options" on the right hand side of the window.

Figure 5.10 – Marginal posterior densities of events and dates

Figure 5.10 displays the posterior densities of event "My event 1" and of both
dates included in it. Only one chain is used. On this picture, the grey curves rep-
resent densities of the calibration dates, blue curves represent the marginal posterior
densities.

Figure 5.11 – Marginal posterior densities of individual standard deviations
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Figure 5.11 shows the posterior densities of individual standard deviations cor-
responding to the dates. An event is not associated with a standard deviation,
however standard deviations from all calendar dates included in the event are over-
layed for comparison. Now, to see each individual standard deviation alone, use the

icon.

Figure 5.12 – Marginal posterior densities of the beginning and the end of a phase

When a phase is modelled, then the marginal posterior densities of the beginning
(dotted line) and the end (dashed line) of the phase are displayed on the same graphic,
as presented in Figure 5.12. Posterior densities are marginal densities. These densities
should be interpreted parameter by parameter.

To see posterior densities of all the events included in the phase, click on the
icon. To see posterior densities of all the dates included in the events, click on "Unfold
data under event", from "Results options".

The density of the duration of the phase may also be seen by clicking on "Show
duration" on the left hand side of the window in the part corresponding to the asso-
ciated phase.

5.2.4 Statistical results

ChronoModel gives also a list of statistical results. For each parameter, the following
results are given :
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• MAP : Maximum a posteriori, the highest mode of the marginal posterior den-
sity. The MAP may be used to give an estimation of the posterior date.

• Mean : the mean of the posterior density function. The MEAN may also be
used to give an estimation of the posterior date. The mean is usually preferred
to MAP or Median as its statistical properties are better than the others.

• Std deviation : the standard deviation of the chain

• Q1 : the numerical value separating the lower 25% of the data from the higher
75%

• Q2 (MEDIAN): the numerical value separating the lower 50% of the data from
the higher 50%. The MEDIAN may also be used to give an estimation of the
posterior date.

• Q3 : the numerical value separating the lower 75% of the data from the higher
25%

• Crediblity interval : the shortest credible interval.

• HPD region : the region with the highest posterior density. It might be an
interval (if the density is unimodal) or a discontinuous set (if the density is mul-
timodal). When the density is unimodal, HPD region and CI should give similar
results. However, due to numerical errors, HPD regions may be less precised
than CI. Hence we recommand the use of CI when the density is unimodal.

• Acceptation rate : global acceptation rate

Those statistics may be seen under each posterior density function by clicking on

on the right hand side of the window.

5.3 Savings

Each graph may be saved either individually, using the icon on the left hand side

of the window, or globally using the icon but from the right hand side of the
window. Different type of formats may be choosen : PNG, JPG, SVG or even BMP
for global graphs.

Individual graphs may also be copied and pasted using the clipboard thanks to
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icon on the left hand side of the window.

Statistics related to each parameter may also be saved thanks to icon on the left
hand side of the window.

It is also possible to extract the results from the Markov chains using the icon.

Using , on the right hand side of the window, some information may be saved :
a summary of the statistical results, and the MCMC sample of the joint distribution
in format BC/AD. Only the samples of events and phases parameters (beginning and
end) are saved.
Several CSV files are created : a file called "events.csv" containing the MCMC sam-
ples of all events, a file called "phases.csv" containing all parameters (beginning and
end) of phases if at least one phase is modelled, and a file per phase (if any) containing
the MCMC samples of the parameters of the phase and all events included in it.

5.4 Summaries

On the tab, a list of summaries is displayed.
Under "Model description" is a summary of the model structure along with the type
of measurement, age, standard deviation, reference curve for the calibration process,
MCMC method, statigraphic constraints, and so on.
Under "MCMC initialization" is the list of initial values used in the MCMC process
and for each chain.
Under "Posterior distrib. resuls" are all statistical results according to all posterior
distributions.
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Examples
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6.1 Radiocarbon datings in Sennefer’s tomb (Egypt)

For this illustrative example, we use data published in the article of Anita Quiles
[23] regarding Sennefer’s tomb. Several bouquets of flowers were found in Sennefer’s
tomb at Deir el-Medineh. As they were found at the entrance of the tomb, they were
assumed to date the same archeological event: one of the three phases of the burial of
Sennefer. Samples were extracted from different short-lived plants (leaves, twigs, etc)
on each bouquet in order to ensure the consistency of the dates. All samples were
radiocarbon dated.
The objective of this study is to date Sennefer’s burial using ChronoModel.

6.1.1 Bouquet 1

Let’s say we want to estimate the calendar date of the cut of bouquet 1. 6 samples
were extracted from this bouquet and radiocarbon dated (Bouquet1.CSV contains all
the datings related to Bouquet 1). The event : cut of bouquet 1 is represented by
Figure 6.1.
Each radiocarbon measurement is calibrated using IntCal09 curve. No reservoir offset
is taken into account. The study period is chosen to start at -2 000 and end at 0 using
a step of 1 year.
For the MCMC method, the method used to generate new values at each step of the
Gibbs sampler are the following ones (these are the default settings) : for the event
Bouquet 1: rejection sampling using a double exponential proposal, for the distribu-
tions of the datings : Metropolis-Hastings algorithm using the posterior distribution
of calibrated dates.
We start with 1 000 iterations in the Burn-in period, 1 000 iterations in each of the
100 maximum batches in the Adapt period and 10 000 iterations in the Acquire period
using thinning intervals of 1. Only one chain is produced.

Figure 6.2 presents the marginal posterior densities of each date parameter (the event
and the calendar dates of the calibrated measurements). In this example, 95% inter-
vals (CI and HPD) are represented. We can see that all calendar dates seem to be
contemporary. Numerical values, displayed in Figure 6.4, show that the MAP and the
mean values were quite close, as well as HPD et CI intervals. The event is dated with
at -1370 (mean value) associated with its 95% HPD interval [-1417; -1314]. Figure 6.3
shows the history plots (or the trace of the Markov chains) of each date parameter.
During the acquisition period, all chains seem to have good mixing properties. We
may assume that all chains have reach their equilibrium before the acquisition period.
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Figure 6.1 – Modelling of Bouquet 1 with ChronoModel

Figure 6.5 presents the autocorrelation functions of each date parameter. We can
see that all autocorrelation functions decrease exponentially and fall under the 95%
confidence interval after a lag of 30 for calibrated dates and after a lag of 50 for the
event. This autocorrelation between successive values may be reduced by increasing
the thinning interval at 10 for example. In order to keep 10 000 observations in the
acquire period, we ask for 100 000 but only 1 out of 10 values were kept for the analy-
sis. The autocorrelation functions obtained decrease exponentially and fall under the
95% confidence interval after a lag of 6 for each parameter (see Figure Figure 6.6 ).
However, with this new MCMC settings, all other results are similar to those already
given.

Now, let’s look at the individual standard deviations results. The marginal poste-
rior densities of each individual standard deviations, presented Figure 6.7, seem to
be of similar behaviour, with a mean about 50 and a standard deviation about 48
(numerical values displayed in Figure 6.8). History plots of these individual standard
deviations, presented Figure 6.9, seem to have good mixing properties. Hence, the
equilibrium is assumed to be reached. Each acceptance rates, presented Figure 6.10,
are close to the optimal rate of 43%. And finally, each autocorrelation function, dis-
played in Figure 6.10, shows an exponential decrease and all values fall under the 95%
interval of signification after a lag of 10.

In conclusion, the modelling of Bouquet 1 seems consistent. All individual stan-
dard deviations take values close to 50 compared to -1400 for the event. That is to
say, standard deviations are rather small compared to the event’s posterior mean.
Hence, according to ChronoModel, all datings seem to be contemporary. Now we can
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Figure 6.2 – Marginal posterior densities related to the modelling of Bouquet 1 . The dark lines cor-
respond to distribution of calibrated dates, the green lines correspond to posterior density functions.
Highest posterior density (HPD) intervals are represented by the green shadow area under the green
lines. Credibility intervals are represented by thick lines drawn above the green lines.

Figure 6.3 – History plots of date parameters related to the modelling of Bouquet 1
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Figure 6.4 – Numerical values of each date parameter related to the modelling of Bouquet 1
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Figure 6.5 – Autocorrelation functions related to the modelling of Bouquet 1 (Thinning interval =
1)

Figure 6.6 – Autocorrelation functions related to the modelling of Bouquet 1 (Thinning interval =
10)



6.1. RADIOCARBON DATINGS IN SENNEFER’S TOMB (EGYPT) 65

Figure 6.7 – Marginal posterior densities of indivudal standard deviations related to the modelling
of Bouquet 1

draw conclusions about the calendar date of the event. The event Bouquet 1 may be
dated at -1370 (mean value) with a 95% interval of [-1417; -1314] (HPD interval).
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Figure 6.8 – Numerical values of indivudal standard deviations related to the modelling of Bouquet
1
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Figure 6.9 – History plots of indivudal standard deviations related to the modelling of Bouquet 1

Figure 6.10 – Acceptation rates of indivudal standard deviations related to the modelling of Bouquet
1
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Figure 6.11 – Autocorrelation functions of indivudal standard deviations related to the modelling of
Bouquet 1
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6.1.2 Bouquet 2

Now, let’s say we want to estimate the calendar date of bouquet 2. 8 samples were
extracted from Bouquet 2 and radiocarbon dated. The modelling of this bouquet by
ChronoModel is represented by Figure 6.12.

Figure 6.12 – Modelling of Bouquet 2 with ChronoModel

Each radiocarbon measurement is calibrated using IntCal09 curve. No reservoir offset
is taken into account. The study period is chosen to start at -2000 and end at 2000
using a step of 1 year. This study period is chosen so that every distribution of the
calibrated date is included in this study period.
The default MCMC methods are used. We use 1 000 iterations in the Burn-in period,
1 000 iterations in each of the 100 maximum batches in the Adapt period and 100
000 iterations in the Acquire period using thinning intervals of 10.
The marginal posterior densities, presented in Figure 6.13, are of two sorts. Althought,
the first 6 datings seem to be contemporary, the two last ones seem to be some kind
of outliers. Indeed their density function takes values about 1600 whereas the other
densities take values between -1500 and -1200. All history plots have good mixing
properties and autocorrelation functions are correct (results not shown). Looking
at individual standard deviations, the marginal posterior densities, displayed Figure
6.15, show three distinct standard deviations. The first 5 samples are associated with
a standard deviation density function that takes small values, with mean values about
50. The next sample’s individual standard deviation has a mean posterior density at
100. And the 2 last samples are associated with individual standard deviations with a
mean higher than 2 000 (See Figure 6.16 for numerical values). Hence these two last
datings give a piece of information that has a reduced importance in the construction



70 CHAPTER 6. EXAMPLES

of the posterior density function of the event Bouquet 2. All individual standard
deviations have a history plot with good properties, an acceptance rate about 43% or
higher and a correct autocorrelation function (results not shown).
As a conclusion, the first 6 samples seem to be contemporary but the two last ones
seem to be some kind of outliers. Then the event Bouquet 2 may be dated at -1344
(mean value) with a 95% HPD interval [-1405;-1278].

The example shows that the modelling is robust to outliers. Indeed even if two
outliers were included in the analysis, the datation of the event was not affected
by them. ChronoModel do not need any particular manipulation of outliers before
analysing the datings. Indeed there is no need to withdraw any datation or to use a
special treatment to them.

Figure 6.13 – Marginal posterior densities related to the modelling of Bouquet 2
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Figure 6.14 – Numerical values related to the modelling of Bouquet 2
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Figure 6.15 – Marginal posterior densities of indivudal standard deviations related to the modelling
of Bouquet 2
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Figure 6.16 – Numerical values of indivudal standard deviations related to the modelling of Bouquet
2
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6.1.3 Modelling of bouquets 1 and 2 simultaneously

Now let’s say we want to date Bouquet 1 and Bouquet 2 simultaneously. See bou-
quets12.chr.
The study period was chosen to start at -2000 and end at 2000 using a step of 1 year.
All other parameters are those used for the modelling of Bouquet 1 and of Bouquet
2.

Three different modellings are compared here. In the first modelling, no further
constraints are included (See Figure 6.17). In the two next modellings, two bounds
are introduced to constrain the beginning and the end of the burial of Sennefer (See
Figure 6.18). Indeed, the burial of Sennefer is assumed to have happened between the
accession date of Tutankamun and the accession date of Horemheb (See [23]). These
accesssion dates are considered as bounds in ChronoModel. There are two different
ways to introduce a bound. A bound may be fixed (Accession date of Tutankamun
-1356 and Accession date of Horemheb -1312) or a bound may have a uniform distri-
bution (Accession date of Tutankamun : uniform on [-1360; -1352], Accession date of
Horemheb : uniform on [-1316;-1308]).

Figure 6.19 displays the marginal posterior densities of both bouquets when the mod-
elling does not include bounds. Figure 6.20 displays the marginal posterior densities
of both bouquets when the modelling includes bounds, using fixed bounds (figure on
the left hand side) and using uniform bounds (figure on the right hand side). From
these results, we can see that the introduction of bounds helps restrain the posterior
densities and the HPD interval of both events. However, using fixed bounds or bounds
having a uniform distribution with a small period (8 years) lead to similar results.
Numerical values are presented in Table 6.1.
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Figure 6.17 – Modelling of Bouquets 1 and 2 without bounds
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Figure 6.18 – Modelling of Bouquets 1 and 2 including bounds
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Figure 6.19 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 without
bounds

Figure 6.20 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 with bounds
(fixed bounds on the left handside figure, with uniform bounds on the right handside figure)
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modelling of Bouquets 1 and 2
Without bounds With fixed bounds With uniform bounds

Event Bouquet 1
Mean -1371 -1338 -1338
HPD region [-1418; -1315] [-1357; -1316] [-1358; -1316]

Event Bouquet 2
Mean -1344 -1336 -1336
HPD region [-1406; -1278] [-1356; -1313] [-1357; -1313]

Table 6.1 – Numerical values related to the modellings of Bouquets 1 and 2
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6.1.4 Modelling of the phase including bouquets 1 and 2 -

Estimation of the duration of the phase

Let’s say that now we want to estimate the duration of the phase including both
bouquets. This phase might be seen as the duration of Sennefer’s burial. Three
different modellings are possible and presented here in turn. For all of them, the
study period is chosen to start at -2000 and end at 2000 using a step of 1 year. All
other parameters are those used for the modelling of Bouquet 1 and of Bouquet 2.

6.1.4.1 Phase without constraints

The modelling of the phase including both bouquets is displayed in Figure 6.21. In
this modelling, no further constraints are included. The phase’s duration is kept
unknown.

Figure 6.21 – Modelling of the phase including Bouquets 1 and 2 including a phase

Figure 6.22 displays the marginal posterior densities of both events and those of the
beginning and the end of the phase. Statistical results regarding Bouquet 1 and
Bouquet 2 are unchanged by the introduction of the phase, the results are similar to
those presented in the last section when no bounds were introduced (See Table 6.1).
In addition, this modelling allows to estimate the mean duration of the phase (35) as
well as its credibility interval ([0, 101]).
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Figure 6.22 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 including a
phase and without bounds. The densities of the minimum and the maximum are drawn in red, the
density of Bouquet 1 is drawn in green, the density of Bouquet 2 is drawn in purple.
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6.1.4.2 Phase with bounds

Now, let’s include prior information about the accession dates of Tutankamun and
Horemheb. We include the two fixed bounds as detailled in section 6.1.3. Here two
modellings are possible using ChronoModel. Figure 6.23 represents the first modelling
in which bounds constrain events. Figure 6.24 represents the second modelling in
which bounds are included in separated phases, using one phase for each bound, and
stratigraphic constraints are placed between phases. However, these two modellings
give similar results. The marginal posterior densities of all parameters are presented
in Figure 6.25. The mean duration of the bouquets’ phase is 12 years associated with
a credibility interval of [0, 33] that is smaller than the one estimated without bounds.

Figure 6.23 – First modelling 1 of Bouquets 1 and 2 including a phase and bounds
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Figure 6.24 – Second modelling of Bouquets 1 and 2 including a phase and bounds
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Figure 6.25 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 including a
phase and bounds. The densities of the minimum and the maximum are drawn in red, the density
of Bouquet 1 is drawn in green, the density of Bouquet 2 is drawn in purple.
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6.1.4.3 Phase with fixed duration

The phase of Sennefer’s burial is assumed to have happened between the accession
date of Tutankamun (-1356) and the accession date of Horemheb (-1312). Hence, the
duration of the phase is smaller than 44 years.
In this last modelling, no bounds are included but the maximum duration of the
phase is fixed at 44 years, the delay between the accession date of Tutankamun and
the accession date of Horemheb.

Figure 6.26 – Modelling of the phase including Bouquets 1 and 2 having a fixed duration

This modelling leads to the following results:

Duration of the phase
Mean 20
Credibility interval [0; 41]
Event Bouquet 1 Bouquet 2
Mean -1364 -1357
HPD region [-1408; -1317] [-1403; -1306]

Table 6.2 – Numerical values related to the phase including Bouquets 1 and 2 and having a fixed
duration

In that case, although the duration of the phase is reduced compared to the mod-
elling without bounds, however, the estimation of the calendar dates of bouquet 1
and bouquet 2 are less precise than those estimated with the modelling with bounds.
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Figure 6.27 – Marginal posterior densities related to the modelling of the phase including Bouquets
1 and 2 having a fixed duration.. The densities of the minimum and the maximum are drawn in red,
the density of Bouquet 1 is drawn in green, the density of Bouquet 2 is drawn in purple.

In fact, the prior information about the maximum duration of a phase gives less
information than two constraining bounds.
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6.2 Toy scenario

In this example, we present a fictitious archaeological excavation with stratigraphy
on several structures. This toy scenario is used to give an idea different modellings
that may be designed with ChronoModel. Figure 6.28 shows the stratigraphy of the
archaeological field. For all modellings, the study period is -2 000 to 2 000.

Protohistoric enclosure

Villae

Workshop

Forum

Tepidarium

Caldarium

Sepulture 1 Sepulture 2 Sepulture 3

Chapel

Church

Not documented line

Not documented line

Figure 6.28 – Field model

Table 6.3 listes all the measurements and the corresponding structures. Each
structure will be considered as an event in ChronoModel, and so there are only one
radiocarbon specimen for each event.
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Structure Ref. 14C Value and standard error
Enclos Pr1 2540± 50
Villae GR5 1850± 30
Atelier GR4 1735± 30
Forum GR3 1764± 30

Tepidarium GR2 1760± 30
Caldarium GR1 1734± 30
Sepulture 1 M3 1350± 35
Sepulture 2 M4 1390± 30
Sepulture 3 M5 1370± 50
Chapelle M2 1180± 30
Eglise M1 950± 35

Table 6.3 – Radiocarbon datations



88 CHAPTER 6. EXAMPLES

6.2.1 A sequential model without phases

In this first modelling, no phase is used. Each measurement is included in one event
and stratigraphic constraints between events are added to the modelling. Figure 6.29
shows the first modelling of this toy scenario by ChronoModel.

Figure 6.29 – Design of the sequential model by ChronoModel

Markov chains were checked, convergence was reached before the Acquire period, au-
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tocorrelation functions felt under the 95% confidence interval after a lag of 2 and
acceptance rates were all about 43%. Figure 6.30 shows the marginal posterior den-
sities of the events of this sequential model.

Figure 6.30 – Marginal posterior densities obtained from the sequential model using ChronoModel

6.2.2 Grouping events into phases

Another equivalent way to build the chronology is to introduce phases. In our exam-
ple, we can see 4 sequences nested in 4 phases. Each phase corresponds to a group
structures. Figure 6.31 displays the design of this second model including phases. For
this modelling, constraints between events were only kept within phases. Constraints
between events of different phases were replaced by constraints between phases. How-
ever, both modellings lead to the same results. This second modelling is also a way to
simplify the design of the model limiting the number of constraints between events.
Figure 6.32 shows the marginal posterior densities computed with the second mod-
elling. These denstiities are similar to those obtained from the first modelling. How-
ever, now information about phases : the density if the beginning and the end of each
phase may also be seen.
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Figure 6.31 – Design of the second modelling by ChronoModel : introduction of phases
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Figure 6.32 – Marginal posterior densities of all events and phases modelised by the second model
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6.2.3 Grouping events into two kinds of phases

Now, keeping the same sequences, we may add new phases corresponding to typo-
chronological criteria.

Figure 6.33 – Design of the third modelling by ChronoModel
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Figure 6.34 – Marginal posterior densities of the events - Third modelling

Figure 6.35 – Marginal posterior densities of the beginning and the end of the phases - Third mod-
elling



94 CHAPTER 6. EXAMPLES



Bibliography

[1] Lanos P, Philippe A. Hierarchical Bayesian modeling for combining Dates in
archaeological context; 2015.

[2] Christen JA. Summarizing a set of radiocarbon determinations: a robust ap-
proach. Applied Statistics. 1994;43(3):489–503.

[3] Lunn D, Jackson C, Spiegelhalter D. The BUGS Book: A Practical Introduction
to Bayesian Analysis. Chapman and Hall/CRC; 2012.

[4] Daniels MJ. A prior for the variance in hierarchical models. Canad J Statist.
1999;27(3):567–578.

[5] Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials
and Health-Care Evaluation. Chichester: Wiley; 2004.

[6] Ward GK, Wilson SR. Procedures for comparing and combining radiocarbon age
determinations: a critique. Archaeometry. 1978;20(1):19–31.

[7] Stuiver M, Reimer P, Bard E, Beck J, Burr G, Hughen K, et al. INTCAL98
radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon. 2006;40(3). Avail-
able from: https://journals.uair.arizona.edu/index.php/radiocarbon/

article/view/3781.

[8] Reimer P, Baillie M, Bard E, Bayliss A, Beck J, Bertrand C, et al. Int-
Cal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon.
2004;46(3). Available from: https://journals.uair.arizona.edu/index.

php/radiocarbon/article/view/4167.

[9] Hughen K, Baillie M, Bard E, Beck J, Bertrand C, Blackwell P, et al. Ma-
rine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon.
2004;46(3). Available from: https://journals.uair.arizona.edu/index.

php/radiocarbon/article/view/4168.

95

https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3781
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3781
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4167
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4167
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4168
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4168


96 BIBLIOGRAPHY

[10] McCormac FG, Hogg A, Blackwell P, Buck C, Higham T, Reimer P.
SHCal04 Southern Hemisphere calibration, 0-11.0 cal kyr BP. Radiocarbon.
2004;46(3). Available from: https://journals.uair.arizona.edu/index.

php/radiocarbon/article/view/4169.

[11] Reimer P, Baillie M, Bard E, Bayliss A, Beck J, Blackwell P, et al. IntCal09
and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years cal BP. Ra-
diocarbon. 2009;51(4). Available from: https://journals.uair.arizona.edu/
index.php/radiocarbon/article/view/3569.

[12] Reimer P, Bard E, Bayliss A, Beck J, Blackwell P, Ramsey CB, et al. IntCal13
and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Ra-
diocarbon. 2013;55(4). Available from: https://journals.uair.arizona.edu/
index.php/radiocarbon/article/view/16947.

[13] Hogg A, Hua Q, Blackwell P, Niu M, Buck C, Guilderson T, et al. SHCal13
Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon.
2013;55(4). Available from: https://journals.uair.arizona.edu/index.

php/radiocarbon/article/view/16783.

[14] Hervé G, Chauvin A, Lanos P. Geomagnetic field variations in Western Europe
from 1500BC to 200AD. Part I: Directional secular variation curve. Physics of
the Earth and Planetary Interiors. 2013 May;218:1–13. Available from: http:

//www.sciencedirect.com/science/article/pii/S0031920113000265.

[15] Hervé G, Chauvin A, Lanos P. Geomagnetic field variations in Western Europe
from 1500BC to 200AD. Part II: New intensity secular variation curve. Physics
of the Earth and Planetary Interiors. 2013 May;218:51–65. Available from: http:
//www.sciencedirect.com/science/article/pii/S0031920113000277.

[16] Kovacheva M, Kostadinova-Avramova M, Jordanova N, Lanos P, Boyadzhiev Y.
Extended and revised archaeomagnetic database and secular variation curves
from Bulgaria for the last eight millennia. Physics of the Earth and Planetary
Interiors. 2014;236:79 – 94. Available from: http://www.sciencedirect.com/

science/article/pii/S0031920114001605.

[17] Buck CE, Litton CD, Cavanagh W G. The Bayesian Approach to Interpreting
Archaeological Data. England: Chichester, J.Wiley and Son; 1996.

[18] Robert CP, Casella G. Monte Carlo Statistical Methods. 2nd ed. Springer; 2004.

https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4169
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4169
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3569
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/3569
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16947
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16947
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16783
https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16783
http://www.sciencedirect.com/science/article/pii/S0031920113000265
http://www.sciencedirect.com/science/article/pii/S0031920113000265
http://www.sciencedirect.com/science/article/pii/S0031920113000277
http://www.sciencedirect.com/science/article/pii/S0031920113000277
http://www.sciencedirect.com/science/article/pii/S0031920114001605
http://www.sciencedirect.com/science/article/pii/S0031920114001605


BIBLIOGRAPHY 97

[19] Robert CP. Simulation of truncated normal variables. Statistics and Computing.
1995;5(2):121–125. Available from: http://dx.doi.org/10.1007/BF00143942.

[20] Roberts GO, Rosenthal JS. Optimal Scaling for Various {Metropolis-Hastings}
Algorithms. Statistical Science. 2001;16(4):351–367. Available from: http://dx.
doi.org/10.2307/3182776.

[21] Härdle WK, Müller M, Sperlich S, Werwatz A. Nonparametric and Semipara-
metric Models; 2012. Available from: https://books.google.com/books?hl=

fr{&}lr={&}id=wqX7CAAAQBAJ{&}pgis=1.

[22] Samworth RJ, Wand MP. Asymptotics and optimal bandwidth selection for
highest density region estimation. The Annals of Statistics. 2010 jun;38(3):1767–
1792. Available from: http://projecteuclid.org/euclid.aos/1269452654.

[23] Quiles A, Aubourg E, Berthier B, Delque-Količ E, Pierrat-Bonnefois G, Dee MW,
et al. Bayesian modelling of an absolute chronology for Egypt’s 18th Dynasty
by astrophysical and radiocarbon methods. Journal of Archaeological Science.
2013;40:423–432.

http://dx.doi.org/10.1007/BF00143942
http://dx.doi.org/10.2307/3182776
http://dx.doi.org/10.2307/3182776
https://books.google.com/books?hl=fr{&}lr={&}id=wqX7CAAAQBAJ{&}pgis=1
https://books.google.com/books?hl=fr{&}lr={&}id=wqX7CAAAQBAJ{&}pgis=1
http://projecteuclid.org/euclid.aos/1269452654

	Introduction
	Bayesian modelling
	Event model
	Definition of the model
	Prior information about th and sig 
	Likelihood 
	Observations
	Individual calibration 
	Individual calibration and reservoir effect
	Calibration from multiple measurements 
	Typo-chronological reference 

	The wiggle-matching case 
	Temporal order constraints

	Phases
	Definition of a phase
	Beginning, end and duration of a phase
	Prior information about the duration of a phase
	Prior information about a succession of phases
	Temporal succession between phases
	Prior information about a hiatus



	Use of ChronoModel
	Installation
	Description of the icons of the main window
	Creating / Opening a project - Defining the study period
	Creating events, bounds and constraints
	Creating a new event
	Including measurements
	Radiocarbon dating (14C)
	Archeomagnetism dating (AM)
	Luminescence dating (TL/OSL)
	Gaussian dating (Gauss)
	Typo-chronological reference (Typo Ref.)
	Importing data using a CSV file
	Calibration process
	Deleting / Restoring a measurement

	Creating a new bound
	Deleting / Restoring an event or a bound
	Creating / Deleting a constraint
	Using the grid
	Using the overview
	Exporting the image of the events' scene
	Exporting data from the project

	Creating phases and constraints between phases
	Creating a new phase
	Modifying / Deleting a phase
	Including / Removing events or bounds
	Creating / Deleting a constraint between two phases
	Using the grid
	Using the overview
	Exporting the image of the phases' scene


	Numerical methods
	Markov chain Monte Carlo
	Building a Markov chain in multiple dimensions: the Gibbs sampler
	Drawing from full conditional posterior distributions
	Full conditional posterior distribution of the event th
	Full conditional posterior distribution of calibrated dates ti 
	Full conditional posterior distribution of the variance of a calibrated date Sig
	Full conditional posterior distribution of a wiggle matching deltai 
	Full conditional posterior distribution of a bound thB 

	MCMC settings
	Burn
	Adapt
	Acquire
	Thinning
	Starting values
	Number of chains


	Results
	Checking the Markov chains
	Is the equilibrium reached ? Look at the history plots.
	Correlation between successive values ? Look at the autocorrelation functions.
	Look at the acceptance rates.

	Marginal posterior densities
	Estimations
	Marginal posterior density
	Credibility interval (CI)
	Highest posterior density (HPD) region

	Date format
	Graphical results
	Statistical results

	Savings
	Summaries

	Examples
	Radiocarbon datings in Sennefer's tomb (Egypt)
	Bouquet 1
	Bouquet 2
	Modelling of bouquets 1 and 2 simultaneously 
	Modelling of the phase including bouquets 1 and 2 - Estimation of the duration of the phase
	Phase without constraints
	Phase with bounds
	Phase with fixed duration


	Toy scenario
	A sequential model without phases
	Grouping events into phases
	Grouping events into two kinds of phases



