Venus Thermal Structure -Intercomparison of Venus Express and Ground Based Results

The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km -180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ~40 km and provided new information above 100 km.

There are, however, still observational gaps in latitude and local time above certain regions.

Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components.

) fill what is possible with the results of the data intercomparison, and

(3) fill the observational gaps. An interpolation between the datasets may be performed by using available General Circulation Models as guidelines.

An improved spatial coverage of observations is still necessary at all altitudes, in latitude-longitude and at all local solar times for a complete description of the atmospheric thermal structure, in

Introduction

A systematic global coverage of the temperatures in the Venus atmosphere was obtained by the VORTEX experiment (also called Orbiter Infrared Radiometer, Taylor et al. 1980;[START_REF] Schofield | Measurements of the mean, solar-fixed temperature and cloud 662 structure of the middle atmosphere of Venus[END_REF] on board Pioneer Venus Orbiter (PVO) using a six channel filter radiometer. Density and temperature profiles retrieved from PVO radio occultations provided latitudinal variations of the structure in the 40-75 km altitude range. Deep atmospheric temperature profiles were obtained from the Venera probes (6 to 14) and by the four Pioneer Venus probes (named Large, Day, Night, and North) in 1982. These were the basic observations that led to the development of the thermal structure model compiled for the Venus International Reference Atmosphere (VIRA) published through the efforts of Pioneer Venus and Venera scientists [START_REF] Seiff | Models of the structure of the 667 middle atmosphere of Venus from the surface to 100 kilometers altitude[END_REF][START_REF] Seiff | Models of the structure of the 667 middle atmosphere of Venus from the surface to 100 kilometers altitude[END_REF]. In the interim, limited compilations were prepared by [START_REF] Seiff | Thermal structure of the atmosphere of Venus[END_REF] and [START_REF] Moroz | The atmosphere of Venus[END_REF]. An empirical model of the Venus thermosphere (VTS3) was also developed based on the available data by [START_REF] Hedin | Global empirical model of the Venus 446 thermosphere[END_REF]. Many results, including ground based results that were developed just prior to the development of the VIRA model could not be included in the model. The VIRA profiles from the low atmosphere were compiled from Venera measurements and Pioneer Venus probes profiles. The latter were extrapolated adiabatically by the hydrostatic law from 12 km to the surface assuming a composition of 96.5% CO2 and 3.5% N2 (the Pioneer Venus probes suffered from an electrical failure when the probes were at 12 km above the surface).

The VIRA thermal structure model was found to be very useful by the Venus scientific community for further investigations of the planetary atmosphere. Many new observations of the thermal structure of Venus have been obtained since its publication: from Venera-15 Fourier spectrometry (1983), from Venera 15, Venera 16 and Magellan radio occultations in 1992, by the Venus Express orbiter since April 2006-till late 2014 from five independent experiments and by numerous ground based observations. A temperature profile of the low atmosphere was measured in situ with high vertical resolution by the VeGa-2 Lander in 1984. These new observations provided spatial and temporal overlap, extended the knowledge of the temperature structure downwards to the surface, revealed temporal and spatial variations. It is now possible to compare these results in order to understand the differences and reconcile them by looking at the experimental approaches, their inherent limitations and potential errors. Such intercomparison is a pre-requisite step for developing a new VIRA thermal structure model. [START_REF] Zasova | Latitude Structure of the Upper Clouds of Venus[END_REF] and [START_REF] Moroz | VIRA-2: a review of inputs for updating the Venus International 563 Reference Atmosphere[END_REF] reviewed the datasets that were collected between the publication of VIRA in 1985 and the publication of the respective papers. It was suggested to update the thermal structure model in view of the new datasets, particularly from the VeGa 2 lander, the two VeGa balloons and the detailed thermal structure of the mesosphere from the Venera-15 Fourier spectrometer. Potential other sources for the improvement of VIRA were also addressed, using later radio occultation results from Pioneer Venus, Magellan, Galileo NIMS experiments and ground-based observations. This study presents the results of an intercomparison of data from the Venus neutral atmosphere obtained after the publication of VIRA by an international team sponsored by the International Space Science Institute (ISSI), Bern, Switzerland from July 2013 to February 2015. Thermal structure observations that were obtained after the publication of VIRA in 1985 (Table 1) and prior to the arrival of Venus Express (VEX) in April 2006 include the following:

• Extended mission radio occultation profiles from Pioneer Venus Orbiter [START_REF] Seiff | Models of the structure of the 667 middle atmosphere of Venus from the surface to 100 kilometers altitude[END_REF] • Radio occultation profiles from Venera-15, 16 [START_REF] Yakovlev | Venera-15 and 16 Middle Atmosphere Profiles from 756 Radar Occultations: Polar and Near-Polar Atmosphere of Venus[END_REF] • VeGa 1 and VeGa 2 balloon data [START_REF] Sagdeev | The VeGa Venus balloon experiment[END_REF] • VeGa 2 Lander data [START_REF] Oertel | Infrared spectrometry from Venera-15 and Venera-581 16[END_REF][START_REF] Zasova | Structure of the Venusian 771 atmosphere from surface up to 100 km[END_REF] • Retrievals of thermal profiles from Venera 15 Fourier spectrometer data [START_REF] Schaefer | Infrared Fourier Spectrometer 660 Experiment from Venera 15[END_REF][START_REF] Zasova | Structure of the Venusian 771 atmosphere from surface up to 100 km[END_REF], 2007[START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF] • Galileo NIMS fly-by observations [START_REF] Roos-Serote | The thermal structure and dynamics of the atmosphere of Venus 625 between 70 and 90 km from the Gaileo-NIMS spectra[END_REF] • Magellan Orbiter radio occultation profiles [START_REF] Jenkins | Radio Occultation Studies of the 461 Venus Atmosphere with the Magellan Spacecraft: 2. Results from the October 1991 462 Experiments[END_REF] Earth-based thermal structure observations obtained since Venus Express commenced operations include:

• Thermospheric ground based temperature structure profiles [START_REF] Clancy | Venus upper atmospheric CO, temperature, and 360 winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line 361 observations[END_REF]2012a, Rengel et al., 2008a,2008b, Sonnabend et al. 2008;[START_REF] Krasnopolsky | Venus night airglow: Ground-based detection of OH, observations of O2 496 emissions, and photochemical model[END_REF] • 2012 Venus transit observations, deriving the temperature from the sunlight refraction in the mesosphere (Tanga et al., 2012;[START_REF] Pere | Multilayer modeling of the aureole 598 photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data[END_REF] The list of ground based measurements included in this study is certainly not exhaustive, but representative. The principal idea was to include those data sets which are accessible in digital form as much as possible to facilitate the detailed comparison.

Five experiments operated from the Venus Express orbiter that yield atmospheric profiles of neutral number density and temperature versus altitude or pressure and in-situ atmospheric mass density from drag or aerobraking experiments:

• Solar Occultation in the Infra-Red (SOIR): The solar occultation method retrieves vertical profiles of carbon dioxide abundance and atmospheric temperature from CO2 number density as well as molecular rotational temperatures from CO2 spectral structure [START_REF] Bertaux | SPICAV on Venus Express: Three spectrometers to study the global structure and 339 composition of the Venus atmosphere[END_REF] at the morning and evening terminators at occulted latitudes

• SPectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV):

Stellar occultations allow the determination of vertical profiles of CO2 abundances and derive the temperature from the CO2 number density [START_REF] Bertaux | SPICAV on Venus Express: Three spectrometers to study the global structure and 339 composition of the Venus atmosphere[END_REF] • Venus Express Radio Science (VeRa):

Radio occultations allow the derivation of vertical profiles of temperature, pressure and total neutral number density between 40 km and 100 km altitude [START_REF] Häusler | Radio Science investigations by VeRa onboard the Venus Express spacecraft. 440[END_REF]2007) • Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS): VIRTIS observations provide thermal maps at medium spectral resolution and profiles from nadir and limb locations at high spectral resolution [START_REF] Piccioni | VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) for Venus Express[END_REF] • VEnus eXpress Atmospheric Drag Experiment (VEXADE): VEXADE retrieved atmospheric mass density (i) between 130-140 km from accelerometer readings during aerobreaking [START_REF] Müller-Wodarg | The thermosphere of Venus and its exploration 567 by a Venus Express Accelerometer Experiment[END_REF][START_REF] Mahieux | attempted to reproduce the thermal structure observed by SOIR at the terminator. 203 They developed a one-dimensional conductive radiative model which considers the heating and cooling 204 terms of the main Venus atmospheric species CO2, N2, O, CO, H2O, HCl and SO2 extending from 80 km to 205 180 km altitude. The modes 1 and 2 of the aerosols are considered in order to reproduce correctly the 206 temperature profile in the mesosphere[END_REF], (ii) from the torques acting on the solar panels by the atmospheric drag between 166 km to 186 km at high planetary latitudes [START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF], and (iii) from

Precise Orbit Determination (POD) when the orbiter was between 166 -186 km altitude (Rosenblatt et al., 2012).

The VEx and ground-based data sets which were considered in this study are described, as well as the experimental approaches, a discussion of the comparison and recommendations regarding future observations are given.

The altitude ranges of the post-VIRA experiments conducted at Venus and the spectral ranges of the experiments considered in this study are shown schematically in Figure 1. 

Spacecraft Observation Methods

Direct (in-situ) measurements

Entry Probes/Landers and Balloons

Atmospheric in-situ measurements after the observations by the Venera 13 and Venera 14 entry probes in 1982 were made by the two VeGa balloons [START_REF] Sagdeev | The VeGa Venus balloon experiment[END_REF] and by the VeGa landers in 1985 [START_REF] Oertel | Infrared spectrometry from Venera-15 and Venera-581 16[END_REF]. Each of the two VeGa spacecraft consisted of a carrier spacecraft with a Venus lander descending to the surface and a balloon that was deployed from a separate entry capsule at an altitude of about 50 km. VeGa-1 entered the Venus atmosphere on 11 June 1985, VeGa-2 followed four days later.

The VeGa 1 lander communications failed and no data could be transferred. The two carrier spacecraft went on to rendezvous with comet Halley in 1986.

VeGa balloons

The VeGa 1 balloon entered the atmosphere at 8.1˚N latitude, 176.9˚E longitude, and the VeGa 2 balloon at 7.45˚S latitude and 179.8˚E longitude. All measurements on the VeGa balloons were performed successfully during their journey through the middle clouds at an altitude of about 54.5 km [START_REF] Linkin | Thermal Structure in the Venus Middle Cloud Layer[END_REF][START_REF] Sagdeev | The VeGa Venus balloon experiment[END_REF]. The two balloons observed a near constant temperature difference of about 2. The pressure dependence of the temperature is close to adiabatic at the floating altitude of both balloons, with a temperature difference of a few Kelvins. This was interpreted as an indication of the existence of sufficiently extended non-mixing atmospheric masses [START_REF] Linkin | Thermal Structure in the Venus Middle Cloud Layer[END_REF]. Each balloon during the flight was inside its own region of this type.

VeGa-1 and -2 Landers

The VeGa-1 (7.2°N, 177.8°E entry location into the atmosphere) and VeGa-2 (8.5°S, 164.5° entry location) landers were designed like the earlier Venera landers and carried well calibrated and redundant temperature sensors. The VeGa-1 lander experienced a strong updraft during its descent, well before reaching the surface, causing the control electronics to believe that it had landed and thus some instruments were deployed prematurely and consequently not all the planned measurements were successfully acquired.

The VeGa-2 lander remains the only probe of all Venus landers which observed the atmospheric temperature all the way from 64 km down to the surface accurately [START_REF] Oertel | Infrared spectrometry from Venera-15 and Venera-581 16[END_REF]. VeGa-2 landed at 6.45°S latitude and 181.08° longitude, which implies a drift toward the equator during its descent through the atmosphere. Pioneer Venus probes did not return temperature data below 12 km and surface temperatures were extrapolated adiabatically from the last values [START_REF] Seiff | Models of the structure of the 667 middle atmosphere of Venus from the surface to 100 kilometers altitude[END_REF].

Mass Density Measurements from the Venus Express Atmospheric Drag Experiment

Thermosphere densities were measured in-situ by the Venus Express Atmospheric Drag Experiment orbits, the integrated deceleration experienced during each pericentre pass was derived, and thereby a single density value for the pericentre location of each spacecraft pass (Rosenblatt et al., 2012). This provided the first in-situ measurements of thermospheric mass density at high latitudes (75°N -90°N) and at low solar activity, finding mean densities to be around 60% of those predicted for the same latitudes by the VTS3 model (Rosenblatt et al. 2012). The spacecraft torque measurements (TRQ) were carried out during the same campaigns but consisted in analyzing the response of the spacecraft's Inertial Mass Unit (IMU) to the torque experienced by asymmetric orientation of the two solar panels relative to the ram direction. Thereby, the torque experiment obtained vertical density profiles from 165-190 km, similar to what the aerobraking experiment obtained for lower altitudes (130-140 km), while the POD experiment gave a single density value at the pericentre altitude during every orbit of the POD campaign.

All three VEx drag datasets -i.e. thermospheric densities from radio tracking, from torque, and from aerobraking -show considerable and significant diurnal variability, with day-to-day mass densities often varying by over 100%. The aerobraking and torque data show significant variability even within each pass, with horizontal wavelengths on the order of 100-200 km which may be associated with gravity waves.

Both the day-to-day and the intra-orbit variability are similar to phenomena which have been observed

at similar pressure levels in the Martian thermosphere (e.g. Fritts et al. 2006).

The PVO, Magellan and VEx missions obtained atmospheric drag data, but at different locations and local times. While the PVO-ONMS mass spectrometer and PVO-aerobraking sampled the thermosphere at low latitudes, the in-situ data from VEx were taken at polar latitudes. The local solar time coverage is also different: PVO mass spectrometry and aerobraking covered all local times, while VEx sampled the terminators, with Solar Zenith Angle (SZA) in the range 80-100°.

Venus Express aerobraking (VExADE-AER)

Vertical profiles of total mass densities in the thermosphere were inferred from accelerometer measurements on Venus Express during the aerobraking campaign from 24 June to 11 July 2014 (Mueller-Wodarg et al., 2016). ESA planned this campaign in the final months of the mission in view of the risk of losing the spacecraft due to the enhanced atmospheric drag at decreasing altitude. The pericentre of the highly eccentric VEx orbit (e=0.84) was located at 75°N at local solar times of 04:30 to 06:12 and altitudes of 130 to 134 km. Data from the on-board accelerometers could not be used at higher altitudes for the derivation of mass densities because of the insufficient sensitivity of the (engineering) instrument.

The raw accelerometer data taken at 8 samples per second around the pericentre were averaged over 2 s, and resampled at 1 Hz in the density processing. Density profiles at 1 Hz sampling extending about 3° in latitude before and after the pericenter have been obtained for each of the 18 consecutive days of the aerobreaking campaign in 2014. The general method of the derivation of mass densities from accelerometer measurements is described by Bruinsma et al. (2004Bruinsma et al. ( , 2006)).

The uncertainty of the derived mass densities was computed from a systematic part caused by the uncertainty in the spacecraft aerodynamic coefficient which was estimated to be 10%, plus the measurement noise and bias of the accelerometer. This systematic uncertainty had no impact on the analysis of the relative variations within a single orbit, for example wave structures. The (formal) 1-σ noise of the accelerometer data averaged over two seconds was found to be 0.001 m/s 2 . The bias of the accelerometer was estimated to 2•10 -4 m/s 2 to 5•10 -4 m/s 2 from measurements outside the sensitivity range of 2•10 -3 m/s 2 at higher altitudes. Taking this uncertainty into account, the density data can be used on average to an altitude of 139 km, which corresponds to profiles of about 80 seconds duration.

The mass densities observed by VEx are compared with an empirical model. Ratios of the observed VEX mass density with those from the VTS3 model by [START_REF] Hedin | Global empirical model of the Venus 446 thermosphere[END_REF] were computed for each profile (Figure 2). Valid observed mass densities are on average about 30% smaller than densities from the VTS3 model, that means in better agreement with the Hedin model than the mass densities obtained by the Precise Orbit Determination from radio tracking (Rosenblatt et al., 2012) at higher altitudes (160 km -170 km). A high variability of the ratio of ~ 10 % is seen in form of wave-like features along the orbit. The ratio of observed densities to modelled densities is altitude-dependent, being smaller than 1 at lower altitudes (about 0.78, or 78% near 130 km altitude) and decreasing with altitude (60% near 140 km altitude). This demonstrates a systematic difference between the neutral scale heights of the observed densities and the VTS3 model densities. These differences are most likely caused by temperature differences in the polar thermosphere and possibly uncertainties in our knowledge of the polar atmospheric composition. 

Venus Express Torque Experiment (VExADE-TRQ)

In addition to calculating thermospheric densities from spacecraft tracking and from accelerometry, atmospheric density can be calculated by measuring aerodynamic torque exerted on the spacecraft as it travels through the thermosphere, as measured by the spacecraft's attitude control system. The total torque acting on the spacecraft also includes contributions from gravity field gradients and the solar radiation pressure: These two terms need to be modelled and subtracted from the total measured torque.

The remaining torque is then caused by the atmospheric drag force acting on the solar panels. This technique was first demonstrated using the Magellan orbiter [START_REF] Croom | Venusian atmospheric and Magellan properties from attitude control data 381[END_REF], initially with the spacecraft in a normal flight configuration but later with its solar arrays set in asymmetrical orientations in order to create larger torque forces on the spacecraft at a given atmospheric density (the so-called "windmill" experiment, see [START_REF] Tolson | Magellan windmill and termination experiments[END_REF]. This technique was then further developed during the Venus Express mission; the observation and data reduction procedure for VEx, and its validation by comparison with using radio tracking data are described in detail by [START_REF] Damiani | Monitoring of aerodynamic pressures for Venus Express in the 383 upper atmosphere during drag experiments based on telemetry[END_REF][START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF]. The torque experiment allowed calculation of atmospheric densities at altitudes of 165 -200 km.

Venus Express torque measurements were performed during approximately 100 pericentre passes below 200 km altitude between 2008 and 2014 at latitudes between 75°N and 90°N. Like the density measurements from VEx aerobraking, discussed above, all density measurements from the VEx torque investigation were carried out near the terminator (SZA of 80 -100°); since, for thermal and operational reasons, pericentre-lowering for aerobraking or torque measurements was only carried out when the orbital plane was nearly perpendicular to the Sun-Venus vector.

Figure 3 shows one example of atmospheric mass densities derived by the torque method during a single pericentre passage on 18 May 2011 [START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF]. The reader is reminded that Venus Express had a highly elliptical polar orbit, with a pericentre at high northern latitudes. In this particular orbit, the pericentre was at a latitude of 84.8°N above the dayside near the evening terminator (Local Solar Time = 16:38); the spacecraft approached pericentre travelling northwards above the dayside, crossing the terminator to the nightside 133 seconds after pericentre. It can be seen that the densities measured after pericentre, when the spacecraft is approaching the terminator, are markedly lower than those measured before pericentre; this sharp density gradient near the terminator is consistent with previous observations such as those from Pioneer Venus Orbiter [START_REF] Keating | Venus upper atmosphere structure[END_REF]. Strong oscillations in the atmospheric mass density are evident in many torque passes [START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF], with horizontal wavelength typically in the range 100 -300 km, similar to those observed at 130-145 km altitude in aerobraking data [START_REF] Müller-Wodarg | In situ observations of waves in Venus' 569 polar lower thermosphere with Venus Express aerobraking[END_REF].

The density profile from all of the torque passes was binned by altitude; due to the strong gradient with respect to SZA all data were also normalized to 90° SZA (for details, see [START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF]. The resulting vertical profiles, binned separately for morning and evening terminators, are shown in Figure 4. The error bars denote the measurement error as a function of altitude; the solid lines show the +/-1 sigma dispersion of measured densities in each altitude bin, i.e. the standard deviation of mass density variability in each altitude bin. Any differences in density between morning and evening terminators are smaller than the measurement error.

For all the VEx torque data, mass densities were found to be 40 to 45% less than those predicted by the Hedin model, as was found in results from aerobraking at 130-140 km altitude (Sec. 2.1.2.1); this again indicates a lower thermospheric mass density at polar latitudes than at low latitudes observed by Magellan and PVO missions [START_REF] Keating | The Venus atmospheric response to solar cycle variations[END_REF].

Passive Near-Infrared Observations

Venera-15 and Pioneer Venus

First maps of the atmospheric thermal structure were produced by the Orbiter Infrared Radiometer (OIR) on Pioneer Venus using a six channel filter radiometer (Taylor et al., 1980;[START_REF] Schofield | Measurements of the mean, solar-fixed temperature and cloud 662 structure of the middle atmosphere of Venus[END_REF].

The Fourier Spectrometer (FS-V15) on the Venera 15 orbiter [START_REF] Oertel | Infrared spectrometry from Venera-15 and Venera-579 16[END_REF], 1987[START_REF] Moroz | Venus spacecraft infrared spectra[END_REF] observed emitted radiation from the Venus atmosphere in the range 250 -1650 cm -1 (6 -40 µm) at a resolution of 4.5 or 6.5 cm -1 . Its measurements yielded atmospheric properties above the clouds (Schaefer et al. 1987[START_REF] Schaefer | Infrared Fourier Spectrometer 660 Experiment from Venera 15[END_REF]Spänkuch et al. 1990). Spectral profiles derived from the 15 µm CO2 band (and also from both the CO2 hot 950 and 1050 cm -1 bands and the isotopic 1260 cm -1 band) and from spectral ranges which are free from gaseous absorptions were used to retrieve the vertical temperature and aerosol profiles from 55 km to 95 -100 km altitude [START_REF] Zasova | Structure of the Venus middle atmosphere: 766 Venera 15 Fourier spectrometry data revisited[END_REF][START_REF] Zasova | Infrared spectrometry of Venus: 768 IR Fourier spectrometer on Venera 15 as a precursor of PFS for Venus express[END_REF][START_REF] Zasova | Structure of the Venusian 771 atmosphere from surface up to 100 km[END_REF][START_REF] Zasova | Structure of the Venus atmosphere[END_REF]. derived mass density versus altitude. [START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF]. [START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF].

Galileo NIMS

The first space-based spectral maps of the Venus night side at a fairly high phase angle were produced by the NIMS experiment on the Galileo spacecraft [START_REF] Carlson | The Galileo encounter with Venus: results from the near-infrared 351 mapping spectrometer[END_REF][START_REF] Roos-Serote | The thermal structure and dynamics of the atmosphere of Venus 625 between 70 and 90 km from the Gaileo-NIMS spectra[END_REF] during its flyby at Venus in 1990. Temperature profiles were retrieved from the 4.7 µm band [START_REF] Roos-Serote | The thermal structure and dynamics of the atmosphere of Venus 625 between 70 and 90 km from the Gaileo-NIMS spectra[END_REF] between 75 and 91 km altitude and latitudes between 59° S and 64° N. The temperatures were found to be about 10 K higher at 91 km and about 4 K cooler between 74 and 83 km when compared with the VIRA model, which was well within the variability of the VIRA model.

VEx VIRTIS

The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) on Venus Express operates in two infrared modes in addition to a visible channel (200-1000 nm, M-vis channel) [START_REF] Piccioni | VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) for Venus Express[END_REF]: a high Temperature profiles and spatial maps were derived by different groups using slightly different retrieval methods from the H and M channels [START_REF] Grassi | Retrieval of air temperature profiles in the Venusian 420 mesosphere from VIRTIS-M data: Description and validation of algorithms[END_REF]Migliorini et al., 2011;[START_REF] Arnold | VIRTIS/VEX observations of Venus: 331 Overview of selected scientific results[END_REF][START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF][START_REF] Haus | Atmospheric thermal structure and cloud features in the 434 southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements[END_REF], Grassi et al., 2014;[START_REF] Garate-Lopez | Instantaneous three-dimensional 401 thermal structure of the South Polar Vortex of Venus[END_REF].

Radiation with wavelengths λ > 4 µm which is observed on the night side of Venus is driven by the thermal emission of the atmosphere. The VIRTIS-M spectral range covers in particular the strong CO2 ν3 band. The resolution of VIRTIS-M in this spectral region is such that for the different points on the spectral sampling grid of the instrument unit optical thickness is achieved at various altitudes between the cloud deck top (62-70 km) up to 80-85 km. This allows reconstructing the vertical temperature profile from the observed radiance at different wavelengths inside the band. The non-LTE emission by CO2 induced by direct solar radiation, however, does not allow daytime observations. Numerical experiments of simulated observations demonstrated how the random component of the retrieval error remains below 2 K in the range 3 -50 mbar (~ 81 -68 km altitude) and below 5 K for pressures below 1.2 mbar (~85 km) and above 90 mbar (~65 km). The main source of error in the upper atmosphere (above 85 km) is defined by the instrumental random noise and residual calibration misfits because the band is so opaque that an expected radiation level falls below the noise level. The retrieval becomes more and more difficult in the lower mesosphere (below 65 km) due to the opacity induced by the clouds. The retrieval results are sensitive to intrinsic vertical smearing related to the finite width of the weighting functions: the vertical resolution of the retrieval is roughly in the order of 7.5 km. The methods to constrain the air temperatures at different altitudes from VIRTIS-M data are described by [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF][START_REF] Haus | Atmospheric thermal structure and cloud features in the 434 southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements[END_REF], [START_REF] Grassi | The Venus nighttime atmosphere as observed by the VIRTIS-M 424 instrument. Average fields from the complete infrared data set[END_REF] and references therein.

Temperature and Cloud Parameter Retrievals from VIRTIS-M-IR Data

VIRTIS-M is a mapping spectrometer like NIMS on Galileo, capable of acquiring simultaneously spectra at each of the 256 spatially-contiguous pixels along a line of the incident image. These so-called 'cubes' are acquired with multiple exposures, scanning the line over the disk of the planet by either using the instrument pointing mirror or directly by the spacecraft motion (when closer to the orbit pericenter). The cubes provide a spectrum for each pixel of the image, each pixel covering an instantaneous field-of-view of 250 μrad. This implies an area of 16.5x16.5 km on the Venus cloud deck for measurements acquired at the VEx apocenter in nadir viewing mode. VIRTIS-M operates simultaneously in the visible and near infrared spectral ranges, but only the latter being relevant for the thermal structure reported here. The infrared spectral channel covers the range 1 -5.1 µm with an effective spectral resolution of 12 nm.

VIRTIS-M-IR data were collected between 14 April 2006 and 29 October 2008 which corresponds to about 930 Earth days or 8 Venus solar days. The local time distribution of the measurements during the mission however remained quite irregular due to operational and orbital constraints which limited the downlink capability. Most of the cube data were acquired at the apocenter (located above the South Pole) covering large areas of the southern hemisphere. A small fraction of the cubes (about 5%) are long and narrow stripes over the equatorial region and the northern hemisphere at much higher spatial resolution. [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF][START_REF] Haus | Atmospheric thermal structure and cloud features in the 434 southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements[END_REF] followed an elaborated data pre-processing pipeline that includes refinements of data calibration procedures, new approaches for an effective stray light removal [START_REF] Kappel | Refinements in the data analysis of VIRTIS-464 M-IR Venus night side spectra[END_REF], and data binning into a local time (LT) and latitude (lat) grid for grid spacing of ∆LT = (0.5±0.1) h and ∆lat = (5±1)°. New methodical approaches for self-consistent temperature profile and cloud parameter retrievals are applied where combined radiative transfer and multi-window retrieval techniques simultaneously process information from different spectral ranges of an individual spectrum. The radiative transfer model is based on DISORT [START_REF] Stamnes | Numerically stable algorithm for discrete-689 ordinate-method radiative transfer in multiple scattering and emitting layered media[END_REF]. Mesospheric temperature altitude profiles (58-90 km) are determined from 4.3 µm CO2 absorption band signatures using Smith's relaxation method [START_REF] Smith | Iterative solution of the radiative transfer equation for the temperature and absorbing 675 gas profile of an atmosphere[END_REF]. Specific parts of the 4.3 µm band wings as well as of the deep atmosphere transparency window at 2.3 µm are utilized to derive cloud parameters (cloud top altitude, mode abundance factors, opacity). Cloud parameter retrievals are based on a four-modal initial cloud model [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF] where all modes are assumed to consist of spherical H2SO4 aerosols at 75 wt% solution.

Wavelength-dependent microphysical parameters of each mode are calculated applying a Mie scattering algorithm [START_REF] Wiscombe | Improved Mie scattering algorithms[END_REF] and log-normal size distributions and dispersions according to [START_REF] Pollack | Near-infrared light from 613 Venus' night side: A spectroscopic analysis[END_REF]. Refractive index data is taken from [START_REF] Palmer | Optical constants of sulphuric acid: Application to the clouds of Venus[END_REF] and [START_REF] Carlson | Absorption properties of sulfuric acid in Venus' infrared spectral 349 window region[END_REF].

Quasi-monochromatic gaseous absorption cross-sections are calculated on the basis of a line-by-line procedure considering spectroscopic parameters from the Venus-HiTemp and CDSD line databases [START_REF] Pollack | Near-infrared light from 613 Venus' night side: A spectroscopic analysis[END_REF][START_REF] Tashkun | CDSD-1000, the high-707 temperature carbon dioxide spectroscopic databank[END_REF] in the case of CO2.

Zonal averages of derived temperature profiles at mid and high latitudes are in good agreement with VIRA profiles while, however, lower temperatures are found at low latitudes. The temperature decreases with increasing latitude polewards in both hemispheres starting at 30° latitude for fixed altitudes below the cold collar (50° -75°, 58 -70 km) while it increases above 70 km polewards starting at 40° -50°. The cold collar and the polar vortex regions show the strongest temperature variability with standard deviations of up to 8.5 K at 75°S and 63 km altitude. The mesospheric temperature field depends strongly on local time. The atmosphere is essentially warmer at early night and colder at late night by about 8 K in the cold collar. The temporal temperature trend reverses at higher altitudes. [START_REF] Grassi | The Venus nighttime atmosphere as observed by the VIRTIS-M 424 instrument. Average fields from the complete infrared data set[END_REF] averaged pixels in the spatial domain on a 4x4 pixel basis before deriving the temperature: this step allowed to substantially increase the signal-to-noise ratio at the lower limit of the band and to mitigate spatial non-uniformity in the treatment of instrumental response. The resulting averaged spectra were processed using a Bayesian retrieval method [START_REF] Rodgers | Inverse methods for atmospheric sounding: Theory and practice[END_REF] in order to derive air temperatures at a fixed pressure grid, an altitude-independent CO mixing ratio and a scalar multiplier for aerosol densities and to model variations at the cloud deck altitude. The retrieval method requires an initial guess to derive the temperature profile. This initial guess is taken as the mean value of the Venera-15 FTS temperature estimates. In order to cope with the limitations of the simplified forward radiative transfer model adopted for the computations, the retrievals were limited to cases with emission angles smaller than 30°. The retrieval method considers all four aerosol modes described by [START_REF] Knollenberg | The microphysics of the clouds of Venus: Results of the Pioneer Venus 485 particle size spectrometer experiments[END_REF]. Final retrievals were eventually classified on the basis of latitude and local time and averaged in order to produce global maps suitable to identify phenomena such as the cooler temperature in the cold collar just after local midnight, or the warmer air at the dawn terminator at altitudes around 80 km. The retrieval procedure is complicated by non-LTE emissions during daytime whose contributions should be properly modeled and implemented into the retrieval code. A non-interactive retrieval method that includes non-LTE forward model simulations is used to derive daytime temperature between 100 km and 150 km from VIRTIS-H CO limb emissions around 4.7 um [START_REF] Gilli | Carbon monoxide 407 and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb 408 measurements[END_REF]. The method used by [START_REF] Gilli | Carbon monoxide 407 and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb 408 measurements[END_REF] is summarized by two steps: 1) minimization of data-minus-model differences and 2) a linear inversion around the solution of the first step. A selection of limb measurements (FOV smaller than 10 km) has been used for the retrieval. Measurements below 100 km and above 170 km have been excluded to avoid possible scattering effects and because of signal-to-noise limitations, respectively. Those measurements were taken between June 2006 and October 2008 with a total of about 14,000 spectra.

VIRTIS-H High Spectral Resolution Observations

The vertical resolution of the profile has been estimated by the full width at half maximum of the averaging kernels at four pointing altitudes (100, 115, 130 and 140 km) which is 15-20 km in the upper mesosphere and up to 25 km in the lower thermosphere. The maximum information region for the retrieval, given by the peak of the averaging kernels, occurs at about 5 km above each tangent altitude.

The observation data were averaged in latitude/local time/altitude/SZA bins before applying the retrieval method (see details in [START_REF] Gilli | Carbon monoxide 407 and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb 408 measurements[END_REF]). The results show large errors (> 30 K) despite the averaging. The main contribution to the error is the measurement noise (particularly large in the analyzed spectral range).

The daytime thermal structure observed by VIRTIS provides a valuable piece of information to the knowledge of the upper mesosphere and lower thermosphere. There is a temperature maximum around 115 km at equatorial latitudes near the terminator which is not present at noon. This is challenging to be interpreted by the current GCMs which in contrast predict an upper mesosphere in pure radiative balance with higher temperatures at the sub solar point [START_REF] Brecht | Dayside thermal structure of Venus' upper atmosphere characterized by a global 346 model[END_REF].

Occultation methods

Three experiments on Venus Express use the occultation method to retrieve atmospheric properties -VeRa, SOIR and SPICAV. The stellar and solar occultations are spectral measurements in the infrared and ultraviolet by SOIR and SPICAV which rely on atmospheric extinction for profiling along the limb as a function of altitude. The radio occultation method by VeRa relies on the refraction of the radio ray path defined by the index of refraction as a function of altitude. SOIR observes CO2 spectral lines to obtain the CO2 number density as a function of the altitude. The SOIR observations are thus conducted necessarily at the morning and evening sides of the terminator, but do occur at all latitudes because of the pericenter and apocenter of Venus Express are located above the North and South poles respectively. The SPICAV stellar occultations are performed on the night side to avoid contamination by the scattered sunlight and cover also all latitudes. The locations and local times of the VeRa radio occultations are defined by the orientation of the Venus Express orbit plane relative to the Venus-Earth geometry.

All three methods share some common assumptions: spherically symmetric atmosphere, hydrostatic equilibrium and a known composition. The composition is assumed to be constant in a spherically homogeneous well-mixed atmosphere below the altitude of the homopause (< ~125 km, Mahieux et al., 2015a). The CO2 volume mixing ratio changes with altitude between 100 km and the homopause which affects the SOIR observations slightly. The temperature is obtained from the CO2 density profile only above the homopause, i.e. the composition does not need to be assumed (Mahieux et al., 2010;[START_REF] Keating | Models of Venus neutral upper 474 atmosphere: Structure and composition[END_REF].

The occultation experiments require specific pointing directions in order to perform the measurements. This is not feasible on every orbit, therefore the temporal and spatial coverage of each experiment is not optimal. SOIR observes the density and temperature between 65 km to 170 km altitude, SPICAV between 85 km to 140 km, and VeRa between 40 km to 100 km. All three experiments need initial "guess" temperature values at their respective upper boundary for the derivation of the profiles. The altitudes of the respective boundary conditions are different but the solutions converge a few kilometers below the boundary altitude. There is some overlap in the altitude coverage of the three experiments but little overlap in latitude-longitude locations or local times.

One important result from the SPICAV and SOIR occultations is that the range of the homopause altitude, estimated from the inferred CO2 number densities and temperatures, is between 119 km and 138 km above the mean surface, with weak latitudinal dependences: higher altitudes are observed on the night side past the morning side of the terminator and lower values near the evening terminator. The derived profiles are based on assumed CO2 mixing ratios from earlier models below 100 km (Zasova et al., 1996) and VIRA between 100 km to 140 km which have not been explicitly validated for the encountered atmospheric conditions during the Venus Express occultation seasons.

Radio Occultations

The propagation of the radio carrier through the ionosphere and atmosphere, before and after the spacecraft disappearance behind the planetary disc as seen from the Earth, leads to a bending of the signal ray path. The bending in the dense deep Venus atmosphere is so strong that it requires a special 3-axis spacecraft antenna steering to compensate partially for this effect. Vertical profiles of refractivity versus radius are obtained using standard geometrical optics methods and Abel inversion strategies (e.g. [START_REF] Fjeldbo | The neutral atmosphere of Venus as studied with the Mariner 395 V radio occultation experiments[END_REF][START_REF] Jenkins | Radio Occultation Studies of the 461 Venus Atmosphere with the Magellan Spacecraft: 2. Results from the October 1991 462 Experiments[END_REF]. Additional information on the derivation of atmospheric profiles is given in [START_REF] Tellmann | Structure of the Venus neutral 716 atmosphere as observed by the Radio Science experiment VeRa on Venus Express[END_REF].

The spacecraft High Gain Antenna (HGA) is pointing towards the ground station antenna on Earth. It is generally necessary to adjust the high gain antenna pointing during the occultation in order to recover as much of the altitude range as possible before the signal is lost due to atmospheric absorption or critical refraction. An accurate prediction of the radio carrier frequency not perturbed by the propagation through the atmosphere based on the ephemerides of the spacecraft, Venus and Earth and other forces acting on the spacecraft, is required to separate the atmospheric frequency shift from the Doppler-shifted received sky-frequency. In the neutral atmosphere the refractivity is directly proportional to the neutral number density. The standard retrieval method assumes a constant mean atmospheric mixing ratio for the derivation of vertical number density profiles [START_REF] Fjeldbo | The neutral atmosphere of Venus as studied with the Mariner 395 V radio occultation experiments[END_REF][START_REF] Tellmann | Structure of the Venus neutral 716 atmosphere as observed by the Radio Science experiment VeRa on Venus Express[END_REF]. These density profiles can be converted to pressure and temperature profiles assuming hydrostatic equilibrium and using the ideal gas law. This requires the implementation of an upper boundary condition for the integration of the temperature (or pressure) profiles. Usually, three different temperature boundary conditions are assumed at an altitude of 100 km (170 K, 200 K, 230 K). The dependency on the upper boundary condition strongly decreases with altitude and the three profiles merge into the same profile [START_REF] Pätzold | The structure of Venus/'middle atmosphere and ionosphere[END_REF].

The altitude resolution is defined by the Fresnel radius of the occultation geometry which is typically in the order of 500 m. Atmospheric temperature and density profiles were derived from dual-frequency (Xband at 8.4 GHz and S-band at 2.3 GHz) radio occultations from Mariner 5 (Mariner Stanford Group, 1967),

Mariner 10 (Howard et al., 1974), Venera 9 and 10 [START_REF] Vasilev | Two-frequency radio occultation measurements with Venera-9 and Venera-10 735 orbiters[END_REF], Pioneer Venus [START_REF] Kliore | Initial observations of the nightside 479 ionosphere of Venus from Pioneer Venus Orbiter radio occultations[END_REF],

and Veneras 15 and 16 [START_REF] Gubenko | Detection of layering in the upper cloud layer of 427 Venus northern polar atmosphere observed from radio occultation data[END_REF]. Magellan performed 20 occultations in 1992 [START_REF] Jenkins | Radio Occultation Studies of the 461 Venus Atmosphere with the Magellan Spacecraft: 2. Results from the October 1991 462 Experiments[END_REF]. Atmospheric profiles from Veneras 9 and 10 ( [START_REF] Gubenko | Detection of layering in the upper cloud layer of 427 Venus northern polar atmosphere observed from radio occultation data[END_REF] were derived using a slightly different atmospheric composition (97% CO2, 3% N2) compared to the currently accepted values used to derive profiles from Magellan, PVO and Venus Express.

Venera 15 and 16, Magellan

The Venera 15 and 16 orbiters performed 42 occultations in total [START_REF] Gubenko | Detection of layering in the upper cloud layer of 427 Venus northern polar atmosphere observed from radio occultation data[END_REF], mostly at polar latitudes from October 1983 to September 1984 within an altitude range between 42 km and 90 km. The frequencies used by the Venera orbiters were L-band (1 GHz) and S-band (2.3 GHz). Tabulated results are not available at present.

The Magellan orbiter performed a few occultations which were, however, not part of the baseline mission [START_REF] Steffes | Radio 694 occultation studies of the Venus atmosphere with the Magellan spacecraft, 1. Experimental 695 description and performance[END_REF][START_REF] Jenkins | Radio Occultation Studies of the 461 Venus Atmosphere with the Magellan Spacecraft: 2. Results from the October 1991 462 Experiments[END_REF]. [START_REF] Hinson | Magellan radio occultation measurements of atmospheric waves on 448 Venus[END_REF] discussed three profiles out of about 20, covering the altitude region between 35-90 km.

Venus Express VeRa

The Radio occultation studies can also be used to study the stability of the atmosphere by deriving the buoyancy or Brunt-Väisälä frequency [START_REF] Hinson | Magellan radio occultation measurements of atmospheric waves on 448 Venus[END_REF][START_REF] Tellmann | Structure of the Venus neutral 716 atmosphere as observed by the Radio Science experiment VeRa on Venus Express[END_REF]. The strong attenuation of the radio carrier strength caused by the absorption of the radio signal provides the additional opportunity to study the absorptivity distribution within the Venus cloud deck [START_REF] Oschlisniok | 583 Microwave absorptivity by sulfuric acid in the Venus atmosphere: First results from the Venus 584 Express Radio Science experiment VeRa[END_REF]Jenkins and Steffes, 1991;[START_REF] Steffes | Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere -692 Abundances inferred from observed radio opacity[END_REF]. The high vertical resolution of the profiles allows the investigation of atmospheric small scale atmospheric structures like the accurate determination of the tropopause [START_REF] Seiff | Models of the structure of the 667 middle atmosphere of Venus from the surface to 100 kilometers altitude[END_REF][START_REF] Pätzold | The structure of Venus/'middle atmosphere and ionosphere[END_REF][START_REF] Tellmann | Structure of the Venus neutral 716 atmosphere as observed by the Radio Science experiment VeRa on Venus Express[END_REF] or study of small-scale gravity waves [START_REF] Hinson | Magellan radio occultation measurements of atmospheric waves on 448 Venus[END_REF][START_REF] Tellmann | 719 Small-scale temperature fluctuations seen by the VeRa Radio Science Experiment on Venus 720 Express[END_REF].

Solar Occultation InfraRed (SOIR)

The SOIR instrument is an infrared spectrometer on board the ESA Venus Express spacecraft. It uses the solar occultation technique to sound the mesosphere and the lower thermosphere of the Venus atmosphere (Nevejans et al., 2006;Mahieux et al., 2008[START_REF] Mahieux | A New Method for 526 Determining the transfer function of an Acousto Optical Tunable Filter[END_REF]. SOIR is sensitive to the 2.3 to 4.4 µm wavelength range (2257 to 4430 cm -1 ) and uses an echelle grating at very high diffraction orders (from 101 to 194) to diffract the incoming infrared sunlight. The diffraction order (called simply order hereafter) is selected using an acoustic-optical tunable filter (AOTF). The full width at half maximum (FWHM) of the AOTF transfer function has a constant value of 24 cm -1 , while the spectral width of an order on the detector varies between 19.3 and 37.1 cm -1 , which causes an order overlapping on the detector, which needs to be taken into account when studying the SOIR spectra. Four orders are scanned during an occultation. The detector lines along its spatial direction need to be binned on board due to telemetry limitations: two bins are downlinked to the Earth for each order, leading to 8 spectral sets in a 4 wavenumber region during an occultation. Around 700 solar occultations measuring CO2 were performed during the VEX mission. All measurements always occur at the terminator, i.e. at 06:00 hours or 18:00 hours local solar time covering all latitudes well except for the 30° -60° North region due to the geometry of the spacecraft orbit. During an occultation, the measurements are taken at a 1 s sampling rate at successive tangent altitudes, which corresponds to the minimum altitude of the light path between the Sun and the instrument slit relative to the planet surface; it is also called the impact point. The vertical altitude within the atmosphere probed by SOIR varies from 65 km up to 170 km. The calculation of the tangent altitude relies on the position and orientation of the spacecraft, and weakly on the light refraction in the atmosphere which can be neglected in the sounded altitude range. The uncertainty of the tangent altitude is always lower than 200 m and is latitude dependent.

The ASIMAT algorithm was developed to process the SOIR spectra by an iterative procedure. First, the logarithm of the number density profiles in each spectral set, i.e. for one given bin and order, is fitted using the Bayesian algorithm Optimal Estimation Method (OEM, [START_REF] Rodgers | Inverse methods for atmospheric sounding: Theory and practice[END_REF] in a so-called onionpeeling-configuration [START_REF] Wilson | Venus Express 748 observations during the 2012 Venus transit[END_REF]2015a;[START_REF] Vandaele | Improved calibration of 732 SOIR/Venus Express spectra[END_REF]. More than one species is fitted in each spectral set. Only those spectra that contain spectral information are considered in the procedure:

with decreasing altitude, the first spectrum in a spectral set is the one in which the spectral lines are well above the noise, the last spectrum is the one in which the atmospheric saturation starts to set in. The baseline is fit as a 2 nd to 5 th order polynomial. Note that the temperature is not yet fit at this stage. The OEM algorithm uses a covariance equal to 25% of the a priori profile. The independent profiles for the various fitted species are combined after each global iteration by a weighted linear moving average procedure (averaging window ± 2 scale heights) [START_REF] Wilson | Venus Express 748 observations during the 2012 Venus transit[END_REF]. Then, the temperature profiles are derived from the CO2 number density profiles using the hydrostatic law. The number density profiles are used as apriori for the next iteration which also uses the new temperature profile. The iteration is terminated when both number density and temperature profiles are within the uncertainty of the previous iteration step. The results of the inversion are the CO2 number density profile and the temperature profile. The total number density and the pressure profiles are also calculated assuming a CO2 volume mixing ratio from a modified Venus International Reference Atmosphere (VIRA) [START_REF] Hedin | Global empirical model of the Venus 446 thermosphere[END_REF][START_REF] Zasova | Structure of the Venusian 771 atmosphere from surface up to 100 km[END_REF].

Large variations of the CO2 number density for a given altitude level are observed by up to two orders of magnitude. The uncertainties of the CO2 number densities are in the order of 10%, much lower than the observed variability. These variations seem to be day-to-day variations rather than latitude or local solar time (terminator side) variations [START_REF] Wilson | Venus Express 748 observations during the 2012 Venus transit[END_REF](Mahieux et al., , 2015a) ) which might indicate the strong influence of the atmospheric dynamics, of waves of all kinds and daily variations of the solar flux. These variations are also seen in the temperature profiles: for a given pressure level, day-to-day variations may rise up 80 K, while the uncertainty on the temperature is in the order of 10 K.

Rotational temperatures are derived from the CO2 ro-vibrational spectral structure measured by the SOIR instrument (Mahieux et al., 2015b). Hence, the rotational structure in a given vibrational band is function of the so-called rotational temperature, and may be derived from the spectra if the spectral resolution is sufficient to resolve the CO2 rotational spectral structure. The method developed to retrieve the rotational temperature is not as computing-time expensive as the procedure to derive both the CO2 number density and temperature profiles. There are, however, drawbacks, mostly because of some instruments characteristics, such as the order overlapping, the modulation by the AOTF function and the spectral noise which is the largest error source. The general shape of the terminator temperature profiles is confirmed by using this method. The rotational temperatures are in good agreement with the corresponding hydrostatic temperatures, but at larger uncertainties ranging from 20 to 100 K. No rotational non-local thermodynamical equilibrium bifurcation has been observed in the datasets.

Stellar Occultations from SPICAV

The SPICAV (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus)

instrument performs spectroscopy at ultraviolet (110 -320 nm) and at near infrared (650 -1700 nm) wavelengths in the limb, nadir, stellar and solar occultation mode. A detailed description of the SPICAV instrument and its scientific objectives can be found in [START_REF] Bertaux | SPICAV on Venus Express: Three spectrometers to study the global structure and 339 composition of the Venus atmosphere[END_REF]. The UV band spectroscopy enables(in the occultation mode) vertical profiling of CO2, SO2, SO, O3, aerosols and temperature profiles in the ~ 90-140 km region [START_REF] Bertaux | SPICAV on Venus Express: Three spectrometers to study the global structure and 339 composition of the Venus atmosphere[END_REF][START_REF] Montmessin | Stellar 554 occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian 555 haze profiles[END_REF]2011;[START_REF] Mahieux | Update of the Venus 538 density and temperature profiles at high altitude measured by SOIR on board Venus Express[END_REF]. The ultraviolet sensor of SPICAV has a spectral dispersion of 0.54 nm per pixel and a spectral resolution varying from 1 to 2.5 nm. The vertical resolution of a profile ranges from 0.5 to ~ 7 km depending on the occultation grazing angle.

As for the solar occultation, the stellar occultation technique relies on the computation of the atmospheric transmission obtained by dividing each spectrum affected by the presence of the atmosphere along the line of sight by the reference spectrum taken outside of the atmosphere. The reference spectrum is obtained by averaging all spectra (up to 1000) acquired above a tangential altitude of 250 km. One advantage of the stellar occultation technique is the intrinsically accurate geometric registration: the uncertainty of the inferred altitude of the tangential point relies only on the precise knowledge of the spacecraft position in its orbit and not on the precise knowledge of the spacecraft pointing attitude.

Like for solar and radio occultations, each altitude position within the profile is at a slightly different latitude and longitude due to the tangential transect of the line of sight between the star and SPICAV. The difference of the geographical locations between the start and the end of the occultation may be as much as ~2˚ of latitude and/or longitude. Both entry and exit occultations are possible and were recorded and processed by SPICAV. A reference altitude of 85 km was defined.

The stellar occultation retrieval starts first by separating the nitric oxide airglow emission whose signature is superimposed on that of the stellar spectrum to be followed by the derivation of a wavelengthdependent atmospheric transmission at each sounded altitude. Using the same retrieval method as in [START_REF] Quémerais | Stellar 589 occultations observed by SPICAM on Mars Express[END_REF] and [START_REF] Montmessin | Stellar 554 occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian 555 haze profiles[END_REF], line of sight integrated densities (slant densities) for CO2, O3 and aerosols are first retrieved and then inverted to yield local density and temperature profiles by assuming hydrostatic equilibrium (see [START_REF] Mahieux | Update of the Venus 538 density and temperature profiles at high altitude measured by SOIR on board Venus Express[END_REF] for details).

The observations cover all latitudes on the night side between 18:00 hours and 06:00 hours. The error of the SPICAV temperature retrievals varies with altitude: typical values are 1 K to 20 K in the altitude range 100 km -130 km, and 5 K to 60 K at lower and higher altitudes [START_REF] Mahieux | Update of the Venus 538 density and temperature profiles at high altitude measured by SOIR on board Venus Express[END_REF].

VEx dataset coverages and data averaging

The majority of the data are from observations and experiments on board of Venus Express. It is necessary to consider the spatial and temporal coverage of each experiment for a data intercomparison. There is no uniformity in global and temporal coverage because of the different operational and orbital constraints. The spatial coverage from the various experiments and the data binning and averaging are presented in this section.

Geographical and temporal coverage of the VEX observations

VIRTIS coverage

Most of VIRTIS limb data come from the Northern hemisphere because of the VEX operational strategy.

The observation locations are not evenly distributed in local time and latitude as shown in Figure 5. For instance, observations between 10˚N and 30°N are particularly scarce. The profiles are also not really vertical but each measurement point corresponds to a single spectrum at a given local time and latitude, with no particular geographical and vertical connection to the next data acquisition. The VIRTIS-H spectra on the night side (Figure 5) and day side (Figure 6) of Venus are analyzed separately. VIRTIS-M covers mostly the Southern hemisphere [START_REF] Grassi | The Venus nighttime atmosphere as observed by the VIRTIS-M 424 instrument. Average fields from the complete infrared data set[END_REF].

VeRa coverage

Radio occultations occur in seasons when the constellation Venus, Earth and the spacecraft orbit plane is oriented such that the spacecraft disappears behind (and reappears from) the planetary disk as seen from the Earth. It is possible to observe the ingress as well as the egress occultation because of the one-way radio link. Both ingress and egress occur at opposite hemispheres. VeRa occultations cover all latitudes and local times (Figure 7). The atmospheric profiles derived from the profile of the index of refraction are slightly slanted and cover about 4° along the meridian which means that the planetary latitude within the profile varies only slightly at constant local time. Migliorini et al., 2012). The southern hemisphere is much better covered than the northern hemisphere. Right panel: Local-time and latitude distribution of the VIRTIS-H daytime limb observations between 100 and 170 km altitude. The red crosses represent data with a field-of-view smaller than 10 km which were, used for the temperature retrieval (after [START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF]. 

SPICAV/UV and SOIR coverage

Although co-located in the same instrument box, stellar and solar occultations can only be observed at different times in orbit when the source of the radiation is occulted by the Venus atmosphere. Stellar occultations are performed on the nightside, to avoid contamination by stray light from the bright limb.

Because of the many available UV bright stars, the stellar occultations are performed at different local times than the solar occultations. Both the solar and the stellar occultations can sample different latitudes. The vertical profiles are also slightly slanted similar to the radio occultations, each vertical location is at a slightly different latitude. Figure 8 shows the distribution of the SPICAV profile locations (latitude vs. local time) at an altitude of 85 km . Figure 9 shows the SOIR profile locations similarly. 

Averaging the spacecraft derived datasets

An intercomparison of the results from the different experiments is only feasible if the data are averaged over time and latitude and/or local time bins because of the different temporal and spatial sampling, coverage and respective measurement errors and uncertainties. The number of measurements from each experiment is given in Table 3 for each latitude and local time bins.

When averaging individual and independent N measurements of the same physical quantity with different uncertainties, assuming that these measurements obey a Gaussian distribution around the "true" value, the best estimate of that quantity is given by the weighted average μw:

𝜇𝜇 𝑤𝑤 = ∑ 𝑤𝑤 𝑖𝑖 𝑥𝑥 𝑖𝑖 𝑁𝑁 𝑖𝑖=1 ∑ 𝑤𝑤 𝑖𝑖 𝑁𝑁 𝑖𝑖=1
(1)

where each measurement xi at a given pressure/altitude level is multiplied by a weighting factor wi, defined as the inverse square of the individual error 𝜀𝜀 𝑖𝑖 . The standard deviation of a weighted sample with M nonzero weights is given by:

𝑠𝑠𝑠𝑠𝑑𝑑 𝑤𝑤 = � ∑ 𝑤𝑤 𝑖𝑖 • (𝑥𝑥 𝑖𝑖 -𝜇𝜇) 2 𝑁𝑁 𝑖𝑖=1 𝑀𝑀 -1 𝑀𝑀 • ∑ 𝑤𝑤 𝑖𝑖 𝑁𝑁 𝑖𝑖=1
(2) Assuming hemispheric symmetry and combining the data from the northern and southern hemispheres, 

Ground-based observations

Ground-based observations have the ability to provide coverage over a longer term but generally have lower spatial resolution compared to spacecraft measurements are constrained in the phase angle coverage. They do have the advantage of attaining higher spectral resolutions and using instruments that are not easily accommodated on spacecraft. Venus has been observed in the near-IR, submillimeter, millimeter wave and infrared atmospheric portions of the spectrum. In the near-IR, information about the thermal structure can be retrieved from the continuum maps and from the maps of the CO2 line depths [START_REF] Encrenaz | HDO and SO2 thermal mapping on Venus, II. The SO2 spatial distribution above and 390 within the clouds[END_REF]. High spectral resolution observations at short and long wavelengths from ~ 1 µm to mm wavelengths enable the probing of the Venus atmospheric thermal structure from ~ 120 km to the cloud top level [START_REF] Betz | Heterodyne detection of CO2 emission lines and 341 wind velocities in the atmosphere of Venus[END_REF][START_REF] Clancy | Long-term (1979-1990) changes in the thermal, dynamical, and 354 compositional structure of the Venus mesosphere as inferred from microwave spectral line 355 observations of C-12O, C-13O[END_REF][START_REF] Sonnabend | Direct observations of Venus upper mesospheric 683 temperatures from ground based spectroscopy of CO2[END_REF]Rengel et al., 2008a;2008b).

Sub-mm observations

Sub-mm observations of CO lines provide information about atmospheric conditions between approximately 70 and 110 km. CO is produced in this region by the photolysis of CO2. The pressure broadened rotational lines of CO provide a means to infer atmospheric properties from high resolution spectroscopy yielding a temperature profile and a line-of-sight Doppler wind velocity and the CO abundance. An optimal retrieval of temperature and CO mixing profiles requires simultaneous radiative transfer (RT) analysis of the 12 CO and 13 CO line absorption measurements, whereby a single temperature and CO mixing profile over 75-120 km altitudes is derived to provide self-consistent fits to both spectral lines (e.g. [START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF].

Many observations have been made by various instruments at different observatories around the world in the recent years [START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF][START_REF] Lellouch | A coordinated campaign of Venus ground-based observations and Venus 510 Express measurements[END_REF]Rengel et al., 2008a ;2008b;[START_REF] Sagawa | Interferometric measurements of Venus mesospheric wind using 654 millimeter/submillimeter interferometers[END_REF] : using the James Clark Maxwell Telescope (JCMT, Hawaii), Kitt Peak (Arizona), National Radio Astronomy Observatory (NRAO, Virginia), IRAM (Spain), IRAM Pdb (France), Nobeyama Radio Observatory (Nagano, Japan) and Heinrich Hertz Sub-Millimeter Radio Telescope (HHSMT) on Mount Graham, Arizona.

James Clark Maxwell Telescope (JCMT)

The temperature profiles observed by the JCMT are retrieved from thermal (LTE) radiative transfer (RT)

analyses of sub-millimeter optically thick ( 12 CO, 345 GHz) and thin ( 13 CO, 330 GHz) line absorptions formed in the mesosphere and lower thermosphere of Venus [START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF]. Detailed descriptions of submillimeter and millimeter CO line absorptions with respect to RT analysis for temperature profiles can be found in [START_REF] Clancy | Long-term (1979-1990) changes in the thermal, dynamical, and 354 compositional structure of the Venus mesosphere as inferred from microwave spectral line 355 observations of C-12O, C-13O[END_REF], [START_REF] Lellouch | Global circulation, thermal 507 structure, and carbon monoxide distribution in Venus' mesosphere in[END_REF], Rengel et al. (2008a;2008b), and[START_REF] Clancy | Observational definition of the Venus 358 mesopause: Vertical structure, diurnal variation, and temporal instability[END_REF][START_REF] Bertaux | In-flight performance and calibration of SPICAV/SOIR on-board Venus Express[END_REF][START_REF] Brecht | Dayside thermal structure of Venus' upper atmosphere characterized by a global 346 model[END_REF]. In ground-based (i.e., nadir viewing) observations, pressure-broadened 12 CO lines appear with 30-50% line center absorptions against the Venus thermal continuum, which arises from collisionally-induced CO2 opacity at altitudes of ~45 -65 km (e.g., [START_REF] Muhleman | A model of the Venus atmosphere from radio, radar, and 565 occultation observations[END_REF]. Line center optical depths for 12 CO line absorptions support thermal profiling from ~80 -115 km in the Venus night side atmosphere versus ~80 -105 km in the Venus dayside atmosphere. This day/night distinction regards the large diurnal variation in Venus CO mixing ratios above 80 -90 km altitudes (see for example [START_REF] Clancy | Observational definition of the Venus 358 mesopause: Vertical structure, diurnal variation, and temporal instability[END_REF], such that the line center average optical depth for the 345 GHz 12 CO transition varies from τo~12 at the night side to τo~4 at the day side. CO mixing ratios in the night side in lower thermosphere exhibit strong temporal and spatial variations on top of this average diurnal variation, which reflect the strong night side variation in regional down-welling, which is also dramatically exhibited by O2 singlet delta nightglow variations, e.g., Bailey et al (2008).

Sub-millimeter 12 CO temperature profiling is very similar in principle to that employed by Pioneer Venus orbiter Infrared Radiometer for 15 μm nadir temperature sounding for Venus with a CO2 opacity source (Taylor et al., 1980). However, the temperature dependence of sub-millimeter radiation is (nearly) linear and the CO opacity source is highly variable, in altitude, LT, and latitude. The latter distinction requires that the CO mixing profile be measured simultaneously, through CO profile retrievals from RT analysis of optically thin (τo ~ 0.1 -0.3, at 330 GHz) 13 CO line absorptions. The pressure-broadened line shape supports such compositional profiling up to ~105 km. Temperature and CO contribution functions associated with sub-millimeter 12 CO (345 GHz) and 13 CO (330 GHz) profile retrieval analyses are presented in Figure 12, as reproduced from [START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF].

Vertical resolution for temperature profiles within the mesosphere (80 km -100 km) is roughly 1 scale height (4 -5 km), sufficient to resolve ± 5 K solar thermal tides with good accuracy [START_REF] Clancy | Circulation of the Venus upper atmosphere: Day vs. night[END_REF]. This vertical resolution degrades by a factor-of-two into the lower thermosphere (100 -120 km), due to the transition of the contributed line shape from variable pressure to (nearly) fixed thermal broadening and to decreasing vertical gradients in the CO mixing ratio. The spatial/LT resolution of temperature profiling across the Venus disk is set by the diffraction-limited telescope beam, which is 14 arc-seconds for 345 GHz JCMT observations. Hence, the large disk size of Venus when the full night side is viewed (~60 arc-seconds at inferior conjunction) provides 1 -3 hour LT and 20 -40° latitudinal resolution of night side temperature profiles up to ~70° latitude. Day side coverage is limited from full disk (superior conjunction) to ~half disk (elongation) resolution, such that night side (inferior conjunction) observations from JCMT are emphasized. [START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF].

Heinrich Hertz Submillimeter Telescope (HHSMT)

The vertical thermal structure retrieved from HHSMT observations considered in this paper was derived from 12 CO J = 2-1 at 230.54 GHz at seven positions on the Venus disc and 13 CO J = 2-1 at 220.4 GHz at one position. Observations on the night and day sides of Venus were performed on 9 -10 June and 14 -15

June 2007, at ~0° latitude. The angular diameter of Venus was 23:44" at the beginning and 25:55" at end of the campaign, the approximate full width at half-maximum (FWHM) beam diameters are shown in Rengel et al. 2008b. These observations are a part of a coordinated ground-based Venus observational campaign in support of the ESA Venus Express mission (Rengel et al. 2008a(Rengel et al. , 2008b)). The results indicate a temperature vertical distribution and CO distribution spatially and temporally variable in the mesosphere.

The technique used to retrieve the temperature and CO profiles is described in Rengel et al. (2008a). The atmospheric model has a vertical resolution of 2 km. Normalized temperature and CO weighting functions for 12 CO J = 2-1, and temperature and CO weighting functions for 13 CO J = 2-1 for several frequency offsets around each transition can be found in Rengel et al. (2008a). Temperature and CO sensitivity are listed in Table 4.

There is evidence of changes in the thermal structure of the Venus mesosphere occurring on short time scales: small day-to-night temperature variations and short-term (Earth day to Earth day) on a time scale as short as one Earth day. 

Quantity

CO2 Heterodyne Observations

Heterodyne spectroscopy of CO2 at mid-infrared wavelengths is a powerful tool to study temperatures and the dynamical behavior of the atmospheres of the terrestrial planets. In general, heterodyning means mixing the received signal at the telescope with a local oscillator which is usually done by a laser at IR wavelengths. The mixing yields the difference between the received frequency and the laser frequency, both typically at THz frequencies, with preserved spectral information. The down-converted signal, now at GHz, is easily amplified and analyzed with extraordinary spectral resolution. There are currently worldwide two instruments which use infrared heterodyne receivers to investigate the Venusian atmosphere. One of them is the Cologne Tunable Heterodyne Infrared Spectrometer (THIS) which was developed at the I. Physikalisches Institut, Universität zu Köln, Cologne, Germany. It operates at wavelengths between 7 and 14 µm. The other instrument is the Heterodyne Instrument for Planetary

Wind And Composition HIPWAC developed and operated by the Goddard Space Flight Center in Maryland, USA. Both receivers are transportable and can be shipped to any telescope with IR receiving capabilities.

Data presented in this paper were taken at the McMath Pierce Solar Telescope, Kitt Peak, Arizona and the NASA InfraRed Telescope Facility, Mauna Kea, Hawaii. Detailed information about the instrumentation can be found in previous work on the development of the THIS receiver and in publications on the observations accomplished with HIPWAC (Sonnabend et al., 2008;[START_REF] Sornig | Investigations of Upper Atmosphere Dynamics on Mars and Venus by High Resolution Infrared 686 Heterodyne Spectroscopy of CO[END_REF][START_REF] Kostiuk | Remote-Sensing by IR-Heterodyne Spectroscopy[END_REF][START_REF] Kostiuk | Stratospheric zonal winds on Titan at 494 the time of Huygens decent[END_REF].

Mesospheric non-local thermodynamic equilibrium (non-LTE) emission of CO2 near 10 µm is observed in the Venus atmosphere, a phenomenon first discovered in 1976 by [START_REF] Betz | Heterodyne detection of CO2 emission lines and 341 wind velocities in the atmosphere of Venus[END_REF]. The modeling of the processes which lead to the non-LTE emission [START_REF] Deming | Modeling of the 10-micron natural 387 laser emission from the mesospheres of Mars and Venus[END_REF][START_REF] Roldan | Non-LTE Infrared Emissions of CO2 in 622 the Atmosphere of Venus[END_REF] has recently advanced [START_REF] Lopez-Valverde | Modelling the atmospheric CO2 10micron laser emission 519 in Mars and Venus at high spectral resolution[END_REF] and is a significant step forward on the way to a self-consistent model of the Venusian atmosphere. The kinetic temperature can be calculated from the width of the observed lines and is a good probe for the physical temperature of the emitting gas as long as stimulated emission is negligible. The high spectral resolution allows the determination of the Doppler shift of the observed CO2 emission line which corresponds to the line-of-sight velocities and provides therefore a direct wind measurement. The exact altitude of the emitting region is determined by the ratio of collisionally-induced emissions to the probability of spontaneous emission for the excited CO2 molecules.

The excitation is controlled by solar irradiation [START_REF] Deming | Modeling of the 10-micron natural 387 laser emission from the mesospheres of Mars and Venus[END_REF][START_REF] Roldan | Non-LTE Infrared Emissions of CO2 in 622 the Atmosphere of Venus[END_REF]. observational conditions for the different campaigns is given in Table 5. The latitude-local time coverage of both instruments is shown in Figure 13. The day side of Venus is very well covered. In particular, there are a number of high quality observations at the equator.

Figure 14 illustrates the observing geometries of all targeted positions (black circles) on the planetary disk.

The black circles are the size of the telescope beam relative to the diameter of the Venus apparent disk.

The planetary disk is well resolved during the Venus quadrature, compared to the beam size, and allows many independent observation locations (Figure 14a, d, e, g, h, j, k). The beam size relative to the planetary disk is, however, large and observation locations do overlap during superior solar conjunction (Figure 14f andi). 

Temperatures inferred from Night Time Airglow

The O2(a 1 Δ→X 3 Σ) infrared atmospheric nightglow emission is produced by three-body recombination of two O atoms in the presence of a third body. Constraints on the local temperature at the altitude of the O2 nightglow emission have been derived from the analysis of the intensity distribution within the rotational structure of the (0-0) band at 1.27 µm. These measurements do not always have sufficient resolution to resolve individual lines. However, comparisons between observed spectra and synthetic spectra accounting for the Earth atmospheric transmission and convolved to the observed resolution of the ground-based instruments, have provided reliable estimates of the temperature. It is assumed that, in the upper mesosphere region of the emission, the rotational temperature is essentially equal to the temperature of the ambient gas.

The first measurements were made by [START_REF] Connes | O2 1 ∆ emission in the day and night airglow of 369 Venus[END_REF] who obtained high-resolution Fourier transform spectra yielding T = 185 ± 15 K. [START_REF] Crisp | Ground-based near-375 infrared observations of the Venus night side: 1.27-µm O2 (a 1 ∆g) airglow from the upper 376 atmosphere[END_REF] also resolved rotational lines in the P and R branches using the same technique, and deduced a temperature of 186±6 K at 15°S. Without any measurements of the altitude distribution of the airglow layer, it was not possible to precisely assign these temperatures to a given altitude or pressure level. [START_REF] Ohtsuki | Imaging 586 spectroscopy of the Venus 1.27-µm, O2 airglow with ground-based telescopes[END_REF] VIRTIS-M/VEx nightglow observations did not have sufficient spectral resolution to infer rotational temperature, however, the limb observations indicated that the peak of the O2 emission at 1.27 µm at the limb in the northern hemisphere is located at 96 ± 2.7 km [START_REF] Piccioni | Near-IR oxygen nightglow observed by VIRTIS in the Venus upper 611 atmosphere[END_REF]. Soret et al. (2012) determined the peak altitude of the volume emission rate by an Abel inversion. These results now make it possible to assign an altitude range to the source region, which is useful to interpret the ground-based observations. Summarizing these observations, ground-based nightglow measurements yield a mean rotational temperature of 186 ± 6 K at an altitude of 97.4 ± 2.5 km. These values are 15-20 K higher than temperatures listed in the VIRA model (170 K).

The Venus Transit on 6 June 2012 across the Solar Disk

The transit of Venus in June 2012 provided a unique case study of Venus' atmosphere transiting the Sun, while at the same time Venus Express observed the evening terminator at solar ingress and solar egress [START_REF] Wilson | Venus Express 748 observations during the 2012 Venus transit[END_REF]). This was the first time in history that a transit of Venus occurred while a spacecraft was simultaneously in orbit around Venus. Transit observers in the past gave detailed descriptions of the telescopic aspect of Venus. In particular, during transit ingress and egress, the portion of the planet's disk outside the solar photosphere has been repeatedly perceived as outlined by a thin, bright arc ("aureole").

On June 8th, 2004, fast photometry based on electronic imaging devices allowed the rediscovery and first quantitative analysis of the phenomenon (Tanga et al., 2012). On June 5 and 6, 2012, several observers used a variety of acquisition systems to image the event -thus collecting for the first time a large amount of information on this atmospheric phenomenon. Tanga et al. (2012) suitable validation to this approach [START_REF] Pere | Multilayer modeling of the aureole 598 photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data[END_REF].

The analysis of the images obtained by the Helioseismic and Magnetic Imager of the Solar Dynamics Observer yield temperature data at the evening terminator covering the altitude range from 70 to 110 km.

The accuracy of the average latitudinal temperature is comparable to SOIR. The best-measured aureole signal is produced at layers at an altitude of 80 -90 km. Table 6 lists the results obtained at 90 km. [START_REF] Widemann | Venus' thermospheric temperature field using a refraction model at 738 terminator : comparison with 2012 transit observations using SDO/HMI[END_REF][START_REF] Pere | Multilayer modeling of the aureole 598 photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data[END_REF] The VIRTIS-M datasets were analyzed using the two different methods by [START_REF] Grassi | Retrieval of air temperature profiles in the Venusian 420 mesosphere from VIRTIS-M data: Description and validation of algorithms[END_REF][START_REF] Grassi | The Venus nighttime atmosphere as observed by the VIRTIS-M 424 instrument. Average fields from the complete infrared data set[END_REF] and by [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF][START_REF] Haus | Atmospheric thermal structure and cloud features in the 434 southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements[END_REF]. Dayside temperatures were also derived from the VIRTIS-H non-LTE emissions [START_REF] Gilli | Carbon monoxide 407 and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb 408 measurements[END_REF]. These results are obtained by averaging a large number of spectra taken at same altitude/local time/latitude bins from different observations during the VEx mission. For this reason, they do not represent a real vertical profile, but an average value for each bin. The SOIR temperature profiles (Mahieux et al., 2015) were derived from observations at the evening and morning terminators.

Ground-based observations by the JCMT [START_REF] Clancy | Venus upper atmospheric CO, temperature, and 360 winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line 361 observations[END_REF][START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF], the HHSMT (Rengel et al., 2008a,b), HIPWAC and THIS (Sonnabend et al., 2008[START_REF] Sonnabend | Direct observations of Venus upper mesospheric 683 temperatures from ground based spectroscopy of CO2[END_REF][START_REF] Krause | 489 Long-term Variation in Temperature and Dynamic in Venus Upper Atmosphere from ground-490 based Infrared Heterodyne Spectroscopy[END_REF] have been binned in a similar way.

The mean temperature profile observed at the evening terminator during the Venus transit (Tanga et al., 2012) is also given, as well as the average temperature deduced from O2 airglow observations.

The combined temperature profiles in Figures 16 to 20 are presented in five latitude bins 0˚ -30˚ (Figure 15) 30˚ -50˚ (Figure 16) 50˚ -70˚ (Figure 17), 70˚ -80˚ (Figure 18) and 80˚ -90˚ (Figure 19 The cold collar which was first detected by Pioneer Venus is identified at latitudes poleward of 50° and seen in all available datasets. Some small temperature differences appear to be present when comparing the VeRa and VIRA profiles in particular at the day side. These might be at least partially caused by differences in the spatial distribution and the sampling of the two data sets.

A systematic difference between the two analyses of the VIRTIS-M dataset [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF][START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF]Grassi et al., 2015) is evident in particular around the 1 mbar level. There are several explanations: Discrepancies in the final VIRTIS results may be explained by differences in the retrieval methods (described in section 2.2.3.1), by the forward radiative transfer codes and/or the pre-processing procedures (required to address residual calibration issues) adopted by the two VIRTIS teams [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF][START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF][START_REF] Grassi | Retrieval of air temperature profiles in the Venusian 420 mesosphere from VIRTIS-M data: Description and validation of algorithms[END_REF]. show a complicated thermal structure in the 90 km to 150 km 28 altitude range with alternating warm and cool layers rather than a gradual increase or decrease of 29 temperature. The cold temperatures seen by SOIR, about 120 K and lower were seen also by the Pioneer 30 Venus Orbiter drag experiments but at higher altitudes [START_REF] Keating | Venus upper atmosphere structure[END_REF]. A much higher variability of 31 temperatures at each pressure level is observed by SPICAV and SOIR. The corresponding density variations 32 are also large, up to two to three orders of magnitude. The largest temperature difference is seen in the 33 terminator zones at all latitudes (Figures 16b,17b,18b,19b,20b) which may be caused by short-term 34 temporal variability (all kinds of atmospheric waves) at altitudes above 100 km. The uncertainty in the 35 SOIR temperatures peak is larger compared to the other experiments which provide results at lower 36 altitudes. The temperature inversions are seen in the terminator zones at slightly different altitudes as a 37 function of latitude (about 100 km at 0° -30° latitude, 95 km at30° -50°, 105 km at 70° -80° and about 38 110 km at 80°-90˚), which may be caused by the descending circulating flow. Large variations in the vertical 39 flow may influence the mixing of the species which in turn may affect the radiative balance. This is 40 discussed in Section 5. 41

Temperatures derived from the VIRTIS-H (non-LTE), HHSMT, JCMT and HIPWAC-THIS experiments are on 42 average in good agreement at the day side for latitudes lower than 70° (Figures 16c,17c,18c), but show 43 a very large variability. Almost no data are available from the ground based experiments for latitudes 44 >70°, except for a few observations by the HIPWAC-THIS experiment (Figures 19c and20c). Compared to 45 other observations which give averaged values the given HIPWAC-THIS data are single measurements. 46

The variability of this single measurement is in the same range than the VEX instruments even 47 though variability of the spatial field-of-view with the various observing runs have to be taken into 48 account. 49

The situation is more complex above the 0.5 mbar pressure level (90 km). The SPICAV and JCMT 50 temperatures are in good agreement above 0.03 mbar (100 km) on the night side (panel (a) of Figures 16 51 to 20) and also agree with the average temperatures from the O2 nightglow observations at low latitudes 52 (Figure 16a). The SPICAV profiles, however, show a maximum temperature in the 0.03 mbar to 1 mbar (85 53 km -100 km) range which is more pronounced and located at lower altitudes than the JCMT profiles. The 54 HHSMT profiles are in agreement with the JCMT profiles below 1 mbar (85 km) but tend to show a higher 55 variability than the SPICAV and the JCMT profiles above this altitude. 56 Venus and Venus Express in order to compute the solar and thermal fluxes within the atmosphere and to 130 determine the energy balance. The typical output products of these numerical models are temperature 131 and neutral number density profiles [START_REF] Crisp | Radiative forcing of the Venus mesosphere. I -Solar fluxes and heating rates[END_REF][START_REF] Crisp | Radiative forcing of the Venus mesosphere. II -Thermal fluxes, cooling rates, and radiative 373 equilibrium temperatures[END_REF][START_REF] Crisp | The thermal balance of the Venus atmosphere[END_REF][START_REF] Bullock | The recent evolution of climate on Venus[END_REF]132 Eymet et al., 2009;[START_REF] Lee | A Discrete 501 Ordinate, Multiple Scattering, Radiative Transfer Model of the Venus Atmosphere from 0.1 to 502 260  m[END_REF][START_REF] Lee | Vertical structure of the Venus cloud top from the VeRa and VIRTIS observations onboard 505 Venus Express[END_REF][START_REF] Mendonca | A new fast and flexible radiatif transfer method for Venus 549 general circulation models[END_REF]. Reviews of the 133 radiative balance of the Venus atmosphere are in [START_REF] Titov | Radiation in the atmosphere of 722 Venus[END_REF][START_REF] Titov | Towards understanding the climate of Venus: Application of terrestrial models to our sister 726 planet[END_REF]. An important a priori input 134 parameter to the simulations is the opacity distribution function and a first-guess temperature profile, 135 usually taken from the VIRA model. The opacities are computed from the cloud properties and structures, 136 the gas composition of the atmosphere, and the spectral properties of the different gas constituents. 137

It would be worthwhile to compare the output products of the various models in order to assess their 138 capabilities. It was decided not to do so because the various models are progressively evolving. Only key 139 aspects of the on-going modeling efforts shall be described below. The computation of atmospheric 140 opacities is a crucial part of the modeling of the radiative transfer. Gas opacities are derived from line-by-141 line models which are based on spectroscopic databases such as HITRAN (Rothman et al., 2009(Rothman et al., , 2013) ) and 142 HITEMP [START_REF] Rothman | HITEMP, the high-temperature molecular spectroscopic database[END_REF] and on assumptions of profiles of the atmospheric composition, in 143 particular profiles of CO2, H2O and SO2 which play an important role for the radiative transfer. The 144 computation of the gas opacities requires assumptions on the line shapes and procedures in the line-by-145 line models. The continuum is highly uncertain between the dominant absorption bands, and difficult to 146 determine experimentally [START_REF] Wordsworth | Infrared collision-induced and far-line absorption in dense CO2 754 atmospheres[END_REF][START_REF] Snels | Carbon dioxide opacity of the Venus' atmosphere", 677[END_REF]. 147

The cloud opacity is computed from a cloud distribution model and from assumed cloud particle 148 properties [START_REF] Knollenberg | The microphysics of the clouds of Venus: Results of the Pioneer Venus 485 particle size spectrometer experiments[END_REF][START_REF] Zasova | Structure of the Venus middle atmosphere: 766 Venera 15 Fourier spectrometry data revisited[END_REF]2007). These properties were determined 149 from space observations mostly in equatorial regions. It is well known, however, that the cloud structure 150 varies with latitude, with the vertical distribution (e.g. [START_REF] Ignatiev | Altimetry of the Venus cloud tops from the Venus Express observations[END_REF] and with the particle size 151 [START_REF] Wilson | Evidence for anomalous cloud particles at the poles of Venus[END_REF]. The analysis of the VIRTIS-M data by [START_REF] Haus | Self-consistent retrieval of temperature profiles and cloud 430 structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 431 radiation measurements[END_REF][START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF] determined the cloud 152 structure as a function of latitude. Work is currently on-going to improve the understanding of the cloud 153 structure and their properties and characteristics ("Venus cloud structure" team supported by ISSI; Wilson 154 et al. (2014)). 155

The properties and the distribution of the so-called unknown UV absorber within the clouds are very 156 important for the computation of the vertical profiles of the solar flux absorption. This distribution is 157 based on the mode-1 particles (smallest mode in the cloud particle distribution) in the upper cloud deck 158 in many models [START_REF] Crisp | Radiative forcing of the Venus mesosphere. I -Solar fluxes and heating rates[END_REF][START_REF] Lee | A Discrete 501 Ordinate, Multiple Scattering, Radiative Transfer Model of the Venus Atmosphere from 0.1 to 502 260  m[END_REF][START_REF] Mendonca | A new fast and flexible radiatif transfer method for Venus 549 general circulation models[END_REF], except for the most 159 recent one [START_REF] Haus | Radiative heating and cooling in the middle and lower atmosphere 437 of Venus and responses to atmospheric and spectroscopic parameter variations[END_REF]. 160 Different techniques were used to compute the thermal cooling rates and the solar heating rates based 161 on these opacities and the vertical structure of the atmosphere. The various radiative transfer algorithms 162 may yield differences in the derived profiles of radiative heating and cooling rates and may therefore 163 influence the modeled temperature structure. Large day/night variations are possible above the clouds 164 due to short radiative time scales. Non-LTE processes and EUV heating have to be considered in order to 165 compute correctly the thermal balance above approximately 100 km. The atmosphere is heated below 166 140 km by the absorption of solar radiation due to CO2 near-infrared bands (2.7 µm, 4.7 µm and 1-2 µm). 167

The EUV absorption by CO2, O and a number of minor species dominates above that altitude. Thermal 168 cooling occurs via CO2 non-LTE transitions around 15 µm which competes with the heating terms together 169 with thermal conduction (above about 150 km) to control the temperature. The modeling of these 170 processes is quite complex, because it involves the non-LTE distribution of CO2 energetic states and their 171 associated ro-vibrational transitions. This requires models which consider the theory properly which solve 172 simultaneously the statistical equilibrium and radiative transfer equations, very time expensive 173 computations for the currently most advanced GCMs. Parameterizations of the 15 µm-cooling and the 174 NIR non-LTE heating based on results by [START_REF] Roldan | Non-LTE Infrared Emissions of CO2 in 622 the Atmosphere of Venus[END_REF] were already implemented into GCMs. The 175 various authors, however, used different formulations [START_REF] Brecht | Dayside thermal structure of Venus' upper atmosphere characterized by a global 346 model[END_REF][START_REF] Brecht | Dayside thermal structure of Venus' upper atmosphere characterized by a global 346 model[END_REF]Gilli et al.;[START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF]. 176 [START_REF] Bougher | Venus Mesosphere and 343 Thermosphere. II: Global circulation, temperature, and density variations[END_REF] used off-line simulated "look-up tables" for the solar heating rates and a 177 parameterized scheme for the cooling which implements a line-by-line model of CO2 15 µm rates (taken 178 from [START_REF] Roldan | Non-LTE Infrared Emissions of CO2 in 622 the Atmosphere of Venus[END_REF]. [START_REF] Gilli | Thermal 404 structure of Venus upper atmosphere by a ground-to-thermosphere GCM: a preliminary 405 study[END_REF] applied an analytical formula to reproduce the solar heating 179 rates in those upper regions, and a complete but simplified non-LTE model for the 15 µm cooling, as it 180 was also developed for the Mars Climate Data Base (MCD) GCM [START_REF] Gonzalez-Galindo | A ground-to-413 exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of 414 thermospheric temperature[END_REF]2013). It 181 is assumed that the net absorption depends mainly on the density of the atmosphere, and to a smaller 182 degree on the solar zenith angle, thermal structure and atomic oxygen abundance. The EUV absorption 183 is also parameterized assuming an efficiency of 20-22 %. The variation of the UV solar flux with the solar 184 cycle is also taken into account. 185 above the cloud tops (including aerosols, upper haze layer, and unknown UV absorber), and tides, gravity 215 waves or other sources [START_REF] Zalucha | Incorporation of a gravity wave 759 momentum deposition parameterization into the Venus Thermosphere General Circulation 760 model (VTGCM)[END_REF][START_REF] Gilli | IMpact of a non-orographic gravity wave parameterization in the 410 Venus atmosphere by the LMD Venus GCM[END_REF]. 216

The cloud and haze particle distributionand the continuum gas opacity in the 3-7 microns spectral range 217 for the extreme conditions in the deep atmosphere need to be sufficiently known in order to model the 218 temperature profile. The latitudinal cloud distribution is also important to improve the understanding of 219 the formation of the "cold collar" feature. The formulation of the non-LTE processes is still an 220 approximation and a more accurate description is required for a GCM. Their implementation, however, 221 considerably improved the knowledge of the energy budget in the upper atmosphere. The uncertainty of 222 typical rate coefficients used in non-LTE simulations is still very large which is true for the uncertainty of 223 the O-CO2 collisional relaxation rate important for the cooling of the atmospheres of terrestrial planets in 224 general. 225

The understanding of the 3-dimensional temperature structure and its variability requires a General 226 Circulation Model which fully considers the dynamical interactions within the atmosphere. Significant 227 progress has been achieved within the most recent Venus GCM models (Sugimoto et al., 2014a;2014b;228 Ando et al., 2016;[START_REF] Lebonnois | Wave analysis in the atmosphere of Venus below 100-km altitude, 500 simulated by the LMD Venus GCM[END_REF], but it is still on-going work. 229

Discussion

230

The Venus Express mission has considerably increased the knowledge of the Venus atmospheric structure 231 above ~40 km and provided enough new information above 100 km to trigger new ideas for the 232 interpretation of the observations. Three kinds of occultation experiments were performed for the first 233 time to provide temperature profiles over a wide range of altitudes from 40 to 170 km. Considerable 234 temperature variability is seen above 100 km. Certain features appear to be systematically present, such 235 as a succession of warm and cool layers. Models support the existence of such layers consistent with a 236 large scale circulation, but they are still in the process of being improved. 237

Although there is general agreement between the various experiments which observed the vertical and 238 latitudinal temperature structure of the Venus atmosphere, the differences between individual 239 experiments are larger than the measurement errors. Especially above 100 km the temperature variation 240 is large and the difference between the individual experiments seems to be higher. As mentioned before 241 temperatures of the upper mesosphere are highly variable even on short time scales. Therefore the 242 variation seen by the individual experiments may be reasonable considering that the thermosphere can 243 respond rapidly to thermal forcing. 244

The interpretation of SOIR and VIRTIS data requires the information on spectral line shapes. HITRAN is 303 here the more commonly used database and there has been some improvements recently (Rothman et 304 al., 2013). 305 306
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 1 Figure 1: Panel (a): vertical coverage of the post-VIRA atmospheric structure experiments. Panel (b): spectral ranges of the experiments considered in this study
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 5 when carried westward by the ambient winds at average speeds of 69 m/s and 66 m/s. The VeGa-I balloon moved almost exactly along at 8° North latitude and travelled nearly 8,500 km in the darkness of the Venus night before crossing the morning terminator. The trajectory of VeGa-2 was shifted by about 500 km southward and floated at a mean altitude of 53.6 km (535 mbar) and experienced temperatures ranging from 308 K to 316 K. The communication with the balloons was lost when the batteries drained after 40 hours of operations. The values of pressure and temperature along the trajectories of the balloons are given in Table
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  VExADE), which itself consisted of 3 separate experiments, aerobraking (VExADE-AER), Precise Orbit Determination (VExADE-POD) and torque measurements (VExADE-TRQ). Both the POD and TRQ experiments were carried out during the main science phase of Venus Express (2008-2013) during campaigns when pericentre altitude ranged from 165-190 km, while aerobraking (VExADE-AER) was performed in June/July 2014, at the end of the nominal science mission when the pericentre altitude was lowered to 130 km. For pericentre altitudes of 165-190 km the atmospheric drag experienced by the spacecraft is strong enough to affect its orbit and be measured by radio tracking techniques (POD), though too weak to be detected by the onboard accelerometers. A series of Atmospheric Drag Experiments (ADE) was performed by lowering the pericentre to altitudes between 165 km and 190 km. By tracking the spacecraft at high resolution with the Deep Space Network and subsequently modeling the spacecraft

Figure 3 :

 3 Figure 3: Thermospheric neutral mass density derived from VEx torque measurements on 18 May 2011. Panel (a) derived mass density as a function of time relative to the pericentre (dashed vertical line) on 18 May 2011. Panel (b):

Figure 4 .

 4 Figure 4. Mean mass densities along the morning (red) and evening (blue) terminator averaged over 1 km altitude bins. Error bars show measurement errors for individual measurements[START_REF] Persson | Venus Thermosphere Densities as Revealed by Venus Express Torque and Accelerometer 601 Data[END_REF].

  (H channel) and a lower spectral resolution mapping mode (M channel).

  Migliorini et al. (2012) discuss the thermal structure resulting from the VIRTIS-H data acquired during the period May 2006 -January 2010 for a total of 3 × 104 analyzed spectra. The thermal retrieval code applied to the VIRTIS-H data is described in[START_REF] Grassi | Retrieval of air temperature profiles in the Venusian 420 mesosphere from VIRTIS-M data: Description and validation of algorithms[END_REF]. The Northern and Southern hemispheres were observed by VIRTIS-H at a better spatial coverage in the South because of the spacecraft orbit. Despite the low VIRTIS-H data volume in the Northern hemisphere, a comparison between the thermal behavior of the two hemispheres at all Solar Local Times at the night side of the planet is possible. A recent reanalysis of VIRTIS-H data(Grassi, personal communication) was eventually able to detect a systematic calibration offset within the 4.3 µm CO2 band. This effect induced a bias in the derived temperatures that increases with altitude. Preliminary estimates indicate that the systematic offsets reported inMigliorini et al. (2012) are caused by this effect and are less than 3 K below the 10 bar level.

  Venus Express Radio Science Experiment (VeRa) used one-way radio signals at two coherent frequencies 2.3 GHz) to sound the Venus atmosphere and ionosphere during Earth occultations. The two coherent radio signals allowed separation of the classical Doppler shift from the dispersive media effects. An onboard ultra-stable oscillator (USO) provided a high quality reference frequency source for the coherent one-way downlinks. The radio signals were primarily recorded at the ESA ground station in New Norcia, Australia, but were also supported by the NASA Deep Space Network (DSN) antennas. A detailed experiment overview can be found in[START_REF] Häusler | Radio Science investigations by VeRa onboard the Venus Express spacecraft. 440[END_REF] 2007). The atmospheric profiles cover the upper troposphere and mesosphere of Venus (~40 -100 km) at a high vertical resolution of only a few hundred meters depending on the distance between the spacecraft and the planetary limb. Atmospheric absorption and defocusing losses of the radio carriers strongly increase below 40 km. At ~32 km altitude the atmosphere becomes critically refractive, and therefore inaccessible for radio sounding.More than 800 profiles of temperature, pressure and neutral number density were retrieved between April 2006 and January 2015 (see section 2.4). The measurements cover nearly all local times, latitudes and longitudes with a certain gap in the northern middle latitudes resulting from the geometry of the highly elliptical orbit of Venus Express.

Figure 5 :

 5 Figure 5: Number of VIRTIS-H spectra (about 30,000 spectra in total) used for the night time temperature retrieval, distributed over local time and latitude (fromMigliorini et al., 2012). The southern hemisphere is much better covered than the northern hemisphere. Right panel: Local-time and latitude distribution of the VIRTIS-H daytime limb observations between 100 and 170 km altitude. The red crosses represent data with a field-of-view smaller than 10 km which were, used for the temperature retrieval (after[START_REF] Lee | This S-shaped structure with minima and maxima at the terminator is also observed by SOIR 198[END_REF].

Figure 6 :

 6 Figure 6: Local-time and latitude distribution of the VIRTIS-H daytime limb observations between 100 and 170 km altitude.The red crosses represent data with a field-of-view smaller than 10 km which were, used for the temperature retrieval (after[START_REF] Gilli | Carbon monoxide 407 and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb 408 measurements[END_REF].

Figure 7 :

 7 Figure 7: Spatial distribution of the VeRa occultation profiles as a function of local time and latitude represented by the ray pericentre at the 1 bar level (altitude ~ 50 km).

Figures

  Figures 10 and 11 summarize the local time and latitudinal coverage from the SOIR, VeRa, VIRTIS and SPICAV experiments at specific latitude and local time bins that were used in this study.

Figure 8 :

 8 Figure 8: Latitudinal and local time distribution of the SPICAV stellar occultations. The latitude position and local time are represented by the ray pericentre at an altitude of ~85 km.

Figure 9 :

 9 Figure 9: Latitude locations of the SOIR solar occultations when CO2 was observed at high altitudes.. Circles are for the morning terminator, triangles for the evening terminator.

Figure 10 :

 10 Figure 10: Local solar time versus latitude coverage for the Venus Express instruments.

Figure 11 :

 11 Figure 11: Local solar time versus altitude coverage for the Venus Express instruments.

  the data from the different experiments are compared in five latitude bins -(i) 0˚ -30˚ latitude, (ii) 30˚ -50˚ latitude, (iii) 50 ˚ -70 ˚ latitude, (iv) 70˚ -80˚ latitude, and (v) 80 ˚-90 ˚ latitude. The data were grouped into three sets -Day, Night and Terminator (both morning and evening) in each latitude bin.The ground based observations (see Section 3) have a very sparse temporal sampling and a very low spatial resolution. Those observations were therefore not included and compared as combined results from each experiment.

Figure 12 :

 12 Figure 12: Representative 12 CO (left panel) and 13 CO (right panel) emission weighting functions are derived for different line center frequency offsets. Vertical axes indicate atmospheric pressure (left) and corresponding altitudes (right) associated with the temperature (left) and CO (right) solution profiles (reproduced from[START_REF] Clancy | Thermal structure and CO distribution for the 365 Venus mesosphere/lower thermosphere: 2001-2009 inferior conjunction sub-millimeter CO 366 absorption line observations[END_REF].

  A recent study by Lopez-Valverde et al. (2011) finds a maximum for the non-LTE emission with a half width of 10 km at the 0.15 Pa pressure level which is equivalent to an altitude of ~110 km using a VIRA pressure-altitude profile. IR heterodyne spectroscopy offers a much higher spatial resolution in contrast to existing sub-mm observations allowing the detailed study of temperature variations as a function of latitude and local time. The observations are, however, limited to the day side and ~ 110 km altitude. The heterodyne receivers THIS and HIPWAC have observed Venus during several campaigns in 1990/1991 and between 2007 and 2014 resulting in a comprehensive set of wind and temperature data. The data presented in this paper are temperature measurements derived between 2007 and 2014. A total of 371 individual observations were performed in 11 campaigns. An overview of the measurements and relevant

Figure 13 .

 13 Figure 13. Latitude-local time coverage of both the THIS and the HIPWAC instruments. The color-code gives the number of observations.

Figure 14 :

 14 Figure 14: Geometries for all Venus observing campaigns. The equator (red), the terminator (blue) and the central meridian (green) are indicated. The black circles indicate the relative size of the telescope beam to the planetary disk. The number behind the date gives the apparent diameter of Venus in arcseconds.

  deduced temperatures from observations made during three different years. The average rotational temperatures from their observations were 193 ± 9 K, 182 ± 25 K, and 185 ± 20 K. They showed cases suggesting some correlation with the regions of bright nightglow.Bailey et al. (2008a,b) derived temperatures from 181 to 196 K and also showed some relations between higher temperatures and O2 nightglow bright patches.[START_REF] Krasnopolsky | Venus night airglow: Ground-based detection of OH, observations of O2 496 emissions, and photochemical model[END_REF] retrieved temperatures showing a broad minimum of 171 K centered at 4°S increasing to 195 K at 35°S and 212 K at 35°N with an uncertainty of about 5 K. No correlation was observed between the nightglow intensity and temperature. By contrast,Bailey at al. (2008) and[START_REF] Ohtsuki | Imaging 586 spectroscopy of the Venus 1.27-µm, O2 airglow with ground-based telescopes[END_REF] found that their measurements support the idea that compressional heating of downwelling gas heats the region of the airglow layer. They argued that dynamical effects on the nighttime thermal structure in the mesosphere-thermosphere transition region are stronger than the chemical energy released by the association of O atoms.

  photometry reflects the local density scale height at the limb and the altitude of the refracting layer. The lightcurve of each spatial resolution element of the aureole has been compared to a limb refraction model to constrain the mesospheric structure / scale height at terminator. The latitude probed by SOIR on Venus Express during orbit 2238 (+49°), at the time Venus transited the Sun as seen from Earth, provided a

  Figures 15 to 19 illustrate the significant contributions of Venus Express (particularly at higher altitudes) and the ground-based observations to the investigation of the Venus atmosphere since the publication of VIRA. The new observations are in very good agreement with those temperature values which are addressed by VIRA and provide new information about the atmospheric structure above 100 km.

Figure 15 :Figure 16 :Figure 17 :Figure 18 :

 15161718 Figure 15: combined temperature profiles from the Northern and Southern hemispheres between the 2 equator and 30° latitude. Panel (a): night side, panel (b): terminators, panel (c) day side. Temperature 3 profiles are combined from the Venus Express instruments, ground-based observations, and empirical 4 models (VIRA Seiff; VIRA Keating; VTS3). The height above the mean planetary radius is given as pressure 5 for the night side and terminator data (panels (a) and (b)) and in altitude for the day side observations in 6 order to ease the comparison with VIRTIS-H data. Corresponding approximate values for altitude/pressure 7 are also given on the right-hand side of each panel. Uncertainties (one standard deviation) are either 8 plotted as colored areas for averaged profiles in the same bin (Venus Express datasets, JCMT, HHSMT, and 9 Venera-15) or as error bars. The VIRTIS-H non-LTE, O2 airglow and Venus transit horizontal error bars 10 represent the total retrieval error. The vertical error bars represent the uncertainty in altitude/pressure. 11
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Figure 20 :Figure 21 :Figure 22 :Figure 23 :Figure 25 :Figure 26 :Figure 28 :

 20212223252628 Figure 20: Comparison of atmospheric mean total density profiles from SOIR, SPICAV and VeRa and from 86 the atmospheric drag measurements as a function of pressure for the near equatorial latitude bin 0° to 87 30°. Panel (a): night side, panel (b): terminator zones, panel (c): day side. The colored areas mark one 88 standard deviation uncertainty of the average profiles for each experiment. Approximate altitudes are 89 shown on the right hand vertical axis. 90

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1 : Observations of the vertical structure of the Venus atmosphere by spacecraft and ground based experiments (data from experiments in light lines are not used in the intercomparison)

 1 

	Instrument / Experiment	Method	Years covered	Nominal vertical coverage [km]	Pressure range [mbar]	Vertical resolution [km]	Temperature uncer-tainties [K]	Latitudinal coverage	Local time coverage	Horizontal resolution	Sensitive to clouds?

section Active remote sensing observations from spacecraft

  Venus Thermal Structure -Intercomparison of Venus Express and Ground Based Results

		7-30 µm					height)	dependent)				from each
												spectrum
	VIRTIS-M/VEx	4.3 µm CO2 band	2006-2008	65 -85	100 -0.1	8	< 5	mostly southern hemisphere	night side	60 km at pericenter	YES	2.2.3.1
	VIRTIS-H/VEx Nadir	4.3 µm CO band	2006-2012	65 -80	100 -4		8	< 5	both hemispheres	night side	50km retrievals) footprint (individual	YES	2.2.3.2
	VeRa/VEx VIRTIS-H/VEx Limb	radio occultation 4.7 µm CO2 band	2006-2014 2006-2012	38 -100 100 -150	3000 -0.03 0.03 -10 -7	0.5 -1 15 -25 dependent) (altitude	0.1 -1 > 30	both hemispheres North hemisphere	night & day side day side	slant paths, 400 km 115x38 km	NO likely	2.3.1.2 2.2.3.2
	Magellan Galileo NIMS	radio occultation 4.3 µm CO2 band	1992 1990	38 -100 65 -85	3000 -0.03 100 -0.1	0.5 -1 8	0.1 -1 < 5	both hemispheres South hemisphere	night & day side night side	slant paths, 400km n/a	NO NO	n/a 2.2.2
	Pioneer Venus	radio occultation	1978-1991 1990-	38 -100	3000 -0.03	0.5 -1 Ground-based observations 0.1 -1	both hemispheres	night & day side	slant paths, 400km	NO	2.3.1
	Venera 15, 16 orbiters THIS / HIPWAC	radio occultation CO2 non-LTE emission	1983 1991 2007-	38 -100 110 km	3000 -0.03 2•10 -3		0.5 -1 +/-10	1 -10 10	both hemispheres both hemispheres	night & day side day side	slant paths, 400km 0.9" to 1.6"	NO NO	2.3.1.1 3.2
			2014					<25%				
	SPICAV-UV/VEx THIS / HIPWAC	stellar occultation CO2 absorption	2006-2014 2012	90 -140 65 -90	10 -1 -10 -7 100 -0.8	0.5 -7 10 4	1 -20 K < 10 Altitude dependent	both hemispheres both hemispheres	night side night side mapping PM/AM	slant paths, 0.9" to 1.6" 400km	NO NO	2.3.3 3.2
	SOIR/VEX VExADE-AER/VEX JCMT sub/mm line absorption	solar occultation Aerobraking CO absorption	2006-2014 2014 2001-2015	70 -170 130 -140 75 -120	100 -10 -8 10 -5 -10 -6 20 -10 -4	0.3 -5 (lat. dep.) 0.3 10 above 100 km altitude	1 -20 23 7	both hemispheres 70°N -80°N both hemispheres	terminator morning terminator Dayside average PM/AM night side	slant paths, 400km 10 km earth footprint 4000 km sub-13.5" to 14.5"	NO NO NO	2.3.2 2.1.2.1 3.1.1
										78 -98˚	13.5" to 14.5"	
	VExADE-TRQ/VEX VExADE-POD/VEX HHSMT sub/mm line absorption	Spacecraft torque measurement Precise Orbit Determination CO absorption	2008-2013 2013 2008-2007	165 -200 175-185 75 -110	10 -7 -10 -9 10 -8 20 -0.002	1.0 n/a altitude 4 10 above 100 km	~ 30 K n/a < 15	70°N -90°N 70˚N -90˚N both hemispheres	Solar Zenith Angle terminators PM night & day side averages	Slant paths n/a footprint 13.5" to 14.5" sub-earth 10000 km	NO NO NO	2.1.2.2 2.1.2.2 3.1.2
	Various space FS VENERA-15 telescopes and ground-based	15 µm CO2 temperat.-aerosol , Photometry (imaging of Venus transits)	1983 2004 2012	Passive Remote Sensing (IR/Microwave) from spacecraft 55-100 km 300 -0.03 3 -5 (scale 2 -5 (altitude mostly Northern 70 -110 100 -0.002 5 10 -20 All, simultaneous	4 -10 AM 4 -10 PM terminator	60 km at pericenter Slant path, 400 km	retrieved consistent YES, self-YES	2.1.1 3.4

Table 2 : VeGa-1 and VeGa-2 balloons Start of operation Temperature and pressure at the balloon altitude

 2 

							pressure	temperature
		Date	time	latitude Longitude	LT				
							(mbar)	(K)	
			(hours UT)			(hours)				
							(*)	(**)	(*)	(**)
	VeGa-1	11 June 1984	02:06	8° N	77°	00:18	540	630	308	322
	VeGa-2	15 June 1984	02:06	7.5° S	180°	01:00	535	900	302	338
	* at maximum floating altitude (54 km)							

** at minimum floating altitude (VeGa-1: 53 km, VeGa-2: 50 km)

1.2 1.4 1.6 1.8 2.0 observed-to-modelled density ratio latitude (deg)

  

	Figure 2: Ratio of observed VExADE mass densities versus VTS3 model mass densities. Only accelerations above 0.003
	m/s 2 (3-sigma) are shown. Symbols mark those ranges where the acceleration is > 0.01 m/s 2 . The profiles are
	observations from 24 June to 11 July 2014. The ratios are computed using a 16-data point average.
	Temperatures are derived from the neutral atmospheric scale heights 𝐻𝐻 = 𝑘𝑘 ⋅ 𝑇𝑇/(𝑚𝑚 ⋅ 𝑔𝑔) where T is the
	temperature, k is the Boltzmann constant, 𝑔𝑔 = 8.49 𝑚𝑚/𝑠𝑠 2 is the gravity acceleration, and m is the mean
	molecular weight of the atmospheric species which is estimated using the VTS3 model. VTS3 predicts a
	mean molecular mass m = 34.7 -41.8 atomic mass units (amu) for the latitude range 71.5°N to 79.0°N,
	the local solar time (LST) range 04:30 h to 06:18 h and F10.7 mean = 130.7 -134.0 using the 10.7 cm radio
	flux as a proxy for the solar flux. The daily F10.7 proxy varied between 93.4 and 200.7 during the time of
	observations. A mean temperature of 114 ± 23 K was derived from the observed mass density profiles.
	The VTS3 model temperatures are higher for the same observing conditions: 141 K -159 K. This
	temperature difference is consistent with the differences in scale height mentioned above.
	1.0								
	0.8								
	0.6								
	0.4								
	71	72	73	74	75	76	77	78	79

Table 3 . Number of data sets Number of data sets per latitude range

 3 

				(North/South)		
		0°-30°	30°-50°	50°-70°	70°-80°	80°-90°
	Night					
	VIRTIS-M (D.G.)	4545/11042 2070/185585 2049/550011 675/112416	110/4719
	VIRTIS-M (R.H.)	0/1846	0/5657	0/8764	0/2974	0/429
	VIRTIS-H (nadir)	307/830	114/3938	192/15312	82/4061	4/366
	VeRa	32/58	18/48	40/33	46/15	97/15
	SPICAV	188/154	25/119	18/33	7/26	0
	JCMT	23	12	7	1	0
	HHSMT	6	0	0	0	0
	Terminator					
	VIRTIS-M (D.G.) (evening)	0/18	0/7071	0/16018	0/846	0
	VIRTIS-M (D.G.) (morning)	34/0	0/984	0/1200	0/21	0
	VIRTIS-H (nadir) (evening)	21/19	0/34	0/13	0	0
	VIRTIS-H (nadir) (morning)	4/16	11/84	3/88	0	0
	VeRa	2/4	3/5	1/2	2/0	20/4
	SPICAV (evening)	0	0/5	0	0	0
	SOIR (evening)	9	9	11	8	33
	SOIR (morning)	15	7	9	10	25
	JCMT	3	0	0	0	0
	HHSMT	5	0	0	0	0
	Day					
	VeRa	53/54	9/44	42/41	56/15	54/12
	JCMT	2	2	0	0	0
	HHSMT	4	0	0	0	0

Table 4 : Vertical range where the temperature and CO density retrieved from HHSMT observations are sensitive.

 4 

Table 5 : THIS and HIPWAC observing campaigns from 2007 to 2014.

 5 

	Campaign	Date	Venus	Venus disk	Earth and	FoV	number of
			apparent	illumination	Venus	(arcsec)	observations
			diameter	(%)	Doppler		
			(arcsec)		velocity		
					(km/s)		
	1	22.-24.10.2007	25	47	13	0.9	14
	2	16.-22.03.2009	57	4	-4.8	1.6	19
	3	02.-06.04.2009	57	3	3.6	1.6	32
	4	02.-06.06.2009	24	50	13.9	1.6	58
	5	09.-22.08.2010	22	55	-13.8	1.6	13
	6	20.-25.06.2011	10	97	5.1	1.6	57
	7	24.-30.03.2012	23	21	-13.3	1.6	56
	8	17.-24.05.2012	51	7	7.3	0.9	23
	9	11.-16.03.2013	10	100	1.4	1.6	60
	10	23.11-04.12.2013	35	33	-12.3	1.6	22
	11	28.-31.03.2014	23	52	13.5	0.9	17

Table 6 : Temperatures at the 90 km altitude level from aureole observations during the 2012 Venus Transit (Widemann et al., 2014)

 6 

		Temperature	Error
	Latitude		
		(K)	(K)
	0° -30°	161.0	19.5
	30° -50°	151.0	18.5
	50° -70°	154.0	11.0
	70° -80°	167.0	16.6
	80° -90°	157.2	13.7
	4.		

Comparison of the Venus Express and Ground-based Temperature and Density Observations 4.1 Description of the Datasets The

  temperature datasets available from the Venus Express VIRTIS-M, VIRTIS-H, VeRa, SOIR and SPICAV instruments were sorted in latitudinal bins, assuming a symmetry of the Northern and Southern hemisphere, as well as in local time bins. The datasets were averaged as discussed in Section 2.4.2. Figures 16 to 20 combine the temperature profiles from the VEX instruments, some Venera and Magellan profiles and the profiles from the ground-based observations as a function of vertical pressure and altitude.

Venus Thermal Structure -Intercomparison of Venus Express and Ground Based Results particular on the dayside above 100 km. New in-situ observations in the atmosphere below 40 km are missing, an altitude region that cannot be accessed by occultation experiments. All these questions need to be addressed by future missions.
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The temperature profiles from all experiments do not generally overlap temporally and spatially at the 57 terminator zones (panel (b) of Figures 16 to 20) and the temperature variability is very high. The SOIR 58 profiles are much warmer than the JCMT and the HHSMT profiles but agree roughly with the HIPWAC-59 THIS temperatures and those from the Venus 2012 transit. The SOIR, HIPWAC-THIS observations are close 60 to the terminator (<= 2 h) addressing illuminated day side only, while the sub-mm temperature 61 observations have a larger field-of-view. Differences between both the evening and morning terminators 62 are also apparent. 63

Atmospheric Density

64

The three occultation experiments on board of Venus Express, SPICAV-UV, SOIR and VeRa, return 65 measurements of the total neutral number density. SPICAV-UV and SOIR measure directly the CO2 number 66 density from its absorption structure, and thus have to assume a CO2 volume mixing ratio, which was 67 taken from VIRA. The neutral number density profiles from SPICAV, SOIR and VEXADE were achieved only 68 at the terminator zones and at the night side. VeRa covered the day side as well as the night side. 69

The SPICAV, SOIR (morning and evening) and VeRa neutral number density profiles are in very good 70 agreement at the terminator zones from about 10 3 mbar to 10 -7 mbar (40 km to 150 km) for all latitude 71 bins (Figures 20 to 26) . The profiles at the night side, however, show some differences between VeRa 72 and SPICAV at pressure levels where the profiles overlap. The uncertainties of the SPICAV profiles are 73 significantly larger compared to VeRa. There is also a noticeable offset in the near-equatorial (0˚ to 30˚) 74 latitude bin (Figure 21) and the mid-latitude (30˚ to 50˚) bin (Figure 22). Similar differences are also seen 75 in the Figures 26 to 30 (altitude versus neutral number density) which implies a change in neutral scale 76 heights in the near-equatorial (0˚ -30˚) latitude bin (Figure 26) and the mid-latitude (30˚ -50˚) bin (Figure 77 27). 78

The density values from the drag experiments at 170 km to 200 km altitude appear to be in very good 79 agreement to an extrapolation of smoothed SOIR profiles in the high (70˚ -80˚) and polar (80˚ -90˚) 80 latitude bins (Figures 28b and29b). The pressure in this altitude range is extremely low and a variability 81 by a factor of two or more is seen in the density values from orbit to orbit. This is much lower than the 82 variability seen in the SOIR or SPICAV profiles in other latitude bins. The reason for these differences are 83 not yet understood. Some possible causes are discussed in Section 6.