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Highlights

• Injection modes have major impact on anomalous transport in DFNs

• Evolution of the Lagrangian velocity distribution is governed by injec-

tion modes

• Spatial velocity Markov model for variable injection modes

• Equivalence between spatial Markov model and Boltzmann equation
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Abstract

We investigate tracer transport on random discrete fracture networks that

are characterized by the statistics of the fracture geometry and hydraulic

conductivity. While it is well known that tracer transport through fractured

media can be anomalous and particle injection modes can have major im-

pact on dispersion, the incorporation of injection modes into effective trans-

port modelling has remained an open issue. The fundamental reason behind
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this challenge is that—even if the Eulerian fluid velocity is steady—the La-

grangian velocity distribution experienced by tracer particles evolves with

time from its initial distribution, which is dictated by the injection mode, to

a stationary velocity distribution. We quantify this evolution by a Markov

model for particle velocities that are equidistantly sampled along trajecto-

ries. This stochastic approach allows for the systematic incorporation of

the initial velocity distribution and quantifies the interplay between veloc-

ity distribution and spatial and temporal correlation. The proposed spatial

Markov model is characterized by the initial velocity distribution, which is

determined by the particle injection mode, the stationary Lagrangian veloc-

ity distribution, which is derived from the Eulerian velocity distribution, and

the spatial velocity correlation length, which is related to the characteristic

fracture length. This effective model leads to a time-domain random walk

for the evolution of particle positions and velocities, whose joint distribution

follows a Boltzmann equation. Finally, we demonstrate that the proposed

model can successfully predict anomalous transport through discrete fracture

networks with different levels of heterogeneity and arbitrary tracer injection

modes.

Keywords: Discrete Fracture Networks, Injection Modes, Anomalous

Transport, Stochastic Modelling, Lagrangian Velocity, Time Domain

Random Walks, Continuous Time Random Walks, Spatial Markov Model

1. Introduction1

Flow and transport in fractured geologic media control many impor-2

tant natural and engineered processes, including nuclear waste disposal, ge-3
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ologic carbon sequestration, groundwater contamination, managed aquifer4

recharge, and geothermal production in fractured geologic media [e.g., 1,5

2, 3, 4, 5]. Two dominant approaches exist for simulating flow and trans-6

port through fractured media: the equivalent porous medium approach [6, 7]7

and the discrete fracture network approach (DFN) [8, 9, 10, 11, 12, 13, 14,8

15, 16, 17, 18, 19, 20, 21]. The DFN approach explicitly resolves individ-9

ual fractures whereas the equivalent porous medium approach represents10

the fractured medium as a single continuum by deriving effective parame-11

ters to include the effect of the fractures on the flow and transport. The12

latter, however, is hampered by the fact that a representative elementary13

volume may not exist for fractured media [22, 23]. Dual-porosity mod-14

els are in between these two approaches, and conceptualize the fractured-15

porous medium as two overlapping continua, which interact via an exchange16

term [24, 25, 26, 27, 28, 29, 30, 31, 32].17

DFN modelling has advanced significantly in recent years with the in-18

crease in computational power. Current DFN simulators can take into ac-19

count multiple physical mechanisms occurring in complex 3D fracture sys-20

tems. Recent studies also have developed methods to explicitly model ad-21

vection and diffusion through both the discrete fractures and the permeable22

rock matrix [33, 34, 35, 36]. In practice, however, their application must23

account for the uncertainty in the subsurface characterization of fractured24

media, which is still an considerable challenge [37, 38, 39]. Thus, there is a25

continued interest in the development of upscaled transport models that can26

be parameterized with a small number of model parameters. Ideally, these27

model parameters should have a clear physical interpretation and should be28
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determined by means of field experiments, with the expectation that the29

model can then be used for predictive purposes [40, 41].30

Developing an upscaled model for transport in fractured media is espe-31

cially challenging due to the emergence of anomalous (non-Fickian) trans-32

port. While particle spreading is often described using a Fickian framework,33

anomalous transport—characterized by scale-dependent spreading, early ar-34

rivals, long tails, and nonlinear scaling with time of the centered mean35

square displacement—has been widely observed in porous and fractured36

media across multiple scales, from pore [42, 43, 44, 45, 46] to single frac-37

ture [47, 48, 49, 50] to column [51, 52] to field scale [53, 54, 55, 56, 57, 41, 58].38

The ability to predict anomalous transport is essential because it leads to fun-39

damentally different behavior compared with Fickian transport [59, 60, 61].40

The continuous time random walk (CTRW) formalism [62, 63] is a frame-41

work to describe anomalous transport through which models particle motion42

through a random walk in space and time characterized by random space43

and time increments, which accounts for variable mass transfer rates due44

to spatial heterogeneity. It has been used to model transport in heteroge-45

neous porous and fractured media [64, 65, 66, 67, 68, 49, 69] and allows46

incorporating information on flow heterogeneity and medium geometry for47

large scale transport modelling. Similarly, the time-domain random walk48

(TDRW) approach [70, 71, 72] models particle motion due to distributed49

space and time increments, which are derived from particle velocities and50

their correlations. The analysis of particle motion in heterogeneous flow51

fields demonstrate that Lagrangian particle velocities exhibit sustained cor-52

relation along their trajectory [73, 70, 74, 75, 76, 77, 78, 79, 45]. Volume53
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conservation induces correlation in the Eulerian velocity field because fluxes54

must satisfy the divergence-free constraint. This, in turn, induces correlation55

in the Lagrangian velocity along a particle trajectory. To take into account56

velocity correlation, Lagrangian models based on Markovian processes have57

been proposed [70, 71, 74, 76, 77, 78, 45, 41, 80]. Spatial Markov models58

are based on the observation that successive velocity transitions measured59

equidistantly along the mean flow direction exhibit Markovianity: a parti-60

cle’s velocity at the next step is fully determined by its current velocity. The61

spatial Markov model, which accounts for velocity correlation by incorporat-62

ing this one-step velocity correlation information, has not yet been extended63

to disordered (unstructured) DFNs.64

The mode of particle injection can have a major impact on transport65

through porous and fractured media [81, 82, 83, 84, 85, 86, 58, 87]. Two66

generic injection modes are uniform (resident) injection and flux-weighted67

injection with distinctive physical meanings as discussed in Frampton and68

Cvetkovic [84]. The work by Sposito and Dagan [82] is one of the earliest69

studies of the impact of different particle injection modes on the time evolu-70

tion of a solute plume spatial moments. The significance of injection modes71

on particle transport through discrete fracture networks has been studied for72

fractured media [84, 58]. Dagan [87] recently clarified the theoretical relation73

between injection modes and plume mean velocity. Despite recent advances74

regarding the significance of particle injection modes, the incorporation of75

injection methods into effective transport modelling is still an open issue76

[84]. The fundamental challenge is that the Lagrangian velocity distribution77

experienced by tracer particles evolves with time from its initial distribution78
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which is dictated by the injection mode to a stationary velocity distribution79

[73, 84, 75, 88]. In this paper, we address these fundamental questions, in80

the context of anomalous transport through disordered DFNs.81

The paper proceeds as follows. In the next section, we present the studied82

random discrete fracture networks, the flow and transport equations and83

details of the different particle injection rules. In Section 3, we investigate the84

emergence of anomalous transport by direct Monte Carlo simulations of flow85

and particle transport. In Section 4, we analyze Eulerian and Lagrangian86

velocity statistics to gain insight into the effective particle dynamics and87

elucidate the key mechanisms that lead to the observed anomalous behavior.88

In Section 5, we develop a spatial Markov model that is characterized by the89

initial velocity distribution, probability density function (PDF) of Lagrangian90

velocities and their transition PDF, which are derived from the Monte Carlo91

simulations. The proposed model is in excellent agreement with direct Monte92

Carlo simulations. We then present a parsimonious spatial Markov model93

that quantifies velocity correlation with a single parameter. The predictive94

capabilities of this simplified model are demonstrated by comparison to the95

direct Monte Carlo simulations with arbitrary injection modes. In Section 6,96

we summarize the main findings and conclusions.97

2. Flow and Transport in Discrete Random Fracture Networks98

2.1. Random Fracture Networks99

We numerically generate random DFNs in two-dimensional rectangular100

regions, and solve for flow and tracer transport within these networks. The101

fracture networks are composed of linear fractures embedded in an imper-102
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meable rock matrix. The idealized 2D DFN realizations are generated by103

superimposing two different sets of fractures, which leads to realistic discrete104

fracture networks [89, 67]. Fracture locations, orientations, lengths and hy-105

draulic conductivities are generated from predefined distributions, which are106

assumed to be statistically independent: (1) Fracture midpoints are selected107

randomly over the domain size of Lx×Ly where Lx = 2 and Ly = 1; (2) Frac-108

ture orientations for two fracture sets are selected randomly from Gaussian109

distributions, with means and standard deviation of 0◦ ± 5◦ for the first set,110

and 90◦ ± 5◦ for the second set; (3) Fracture lengths are chosen randomly111

from exponential distributions with mean Lx/10 for the horizontal fracture112

set and mean Ly/10 for the vertical fracture set; (4) Fracture conductivities113

are assigned randomly from a predefined log-normal distribution. An exam-114

ple of a random discrete fracture network with 2000 fractures is shown in115

Figure 1.116

The position vector of node i in the fracture network is denoted by xi.

The link length between nodes i and j is denoted by lij. The network is char-

acterized by the distribution of link lengths pl(l) and hydraulic conductivity

K. The PDF of link lengths here is exponential

pl(l) =
exp(−l/l̄)

l̄
. (1)

Note that the link length and orientation are independent. The character-117

istic fracture link length is obtained by taking the average of a link length118

over all the realizations, which gives l̄ ≈ Lx/200. A realization of the ran-119

dom discrete fracture network is generated by assigning independent and120

identically distributed random hydraulic conductivities Kij > 0 to each link121

between nodes i and j. Therefore, the Kij values in different links are un-122
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correlated. The set of all realizations of the spatially random network gener-123

ated in this way forms a statistical ensemble that is stationary and ergodic.124

We assign a lognormal distribution of K values, and study the impact of125

conductivity heterogeneity on transport by varying the variance of ln(K).126

We study log-normal conductivity distributions with four different variances:127

σlnK = 1, 2, 3, 5. The use of this particular distribution is motivated by the128

fact that conductivity values in many natural media can be described by a129

lognormal law [90, 91].130

2.2. Flow Field131

Steady state flow through the network is modeled by Darcy’s law [22] for132

the fluid flux uij between nodes i and j, uij = −Kij(Φj − Φi)/lij, where Φi133

and Φj are the hydraulic heads at nodes i and j. Imposing flux conservation134

at each node i,
∑

j uij = 0 (the summation is over nearest-neighbor nodes),135

leads to a linear system of equations, which is solved for the hydraulic heads136

at the nodes. The fluid flux through a link from node i to j is termed137

incoming for node i if uij < 0, and outgoing if uij > 0. We denote by eij the138

unit vector in the direction of the link connecting nodes i and j.139

We study a uniform flow setting characterized by constant mean flow

in the positive x-direction parallel to the principal set of factures. No-flow

conditions are imposed at the top and bottom boundaries of the domain,

and fixed hydraulic head at the left (Φ = 1) and right (Φ = 0) boundaries.

The overbar in the following denotes the ensemble average over all network

realizations. The one-point statistics of the flow field are characterized by the

Eulerian velocity PDF, which is obtained by spatial and ensemble sampling

9
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of the velocity magnitudes in the network

pe(u) =

∑
i>j lijδ(u− uij)

N`l̄
. (2)

where N` is the number of links in the network. Link length and flow veloc-

ities here are independent. Thus, the Eulerian velocity PDF is given by

pe(u) =
1

N`

∑

i>j

δ(u− uij). (3)

Even though the underlying conductivity field is uncorrelated, the mass con-140

servation constraint together with heterogeneity leads to the formation of141

preferential flow paths with increasing network heterogeneity [92, 80]. This142

is illustrated in Figures 2a and b, which show maps of the relative velocity143

magnitude for high velocities in networks with log-K variances of 1 and 5. As144

shown in Figures 2c and d, for low heterogeneity most small flux values occur145

along links perpendicular to the mean flow direction, whereas low flux values146

do not show directionality for the high heterogeneity case. This indicates147

that fracture geometry dominates small flux values for low heterogeneity and148

fracture conductivity dominates small flux values for high heterogeneity. An149

increase in conductivity heterogeneity leads to a broader Eulerian velocity150

PDF, with significantly larger probability of having small flux values as illus-151

trated in Figure 3, which shows pe(u) for networks of different heterogeneity152

strength.153

2.3. Transport154

Once the fluxes at the links have been determined, we simulate transport

of a passive tracer by particle tracking. Particles are injected along a line

10
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x
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y

0

0.5

1(a)

x
0 0.5 1

y

0.5

1(b)

Figure 1: (a) Example of a two-dimensional DFN studied here, with 2000 fractures (1000

fractures for each fracture set). (b) Subsection of a spatially uncorrelated conductivity

field between 0 ≤ x ≤ 1 and 0.5 ≤ y ≤ 1. Conductivity values are assigned from a

lognormal distribution with σlnK = 1. Link width is proportional to the conductivity

value; only connected links are shown.
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x
0 0.5 1 1.5 2

y 0.5

(a) Low heterogeneiy, high flux

x
0 0.5 1 1.5 2

y 0.5

(b) High heterogeneity, high flux

x
0 0.5 1 1.5 2

y 0.5

(d) High heterogeneity, low flux

x
0 0.5 1 1.5

y 0.5

(c) Low heterogeneity, low flux

2

Figure 2: Normalized flow field (|uij |/ū) showing high and low flux zones for a log-normal

conductivity distribution with two different heterogeneities. Link width is proportional to

the magnitude of the normalized flow. (a) σlnK = 1. Links with the flux value smaller than

ū/5 are removed. (b) σlnK = 5. Links with the flux value smaller than ū/5 is removed.

Preferential flow paths emerge as conductivity heterogeneity increases. (c) σlnK = 1.

Links with the flux value larger than ū/5 are removed. Most of low flux values occur at

the links perpendicular to the mean flow direction. (d) σlnK = 5. Links with the flux

value larger than ū/5 are removed. Low flux values show less spatial correlation than high

flux values.
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Figure 3: Eulerian flux probability density functions for four different levels of conductivity

heterogeneity. Increase in conductivity heterogeneity significantly increases the probability

of small flux values.
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at the inlet, x = 0, with two different injection methods: (1) uniform injec-

tion, and (2) flux-weighted injection. Uniform (resident) injection introduces

particles uniformly throughout the left boundary; this means that an equal

number of particles is injected into each inlet node i0,

Ni0 =
Np∑
i0

, (4)

where Ni0 is the number of particles injected at node i0, Np is the total

number of injected particles. Flux-weighted injection introduces particles

proportional to the total incoming flux Qi0 at the injection location i0

Ni0 = Np
Qi0∑
i0
Qi0

. (5)

Uniform injection simulates an initial distribution of tracer particles extended155

uniformly over a region much larger than the characteristic heterogeneity156

scale, and flux-weighted injection simulates a constant concentration pulse157

where the injected mass is proportional to the local injection flux at an inlet158

boundary that is much larger than the heterogeneity scale. For the uniform159

injection, the initial velocity distribution is then equal to the distribution of160

the Eulerian velocities. For the flux-weighted injection, the initial velocity161

distribution is equal to the flux-weighted Eulerian distribution. In general the162

initial velocity distribution may be arbitrary and depends on the conditions163

at the injection location. More detailed discussions can be found in section 4164

and section 5.165

Injected particles are advected with the flow velocity uij between nodes.166

To focus on the impact of conductivity variability on particle transport, we167

assume porosity to be constant. This is a reasonable assumption because168
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the variability in porosity is significantly smaller than the the variability in169

conductivity [22, 93].170

At the nodes, we apply a complete mixing rule [94, 95, 96]. Complete mix-171

ing assumes that Péclet numbers at the nodes are small enough that particles172

are well mixed within the node. Thus, the link through which the particle173

exits a node is chosen randomly with flux-weighted probability. A different174

node-mixing rule, streamline routing, assumes that Péclet numbers at nodes175

are large enough that particles essentially follow the streamlines and do not176

transition between streamlines. The complete mixing and streamline routing177

rules are two end members. The local Péclet number and the intersection178

geometry determine the strength of mixing at nodes, which is in general be-179

tween these two end-members. The impact of the mixing rule on transverse180

spreading can be significant for regular DFNs with low heterogeneity [97, 80].181

However, its impact is much more limited for random DFNs [96]. Since our182

interest in this study is the longitudinal spreading in random DFNs, we focus183

on the case of complete mixing. Thus, the particle transition probabilities184

pij from node i to node j are given by185

pij =
|uij|∑
k |uik|

, (6)

where the summation is over outgoing links only, and pij = 0 for incoming186

links. Particle transitions are determined only by the outgoing flux distribu-187

tion.188

The particle pathways and times are obtained by the following recursion

15
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relations

xn+1 = xn + `nen, (7a)

tn+1 = tn +
`n
un
, (7b)

where xn ≡ xin is the particle position after n random walk steps, `n ≡ linin+1

the particle displacement and en ≡ einin+1 its orientation; the particle velocity

at the nth step is denoted by un ≡ |uinin+1 |. The particle displacement,

orientation and velocity determined by the transition probability pinj from

node in to the neighboring nodes j given by Eq. (6). Equations (7) describe

coarse-grained particle transport for a single realization of the spatial random

network. Particle velocities and thus transition times depend on the particle

position. The particle position at time t is x(t) = xint
, where

nt = sup(n|tn ≤ t) (8)

denotes the number of steps needed to reach time t. We solve transport in

a single disorder realization by particle tracking based on Eq. (7) with the

two different injection rules (4) and (5) at the inlet at x = 0. The particle

density in a single realization is

p(x, t) = 〈δ(x− xnt)〉, (9)

where the angular brackets denote the average over all injected particles. As189

shown in Figure 4, both network heterogeneity and injection rule have signifi-190

cant impact on particle spreading. An increase in network heterogeneity leads191

to an increase in longitudinal particle spreading, and the uniform injection192

rule significantly enhances longitudinal spreading compared to flux-weighted193

16
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injection. The impact of network heterogeneity and injection method can be194

clearly seen from projected concentration profiles, fτ (ω). Arbitrary injection195

modes are also studied and discussed in section 5.2.196

3. Average Solute Spreading Behavior197

We first study the average solute spreading behavior for the four different

levels of conductivity heterogeneity and the two different injection methods

described above. We first illustrate the persistent effect of the particle in-

jection method on particle transport, with the two different injection modes.

To investigate the average spreading behavior, we average over all particles

and network realizations. The average particle density is given by

P (x, t) = 〈δ(x− xnt)〉, (10)

where the overbar denotes the ensemble average over all realizations. We198

run Monte Carlo particle tracking simulations for 100 realizations for each199

combination of conductivity heterogeneity and particle injection rule. In each200

realization, we release 104 particles at the inlet (x = 0) with the two different201

injection methods.202

3.1. Breakthrough Curves203

The average particle spreading behavior is first studied with the first204

passage time distribution (FPTD) or breakthrough curve (BTC) of particles205

at a control plane located at x = xc. The FPTD is obtained by averaging206

over the individual particle arrival times τa(xc) = inf(tn| |xn − x0| > xc) as207

f(τ, xc) = 〈δ[τ − τa(xc)]〉. (11)

17
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(c)
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σlnK = 1 ,

σlnK = 1 ,

σlnK = 5 ,  flux

 flux
uniform

σlnK = 5 ,

σlnK = 5 ,

σlnK = 1 ,  flux

f τ
(ω

)

f τ
(ω

)

0 0.5 1 1.5 2

10-2

100

0 0.5 1 1.5 2

10-2

100

Figure 4: Particle distribution at t = 20tl for a given realization after the instantaneous

release of particles at the inlet, x = 0. tl is the median transition time to travel Lx/100.

(a) The low heterogeneity case (σlnK = 1) with flux-weighted injection. (b) The low het-

erogeneity case (σlnK = 1) with uniform injection. (c) The projected particle distribution

in the longitudinal direction for the low heterogeneity case (σlnK = 1). (d) The high

heterogeneity case (σlnK = 5) with the flux-weighted injection. (e) The high heterogene-

ity (σlnK = 5) with the uniform injection. (f) The projected particle distribution in the

longitudinal direction for the high heterogeneity case (σlnK = 5). For the high heterogene-

ity case, the injection method has significant impact on particle spreading. The uniform

injection method leads to more anomalous spreading.
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Figure 5: (a) FPTDs for σlnK = 1, 2, 3, 5 with flux-weighted injection at xc = 200l̄.

Increase in conductivity heterogeneity leads to larger dispersion and stronger late-time

tailing. (b) FPTDs for σlnK = 1, 2, 3, 5 with uniform injection (black solid lines). Uniform

injection leads to significantly larger dispersion and late-time tailing compared to the

flux-weighted injection (red dashed lines). FPTDs are normalized with the peak arrival

time.
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Figure 5 shows FPTDs at the outlet, f(τ, xc = 200l̄), for different con-208

ductivity heterogeneities and injection rules. Conductivity heterogeneity has209

a clear impact on the FPTD by enhancing longitudinal spreading. This210

is so because stronger conductivity heterogeneity leads to broader particle211

transition time distribution, which in turn leads to enhanced longitudinal212

spreading. The injection rule also has a significant impact on FPTDs espe-213

cially for high conductivity heterogeneity. FPTDs between the two different214

injection rules are similar for σlnK = 1, but uniform injection shows sig-215

nificantly stronger tailing for σlnK = 2, 3, 5 [Figure 5(b)]. As conductivity216

heterogeneity increases, the flux values at the inlet also becomes broader.217

For flux-weighted injection, most of particles are injected at the nodes with218

high flux values. However, for uniform injection, particles are uniformly in-219

jected across the injection nodes and relatively large number of particles are220

released at the nodes with low flux values. This leads to notable difference221

between the two injection rules and the difference grows as the conductivity222

heterogeneity increases.223

3.2. Centered Mean Square Displacement224

We also study longitudinal spreading in terms of the centered mean square225

displacement (cMSD) of average particle density, P (x, t). For the longitudi-226

nal direction (x), the cMSD is given by σ2
x(t) = 〈[x(t)− 〈x(t)〉]2〉 where 〈·〉227

denotes the average over all particles for a given realization. In Figure 6,228

we show the time evolution of the longitudinal cMSDs. The time axis is229

normalized with the mean travel time along the characteristic fracture link230

length, l̄. For both injection methods, spreading shows a ballistic regime231

(∼ t2) at early times, which then transitions to a preasymptotic scaling in232
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an intermediate regime and finally to a final asymptotic regime. The time233

evolutions of cMSDs for the two injection cases are notably different as con-234

ductivity heterogeneity increases, while the asymptotic late-time scalings are235

very similar.236

The asymptotic power-law scaling can be understood in the framework

of a continuous time random walk (CTRW) description of dispersion. At

large times the Lagrangian velocity distributions are in their steady states

and subsequent particle velocities are independent. Thus, at large times

horizontal particle dispersion can be described by the CTRW

xn+1 = xn + `0, tn+1 = tn + τn, (12)

with the transition time τn = `0/vn. The velocities vn are distributed accord-

ing to ps(v) which is space Lagrangian velocity PDF, and `0 is a distance along

the streamline that is sufficiently large so that subsequent particle velocities

may be considered independent. Thus, the distribution of transit times τn is

given in terms of the space Lagrangian and Eulerian velocity PDFs as [88]

ψ(τ) =
`0
τ 2
ps(`0/τ) =

`0
τ 3v

pe(`0/τ), (13)

where v is the average Eulerian velocity, see also Section 4. Specifically, for

the scaling pe(v) ∝ vα at small velocities, the transit time PDF scales as

ψ(τ) ∝ τ−1−β, β = 2 + α. (14)

From Figure 3, we estimate for σlnK = 5 that α ≈ −0.55, which corresponds237

to β = 1.45. CTRW theory [66, 65] predicts that the cMSD scales as t3−β,238

which here implies t1.55. This is consistent with the late-time scaling of the239

cMSD shown in 6 for σlnK = 5.240
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The Monte Carlo simulations show that, in the intermediate regime (t/tl241

approximately between 1 and 100), the longitudinal cMSD increases linearly242

with time for flux-weighted injection [Figure 6(a)]. For uniform injection,243

cMSD increases faster than linearly (i.e., superdiffusively) for intermediate to244

strong heterogeneity in the intermediate regime [Figure 6(b)]. The stronger245

heterogeneity led to the increase in the late-time temporal scaling for both246

flux-weighted and uniform injection cases. The Monte Carlo simulations also247

show that there is no noticeable difference between the uniform injection248

and the flux-weighted injection for the low heterogeneity case whereas the249

difference increases as heterogeneity increases [Figure 6(b), inset].250

In summary, both the increase in conductivity heterogeneity and the uni-251

form injection method enhance longitudinal spreading. For low heterogeneity,252

the two different injection rules do not affect particle spreading significantly.253

The difference, however, becomes significant as the conductivity heterogene-254

ity increases. Both the magnitude of the cMSD and the super-diffusive scaling255

behavior are notably different for the two different injection rules at high het-256

erogeneity. We now analyze the Lagrangian particle statistics to understand257

the underlying physical mechanisms that lead to the observed anomalous258

particle spreading.259

4. Lagrangian Velocity Statistics260

The classical CTRW approach [64, 65]—see Eq. (12)—relies on the in-261

dependence of particle velocities at subsequent steps and thus spatial po-262

sitions. Recent studies, however, have shown that the underlying mecha-263

nisms of anomalous transport can be quantified through an analysis of the264
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Figure 6: Time evolution of longitudinal MSDs for σlnK = 1, 2, 3, 5 obtained from Monte

Carlo simulations (solid lines), and the model predictions from the Markov-Chain CTRW

(32) and (35) with the full transition PDF (dashed lines). Increase in conductivity het-

erogeneity leads to higher dispersion, and the Markov-chain CTRW model is able to accu-

rately capture the time evolution of the MSDs for all levels of heterogeneity and injection

rules. (a) Flux-weighted injection. (b) Uniform injection. Inset: Comparison between

flux-weighted and uniform injection for σlnK = 1, 5. Impact of injection rule is significant

for high conductivity heterogeneity.
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statistics of Lagrangian particle velocities such as velocity distribution and265

correlation [74, 76, 98, 77, 78, 45, 80]. In the following, we briefly intro-266

duce two viewpoints for analyzing Lagrangian velocities—equidistantly and267

isochronally along streamlines—and the relation between them [88]. We then268

proceed to a detailed analysis of the Lagrangian velocity statistics measured269

equidistantly along streamlines.270

4.1. Lagrangian Velocities271

Particle motion is described here by the recursion relations (7). In this

framework, we consider two types of Lagrangian velocities. The t(ime)–

Lagrangian velocities are measured at a given time t,

vt(t) = unt , (15)

where nt is defined by (8). The s(pace)–Lagrangian velocities are measured

at a given distance s along the trajectory. The distance sn traveled by a

particle along a trajectory after n steps is given by

sn+1 = sn + `n. (16)

The number of steps needed to cover the distance s is described by ns =

sup(n|sn ≤ s). Thus, the particle velocity at a distance s along a trajectory

is given by

vs(s) = uns . (17)

The PDF of t–Lagrangian velocities sampled along a particle path is given

by

pt(v) = lim
n→∞

∑n
i=1 τiδ(v − ui)∑n

i=1 τi
, (18)
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where we defined the transit time,

τi =
`i
ui

(19)

The PDF of s–Lagrangian velocities sampled along a particle path are defined

analogously as

ps(v) = lim
n→∞

∑n
i=1 `iδ(v − ui)∑n

i=1 `i
. (20)

Note the difference with respect to Eq. (2), which samples velocities in the

network uniformly, while in Eq. 20 velocities are sampled along trajectories.

Using the definition of the transit time τi in (19), the PDFs of the s– and

t–Lagrangian velocities are related through flux weighting as [88]

ps(v) =
vpt(v)∫
dv vpt(v)

. (21)

Furthermore, for flux-preserving flows and under ergodic conditions, the Eu-

lerian and t-Lagrangian velocity PDFs are equal,

pe(v) = pt(v). (22)

Thus, under these conditions, the s–Lagrangian and Eulerian velocity PDFs

are related as [88]

ps(v) =
vpe(v)∫
dv vpe(v)

. (23)

This means that the stationary s-Lagrangian velocity PDF can be determined272

from the Eulerian velocity PDF. Figure 7 illustrates this relation by compar-273

ing the s-Lagrangian velocity PDFs measured from the numerical simulation274

to the flux-weighted Eulerian velocity PDFs shown in Figure 3.275
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4.2. Evolution of Lagrangian Velocity Distributions276

It is important to emphasize that the above definitions of the Lagrangian

velocity PDFs refer to stationary conditions. We now define the PDFs of t–

and s–Lagrangian velocities through sampling between particles and network

realizations at a given time (t-Lagrangian) or space (s-Lagrangian) velocities

p̂t(v, t) = 〈δ[v − v(t)]〉, p̂s(v, s) = 〈δ[v − v(s)]〉. (24)

In general, these quantities evolve in time and with distance along the stream-

line and are sensitive to the injection conditions because evidently for t = 0

and s = 0 both are equal to the PDF of initial particle velocities p̂t(v, t =

0) = p̂s(v, s = 0) = p0(v), but their respective stationary PDFs are different,

namely

pt(v) = lim
t→∞

p̂t(v, t), ps(v) = lim
s→∞

p̂s(v, s). (25)

Let us consider some further consequences of these properties. First, we

notice that under (Eulerian) ergodicity the uniform injection condition (4)

corresponds to an initial velocity PDF of

p0(v) = pe(v) = pt(v), (26)

that is, the initial velocity PDF is equal to the Eulerian and thus t–Lagrangian277

velocity PDFs. This means that for the uniform injection method, the t–278

Lagrangian velocity PDF is steady, p̂t(v, t) = pt(v), while the s–Lagrangian279

velocity PDF is not. It evolves from its initial distribution ps(v, s = 0) =280

pe(v) to the steady state distribution (23).281
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The flux-weighted injection condition, on the other hand, corresponds to

the the initial velocity PDF

p0(v) = ps(v), (27)

due to relation (21). The initial velocity PDF is equal to the s–Lagrangian282

velocity PDF. This means that under flux-weighting, the s–velocity PDF is283

steady, p̂s(v, s) = ps(v). Under these conditions, the t–Lagrangian velocity284

PDF p̂t(v, t) evolves from the initial distribution p̂t(v, t = 0) = ps(v) towards285

the asymptotic pt(v) = pe(v), which is equal to the Eulerian velocity PDF.286

These are key insights for the qualitative and quantitative understanding of287

the average transport behavior.288

4.3. Space-Lagrangian Velocity Statistics289

We analyze particle velocities along their projected trajectories in the290

longitudinal direction. Spatial particle transitions may be characterized by291

the characteristic fracture link length, l̄. The Lagrangian velocity vs(sn) at292

a distance xn = nl̄ along the projected trajectory is approximated by the293

average velocity vn ≡ l̄/τn where τn is the transition time for the distance294

l̄ at step n. In the following, we investigate the statistical characteristics of295

the s-Lagrangian velocity series {vn}. For the uniform flow conditions under296

consideration here, the projected distance xn is a measure for the streamwise297

distance sn, and vn for the s-Lagrangian velocity vs(sn). Spatial Lagrangian298

velocities have been studied by Cvetkovic et al. [73] and Gotovac et al. [75]299

for highly heterogeneous porous media and by Frampton and Cvetkovic [16]300

for 3D DFNs in view of quantifying particle travel time statistics and thus301

modelling effective particle motion.302
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Figure 8: Lagrangian flux distributions at the inlet and outlet for uniform and flux-

weighted injection rules, for σlnK = 5. Note that Lagrangian flux distributions at the

outlet are identical regardless of the injection method. Inset: the same plot for σlnK = 1.
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We first study the convergence of the s–Lagrangian velocity PDFs towards303

a stationary distribution and the invariance of p̂s(v, s) for a stationary (flux-304

weighted) initial velocity PDF. We consider the two injection conditions (4)305

and (5) and record the distribution of particle velocities at a line located at306

the control point xc. Under ergodic conditions, we expect p̂s(v, s) to converge307

towards its steady state distribution (23) for uniform injection and to remain308

invariant for the flux-weighted injection. Figure 8 shows p̂s(v, s = 0) and309

p̂s(v, s = xc) for uniform and flux-weighted injection conditions and two310

different heterogeneity strengths. We clearly observe that p̂s(v, xc) = ps(v)311

is invariant for flux-weighted injection. For uniform injection, p̂s(v, xc) has312

already evolved towards its steady limit after xc = 200l̄. This is an indication313

that the flow and transport system is in fact ergodic. Note that in terms314

of computational efficiency, this observation gives a statistically consistent315

way of continuing particle trajectories through reinjection at the inlet. If316

the outlet is located at a position xc large enough so that p̂s(v, s = xc) =317

ps(v), particles are reinjected at the inlet with flux-weighted probability, this318

means that the velocity statistics are preserved. Furthermore, this method319

ensures that the domain is large enough to provide ergodic conditions. In320

the following, we analyze the statistical properties of streamwise velocity321

transitions with the aim of casting these dynamics in the frame of a Markov322

model for subsequent particle velocities.323

We first consider the distribution ψτ (t) of transition times along particle324

trajectories through sampling the transition times along all particle trajecto-325

ries and among network realizations. To this end, we consider a flux-weighted326

injection because it guarantees that the s-Lagranagian velocities are station-327
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ary. Figure 9 illustrates the PDF of transition times for different variances328

of ln(K). As σlnK increases, the transition time PDFs become broader. The329

transition time closely follows a truncated power-law distribution.330

Next we consider two-point velocity statistics to gain insight into the

velocity correlations along a streamline. To this end, we consider the velocity

auto covariance for a given lag ∆s = s− s′. As pointed out above, for flux-

weighted injection, the streamwise velocities here are stationary and therefore

Cs(s− s′) = 〈[vs(s)− 〈vs(s)〉][vs(s′)− 〈vs(s′)〉]〉. (28)

In order to increase the statistics, we furthermore sample along streamlines

over a distance of 102l̄. The velocity variance is σ2
v = Cs(0). The velocity

autocorrelation function χs(s) = Cs(s)/σ
2
v . The correlation length scale `c is

defined by

`c =

∞∫

0

ds χs(s). (29)

The inset in Figure 9 shows the increase in the velocity correlation length331

scale with increasing ln(K) variances for a flux-weighted injection case. This332

can be attributed to the emergence of preferential flow paths, as shown in333

Figure 2. Painter and Cvetkovic [71] and Frampton and Cvetkovic [16] also334

reported the existence of clear velocity correlation between successive jumps335

in DFNs and showed that this correlation structure should be captured for336

effective transport modelling.337

The existence of a finite correlation length along the particle trajectories

indicates that subsequent velocities, when sampled at a distance much larger

than the correlation length `c, may be considered independent. In order to
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Figure 9: (a) Lagrangian transition time distributions for σlnK = 1, 2, 3, 5 with flux-

weighted injection. As the network conductivity becomes more heterogeneous, the tran-

sition time distribution becomes broader. Inset: the effective correlation length increases

with increasing network heterogeneity: 3.8l̄, 5.6l̄, 8.2l̄, 11.5l̄. The correlation step (nc) is

computed by integrating velocity autocorrelation function in space.
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study this feature, we characterize the series of s-Lagrangian velocities {vn}
in terms of the transition probabilities to go from velocity vm to velocity

vm+n. We determine the transition probabilities under flux-weighted particle

injection because, as detailed above, under these conditions, the s-Lagrangian

velocity is stationary. Thus, the transition probability is only a function of

the number n of steps,

rn(v|v′) = 〈δ(v − vm+n)〉 |vm=v′ (30)

Numerically, the transition probability is determined by discretizing the s-

Lagrangian velocity PDF into N velocity classes Ci = (vs,i, vs,i + ∆vs,i) and

recording the probability for each class given the previous velocity class. This

procedure gives the transition matrix Tn(i|j) from class j to i after n steps

such that rn(v|v′) is approximated numerically as

rn(v|v′) =
N∑

i,j=1

ICi(v)Tn(i|j)ICj(v′)
∆vi

, (31)

where the indicator function ICi(v) is 1 if v ∈ Ci and 0 otherwise.338

Figure 10 shows the one-step transition matrix T1(i|j) for equidistant and339

logarithmically equidistant velocity classes for different network heterogene-340

ity. Higher probabilities along the diagonal than in the off-diagonal positions341

indicate correlation between subsequent steps, which, however, decreases as342

the number of steps along the particle trajectory increases, as indicated by343

the existence of a finite correlation scale `c.344

5. Stochastic Particle Motion and Effective Transport Model345

In the following, we describe the evolution of the s-Lagrangian velocities346

by a Markov-chain, which is motivated by the existence of a finite spatial347
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Figure 10: (a) One-step velocity transition matrix T1(i|j) with linear equiprobable binning

for N = 50 velocity classes for σlnK = 1. (b) Velocity transition matrix with linear

equiprobable binning for σlnK = 5. The color-bar shows the logarithmic scale. (c) Velocity

transition matrix with logarithmic binning for σlnK = 1. (d) Velocity transition matrix

with logarithmic binning for σlnK = 5. Increase in conductivity heterogeneity leads to

higher probability close to diagonal entries.

34



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

correlation scale (see inset of figure 9). This leads to a spatial Markov-chain348

random walk (which we also termed spatial Markov Model) formulation of349

particle dispersion that is valid for any initial velocity distribution, and thus350

for any injection protocol. This modelling approach is in line with the time-351

domain random walk (TDRW) and continuous time random walk (CTRW)352

approaches discussed in the Introduction and below.353

5.1. Markovian Velocity Process354

Along the lines of Le Borgne et al. [74] and Kang et al. [77], we model

the velocity series {vn} as a Markov-chain, which is a suitable model to sta-

tistically quantify the evolution of the s-Lagrangian velocities based on the

existence of a finite correlation length. In this framework, the n–step tran-

sition probability rn(v|v′) satisfies the Chapman–Kolmogorov equation [99]

rn(vn|v0) =

∫
dvkrn−k(vn|vk)rk(vk|v0). (32a)

The velocity process is fully characterized in terms of the one-step transition

PDF r1(v|v′) and the steady state PDF ps(v) of the s-Lagrangian velocity.

Consequently, the evolution of the s-Lagrangian velocity PDF p̂s(v, sn) is

given by

ps(v, sn) =

∫
dv′r1(v|v′)ps(v′, sn), (32b)

with the arbitrary initial PDF ps(v, s0 = 0) = p0(v). The number of steps355

to decorrelate this Markov-chain is given by nc = `c/l̄. Figure 11 shows the356

evolution of the PDF of s-Lagrangian velocities for the uniform injection (4).357

Recall that the uniform injection mode corresponds to the initial velocity358
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PDF pe(v). Thus, the numerical Monte Carlo simulations are compared to359

the predictions of (32b) for the initial condition p̂s(v, s0 = 0) = pe(v). The360

transition PDF r1(v|v′) is given by (31) with the velocity transition matrix361

shown in Figure 10. As shown in Figure 11, the prediction of the Markovian362

velocity model and the Monte Carlo simulation are in excellent agreement,363

which confirms the validity of the Markov model (32) for the evolution of364

s-Lagrangian velocities. Velocity transition dynamics are independent of the365

particular initial conditions and thus allow predicting the evolution of the366

Lagrangian velocity statistics for any initial velocity PDF and thus for any367

injection protocol.368

As mentioned above, the Markov-chain {vn} is fully characterized by

the stationary PDF of the s-Lagrangian velocities and the transition PDF

r1(v|v′). The behavior of the latter may be characterized by the number of

steps nc needed to decorrelate, i.e., the number of steps nc such that rn(v|v′)
for n > nc converges to the stationary PDF rn(v|v′) → ps(s). The number

of steps for velocities to decorrelate can be quantified by

nc =
`c
l̄
, (33)

The simplest transition PDF that shares these characteristics is [41, 80, 50,

88]

r1(v|v′) = aδ(v − v′) + (1− a)ps(v), (34)

with a = exp(−l̄/`c). This transition PDF is thus fully determined by one369

single parameter nc. Note that the latter increases with the level of hetero-370

geneity, as illustrated in the inset of figure 9. This parameter is estimated371

here from the simulated Lagrangian velocities. It may also be measured in372
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the field from multiscale tracer tests [41]. In the following, we study particle373

dispersion in the Markovian velocity model for the full transition PDF shown374

in Figure 10 and the reduced-order Markov model (34).375

5.2. Particle Dispersion and Model Predictions376

We consider particle motion along the mean pressure gradient in x–

direction, which is described by the stochastic regression

xn+1 = xn + l̄, tn+1 = tn +
l̄

vn
. (35)

The velocity transitions are determined from the Markovian velocity pro-

cess (32). Note that the {vn} process describes equidistant velocity tran-

sitions along particle trajectories, while (35) describes particle motion pro-

jected on the x-axis. In this sense, (35) approximates the longitudinal travel

distance xn with the distance sn along the streamline, which is valid if the

tortuosity of the particle trajectories is low. As indicated in Section 3.2, for

travel distances `0 larger than `c, or equivalently, step numbers n � nc ≡
`c/l̄, subsequent velocities may be considered independent and particle dis-

persion is fully characterized by the recursion relation (12) and the transition

time PDF (13). Thus, as shown in Section 3.2, the CTRW of Eq. (12) cor-

rectly predicts the asymptotic scaling behavior of the centered mean square

displacement. This is not necessarily so for the particle breakthrough and the

preasymptotic behavior of the cMSD. As seen in Section 3.1, the late time

tailing of the BTC depends on the injection mode and thus on the initial

velocity PDF. In fact, the slope observed in Figure 5 for uniform particle in-

jection can be understood through the persistence of the initial velocity PDF.

The first random walk steps until decorrelation at n = nc are characterized
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Figure 11: Evolution of the PDF of s-Lagrangian velocities for uniform injection, i.e., for

an initial velocity PDF p̂s(v, s0 = 0) = pe(v). The symbols denote the data obtained

from the direct numerical simulation, the dashed lines show the predictions of (32b) with

the transition matrix shown in Figure 10. Inset: Evolution of the PDF of s-Lagrangian

velocities for a flux-weighted injection. In this case, the initial velocity PDF is identical to

the stationary s-Lagrangian velocity PDF.
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by the transit time PDF

ψ0(t) =
l̄

t2
p0(l̄/t). (36)

Thus, for an initial velocity PDF p0(v) = pe(v), the initial transit time PDF

is given in terms of the Eulerian velocity PDF, which is characterized by

a stronger probability weight towards low velocities than the PDF of the

s-Lagrangian velocities, which is given by (23). The space-time random

walk (35) together with the Markov model (32b) is very similar to the TDRW

approach [70, 71] and can also be seen as a multi-state, or correlated CTRW

approach because subsequent particle velocities and thus transition times are

represented by a Markov process [100, 101, 74, 102]. The joint distribution

p(x, v, t) of particle position and velocity at a given time t is given by [74]

p(x, v, t) =

t∫

0

dt′H(l̄/v − t′)R(x− vt′, v, t− t′), (37)

where H(t) is the Heaviside step function; R(x, v, t) is the frequency by which

a particle arrives at the phase space position (x, v, t). It satisfies

R(x, v, t) = R0(x, v, t) +

∫
dv′r1(v|v′)R(x− l̄, v′, t− l̄/v′), (38)

where R0(x, v, t) = p0(x, v)δ(t) with p0(x, v) = p(x, v, t = 0). Thus, the right

side of (37) denotes the probability that a particle arrives at a position x−vt′

where it assumes the velocity v by which it advances toward the sampling

position x. Equations (37) and (38) can be combined into the Boltzmann

equation

∂p(x, v, t)

∂t
= −v∂p(x, v, t)

∂x
− v

l̄
p(x, v, t) +

∫
dv′

v′

l̄
r1(v|v′)p(x, v′, t), (39)
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see Appendix A. This result provides a bridge between the TDRW ap-377

proach [70, 71] and the correlated CTRW approach.378

As illustrated in Figure 3, the Eulerian velocity PDF can be characterized379

by the power-law pe(v) ∝ vα. Thus, the first CTRW steps until the decor-380

relation at n = nc are characterized by the transit time PDF ψ0(t) ∝ t−2−α.381

The corresponding tail of the BTC is f(t, xc) ∝ t−2−α. The observed value382

of α = −0.55 explains the tailing of the BTC in Figure 5 as t−1.45, which383

shows the importance of the initial velocity distribution. We also observe384

decrease in BTC tailing (larger absolute slope) with travel distance as initial385

velocity distribution converges to stationary Lagrangian velocity distribution386

and as tracers sample more velocity values. This implies that one needs to be387

careful when inferring a β from single BTC measurement because the slope388

can evolve depending on the injection method, velocity PDF and velocity389

correlation.390

First, we compare the results obtained from Monte Carlo simulation in391

the random DFN to the predictions of the Markov-chain CTRW (32) and392

(35) with the full transition PDF of Figure 10. Figure 6 shows the evolu-393

tion of the cMSD for different levels of heterogeneity and different injection394

modes. As expected from the ability of the Markov model to reproduce395

the evolution of the s-Lagrangian velocity PDF for both uniform and flux-396

weighted injection conditions, the predictions of particle spreading are in397

excellent agreement with the direct numerical simulations. In Figure 12 we398

compare breakthrough curves obtained from numerical simulations with the399

predictions by the Markov model for the uniform and flux-weighted injection400

modes. Again, the impact of the injection mode and thus initial velocity401
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PDF is fully quantified by the Markov model.402

We now apply the Markov model (32)–(35), i.e., employing a parsimo-403

nious parameterization of the velocity transition PDF, with a single param-404

eter nc (equation (33)), which is estimated here from velocity correlations405

along streamlines (see inset of figure 9). We first compare the reduced-order406

Markov model to the cases of uniform and flux-weighted injection, and con-407

clude that the proposed parsimonious stochastic model provides an excellent408

agreement with the direct numerical simulations (Figure 13). This implies409

that the simple correlation model (34) can successfully approximate the ve-410

locity correlation structure. Hence it appears that high order correlation411

properties, quantified from the full transition probabilities (figure 10), are412

not needed for accurate transport predictions in the present case. This sug-413

gests promising perspective for deriving approximate analytical solutions for414

this Markov-chain CTRW model [88]. Furthermore, as discussed in [41], the415

velocity correlation parameter nc can be estimated in the field by combining416

cross-borehole and push-pull tracer experiments.417

Finally, we consider the evolution of the particle BTC and the cMSD for418

arbitrary injection modes. For real systems both flux-weighted and uniform419

injections are idealizations. A flux-weighted condition simulates a constant420

concentration pulse where the injected mass is proportional to the local in-421

jection flux at an inlet boundary that is extended over a distance much larger422

than the correlation scale during a given period of time. A uniform injection423

represents an initial concentration distribution that is uniformly extended424

over a region far larger than the correlation length. In general, the initial425

concentration distribution may not be uniform, and the injection boundary426
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may not be sufficiently large, which leads to an arbitrary initial velocity dis-427

tribution, biased maybe to low or high flux zones, as for example in the428

MADE experiments, where the solute injection occurred into a low perme-429

ability zone [103]. For demonstration, we study two scenarios representing430

injection into low and high flux zones: uniform injections into regions of the431

20-percentile highest, and 20-percentile lowest velocities. The initial velocity432

PDF for the low velocity mode shows the power-law behavior which is the433

characteristic for the Eulerian PDF, and the initial velocity PDF for the high434

velocity mode shows narrow initial velocity distribution (Figure 15). Even-435

tually, the s-Lagrangian PDFs evolve towards the stationary flux-weighted436

Eulerian PDF as discussed in the previous section.437

Figure 15 shows the predictive ability of the effective stochastic model438

for these different injection conditions. The reduced-order Markov velocity439

model compares well with the direct Monte Carlo simulation in the random440

networks. As expected, the BTCs for injection into low velocity regions441

have a much stronger tailing than for injection into high velocity regions.442

In fact, as the initial velocity shows the same behavior at low velocities as443

the Eulerian velocity PDF, the breakthrough tailing is the same as observed444

in Figure (12). We also observed that the reduced-order Markov velocity445

model can capture important features of the time evolution of cMSDs. This446

demonstrates that the proposed model can incorporate arbitrary injection447

modes into the effective modelling framework.448
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Figure 12: Particle BTCs from Monte Carlo simulations and the predictions from the

Markov-chain CTRW model with the full velocity transition matrix for (a) flux-weighted

injection, and (b) uniform injection at xc = 200l̄.
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Figure 13: Particle BTCs from Monte Carlo simulations and predictions from the Markov-

chain CTRW model with the reduced-order velocity transition matrix for (a) flux-weighted

injection, and (b) uniform injection at xc = 200l̄.
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Figure 14: Lagrangian flux distributions at the inlet and outlet with two arbitrary initial

velocity distributions for σlnK = 5. The two initial velocity distributions come from uni-

form injections into regions of the 20-percentile highest, and 20-percentile lowest velocities.

Flux values are normalized with the mean flux value. Note that flux distributions at outlet

are identical regardless of the initial velocity distribution. Inset: same plot for σlnK = 1.
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Figure 15: (a) Particle BTCs from Monte Carlo simulations for injection into high-velocity

regions (solid line) and predictions from Markov-chain CTRW model with the reduced-

order velocity transition matrix (dashed line). (b) Corresponding results for injection into

low-velocity regions.

6. Conclusions449

This study shows how the interplay between fracture geometrical prop-450

erties (conductivity distribution and network geometry) and tracer injection451

modes controls average particle transport via Lagrangian velocity statistics.452

The interplay between fracture heterogeneity and tracer injection methods453

can lead to distinctive anomalous transport behavior. Furthermore, the in-454

jection conditions, for example, uniform or flux-weighted, imply different455

initial velocity distributions, which can have a persistent impact on particle456

spreading through DFNs. For uniform injection, the s-Lagrangian velocity457

distribution evolves from an Eulerian velocity distribution initially to a sta-458

tionary s-Lagrangian distribution. In contrast, for flux-weighted injection,459

the s-Lagrangian velocity distribution remains stationary.460
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We have presented a spatial Markov model to quantify anomalous trans-461

port through DFNs under arbitrary injection conditions. We derive an ana-462

lytical relation between the stationary Lagrangian and the Eulerian velocity463

distribution, and formally incorporate the initial velocity distribution into the464

spatial Markov model. The proposed model accurately reproduces the evo-465

lution of the Lagrangian velocity distribution for arbitrary injection modes.466

This is accomplished with a reduced-order stochastic relaxation model that467

captures the velocity transition with a single parameter: the effective ve-468

locity correlation `c. The agreement between model predictions and direct469

numerical simulations indicates that the simple velocity correlation model470

can capture the dominant velocity correlation structure in DFNs.471

In this study, we investigated the particle transport and the impact of472

the injection condition for idealized 2D DFN using a Markov velocity model.473

These findings can be extended to 3D DFNs, for which similar behaviors474

regarding the injection mode have been found [58]. Also, Frampton and475

Cvetkovic [16] reported similar velocity correlation structures for 3D DFNs476

as in 2D, which suggests that a velocity Markov model such as the one477

presented in this work can be used for the modelling of particle motion in478

3D DFNs.479
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Appendix A. Boltzmann Equation491

The time derivative of (37) gives

∂p(x, v, t)

∂t
= −v∂p(x, v, t)

∂x
+R(x, v, t)−R(x− l̄, v, t− l̄/v). (A.1)

Note that R(x, v, t) denotes the probability per time that a particle has the

velocity v at the position x. It varies on a time scale of v̄. Thus we can

approximate (37) as

p(x, v, t) ≈ l̄

v
R(x− l̄, v, t− l̄/v). (A.2)

Using this approximation and combining (A.1) with (38) gives for t > 0

∂p(x, v, t)

∂t
= −v∂p(x, v, t)

∂x
− v

l̄
p(x, v, t) +

∫
dv′r1(v|v′)

v′

l̄
p(x, v′, t). (A.3)
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