
HAL Id: insu-01512563
https://insu.hal.science/insu-01512563

Submitted on 24 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty assessment of volumes of investigation to
enhance the vertical resolution of well-logs

Pedram Masoudi, Tahar Aïfa, Hossein Memarian, Behzad Tokhmechi

To cite this version:
Pedram Masoudi, Tahar Aïfa, Hossein Memarian, Behzad Tokhmechi. Uncertainty assessment of
volumes of investigation to enhance the vertical resolution of well-logs. Journal of Petroleum Science
and Engineering, 2017, 154, pp.252-276. �10.1016/j.petrol.2017.04.026�. �insu-01512563�

https://insu.hal.science/insu-01512563
https://hal.archives-ouvertes.fr


Author’s Accepted Manuscript

Uncertainty assessment of volumes of investigation
to enhance the vertical resolution of well-logs

Pedram Masoudi, Tahar Aïfa, Hossein Memarian,
Behzad Tokhmechi

PII: S0920-4105(16)31301-8
DOI: http://dx.doi.org/10.1016/j.petrol.2017.04.026
Reference: PETROL3966

To appear in: Journal of Petroleum Science and Engineering

Received date: 14 December 2016
Revised date: 13 April 2017
Accepted date: 19 April 2017

Cite this article as: Pedram Masoudi, Tahar Aïfa, Hossein Memarian and Behzad
Tokhmechi, Uncertainty assessment of volumes of investigation to enhance the
vertical resolution of well-logs, Journal of Petroleum Science and Engineering,
http://dx.doi.org/10.1016/j.petrol.2017.04.026

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/petrol

http://www.elsevier.com/locate/petrol
http://dx.doi.org/10.1016/j.petrol.2017.04.026
http://dx.doi.org/10.1016/j.petrol.2017.04.026


1 

 

Uncertainty assessment of volumes of investigation to enhance the 

vertical resolution of well-logs 

Pedram Masoudi
1
, Tahar Aïfa

1,*
, Hossein Memarian

2
, Behzad Tokhmechi

3 

1 Géosciences-Rennes, CNRS UMR6118, Université de Rennes 1, Bat.15, Campus de Beaulieu, 35042 

Rennes cedex, France 

2 School of Mining Eng., College of Eng., University of Tehran, North Kargar, 1431954378 Tehran, 

Iran 

3 Department of Petroleum Engineering, University of North Dakota, 243 Centennial Drive Stop 8154, 

Grand Forks, ND 58202-8154, USA 

*Corresponding author: tahar.aifa@univ-rennes1.fr 

Abstract 

Whereas well-log data are dense recordings, i.e. low sampling rate, there is a high depth 

uncertainty. The depth uncertainty originates from the volumetric nature of well-logging that each 

record belongs to a volume of investigation, around the logging tool. The developed algorithm in this 

work consists of two parts: (i) uncertainty assessment using Dempster-Shafer Theory (DST). The 

lower (upper) uncertainty boundary of each well-log is calculated by belief (plausibility) function. (ii) 

Four simulators are designed for scanning the uncertainty range in order to enhance the vertical 

resolution of well-logs (~60 cm) by generating simulated-logs (vertical resolution of ~15 cm). 

Shoulder-bed effect is reduced simultaneously with resolution improvement, resulting in more 

accurate thin-bed characterization. In order to validate functionality of the simulators, two error 

criteria are considered: ideal- and constraint-based errors. Ideal-based error is applicable in synthetic-

logs where the rock specifications are completely known through ideal-logs. However, constraint-

based error does not need ideal-log. It measures the error due to the volumetric nature of the well-logs, 

hence applicable in the real cases. The high correlation (R2=0.89) between both the errors indicates 

that the second criterion is precise for validation. Step-by-step procedure of the algorithm is shown in 

detail on synthetic and real data (a cored interval). Finally, DST-based algorithm is not only automated 

but also more accurate than geometry-based thin-bed characterization method. The error bars of 

characterizing gamma, density and neutron porosity of thin-beds are lower in DST-based algorithm by 

100%, 71% and 66%, respectively.  
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Abbreviations 

Bel, belief function; BOE, body of evidence; dist, distance; DST, Dempster-Shafer theory; DT, 

sonic log (slowness log); FE, focal element; FEr, focal element of recording; FEt, focal element of 

target; fr, fraction; GIS, geographic information system; GR, gamma ray log; id, ideal; int, 

interpolation; m, mass function; MSE, mean square error; NPHI, neutron porosity log; PDF, 

probability distribution function; Pls, plausibility function; pv, petrophysical value; rec, recording; 

RHOB, bulk density log; RMSE, root mean square error; sim, simulation; SE, shoulder-bed effect; SR, 

sampling rate; std, standard deviation; UNC, uncertainty; VR, vertical resolution; wl, well-log 
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1. Introduction 

Vertical resolution of logging tools is reported from some centimetres, e.g. Micro Spherically 

Focused Log (MSFL), to about 100 cm, e.g. Spontaneous Potential (SP). So characterizing geological 

beds thinner than the vertical resolution is imprecise even if the sampling rate is precise enough 

(McCall et al., 1987; Passey et al., 2006; Masoudi et al., 2017). Acquired petrophysical data belong to 

a three dimensional space namely volume of investigation. Projection of this 3D volume on the 1D 

well axis is called vertical resolution.  

Geological and technical aspects of well-logging were overwhelmed in the first publications 

concerning resolution enhancement. Only signal-processing theories, Weiner and Kalman filter, were 

developed for the purpose of increasing frequency of the well-logs (Foster et al., 1962; Bayless and 

Brigham, 1970). The other practical issue of signal processing algorithms is lack of knowledge about 

the theoretical parameters since there was no confidence about the used parameters (Lyle and 

Williams, 1987). 

Until 1987, the studies were totally theoretical, however practical improvement of vertical 

resolution of well-logs was basically done within the years 1989-1990, when industrial researchers of 
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Schlumberger, Halliburton and British Petroleum played part. They used geometrical and numerical 

analysis for developing easy-to-apply procedures to improve well-log resolution.  

The beds thinner than 2 feet (60.96 cm) cannot be properly evaluated by (far) density log. Based on 

geometrical reasoning, a wise correction to enhance density log for characterizing thin-beds (less than 

6 inches or 15.24 cm) is developed. The main idea was inferring the high-frequencies from short-

interval density measurements (applying a low-cut filter), and adding the remained high-frequencies to 

the long-interval density measurements (Flaum et al., 1989). Inspired from the former work, resolution 

of compensated neutron log is enhanced too (Galford et al., 1989). In addition, the contact of two 

layers with different porosities is identified with less uncertainty: ±2 inches (5.08 cm) rather than ±6 

inches (15.24 cm) (Gartner, 1989). In another similar work, it is assumed that the attenuation log of 

Electromagnetic Propagation Tool (EPT) and clay volume (derived from geochemical logging) are 

strongly correlated linearly. Hence, high-frequencies are inferred from high-resolution EPT log, and 

coherent small changes for geochemical logs are re-created (Flaum, 1990). 

True understanding of mechanism and spatial response of well-logs is important in a successful 

well-log interpretation. This necessity becomes more rigorous in heterogeneous media. Monte Carlo 

simulation is used to study spatial response (mostly horizontal resolution) of density log. It is found 

that in carbonate formations, 75% of density log response captures the first 8 cm from the borehole 

wall and 90% captures till 12 cm (Petler, 1990). 

Based on the previously developed logical equation for vertical resolution correction (Flaum et al., 

1989), a sensitivity analysis is addressed in a three dimensional space, using Monte Carlo simulation. 

Using density and neutron logs in high-angle (near horizontal) wells, the uncertainty of identifying 

depth of bed boundaries is about ±2.5 inches (6.35 cm). This uncertainty rises under shoulder-bed 

effect to about ±10 inches (25.4 cm) and ±15 inches (38.1 cm) by density and neutron logs, 

respectively. 

Shoulder-bed effect is attenuation of a thin-bed trace on a well-log, when the thin-bed is 

sandwiched between two thicker beds (RP, 2007; Torres-Verdín et al., 2009; Sanchez Ramirez et al., 
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2010). This uncertainty in highly deviated wells is justifiable by the fact that neutron and density tools 

are designed and calibrated for vertical wells; so, standard interpretations are incorrect (Mendoza et 

al., 2006).  

Within the domain of subjective probability, Dempster-Shafer Theory (DST) is introduced as a 

generalization of Bayesian theory that provides upper and lower probability values, namely 

plausibility and belief functions, respectively (Dempster, 1967, 1968). Mathematical basis of this 

theory is redeveloped and well-explained (Shafer, 1976, 1990), so became well-known as the evidence 

theory of Dempster-Shafer. 

Application of DST in geosciences is mostly developed in Geographic Information System (GIS) 

(Feizizadeh et al., 2014; Saeidi et al., 2014; Neshat and Pradhan, 2015), whereas it is very limited in 

the petroleum geology. The first DST application in the petroleum industry was published in 1994 

(Aminzadeh, 1994), meanwhile the next articles were published ten years after (Masoudi et al., 2014; 

Arab-Amiri et al., 2015a,b). In the mentioned articles, the DST was used at the level of decision fusion 

(using Dempster rule of combination), while in the current article, an application of DST is developed 

for pre-processing well-logs (using the basic concepts of evidence theory). 

The essential publication in resolution enhancement, conducted by Flaum et al. (1989), requires (i) 

dual spacing measurements, i.e. one transmitter and two receivers and (ii) correlation assumption 

between dual spacing logs or sometimes between different well-logs. Here, an uncertainty-based 

methodology is developed to provide a mapping from the domain of vertical resolution of recordings 

(well-logs) to vertical resolution of target, which is 4 to 6 times more precise. The methodology is 

based on DST, and integrates multi-evidences for new inferences regarding resolution enhancement 

(Dempster, 1967, 1968; Shafer, 1976, 1990). 

Application of DST-based algorithm is checked on synthetic and real datasets. Synthetic dataset is 

important to check and validate the algorithm under controlled situations. Ideal-based error is a 

reference for validating constraint-based error and DST-based algorithm by means of synthetic data. 

Constraint-based error is designed to measure the error of the algorithm in real (non-ideal) well-logs. It 
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is also used as a criterion for prioritizing and selecting the best realization, i.e. output of the simulation 

process, in the real dataset. 

2. Datasets 

2.1 Basic definitions 

In this article, there are four key terms to introduce the datasets. “Well-log” and “real-log” are used 

to describe real data. In the synthetic data, “synthetic-log” and “ideal-log” are used. Synthetic-log is 

equivalent to well-log, and ideal-log is equivalent to real-log. 

Well-log records intrinsic or induced properties of the rocks and their fluids (Gluyas and 

Swarbrick, 2009). Such records, acquired through a well, are either one dimensional, like gamma ray 

log, or two dimensional as image logs. Well-log is also known as borehole log since data are captured 

through the wellbore.  

Real-log reflects real properties of the well-bore. Well-logs are imprecise (apparent) in reflecting 

real properties, especially in thin-bed conditions because well-logs are convolved data (Gartner, 1989). 

The convolution is done over the vertical resolution of the logging tool. When the vertical resolution 

approaches zero, the well-log converges the real-log. 

Ideal-log is equivalent to “real-log” in synthetic datasets. It is defined by the user, while real-log 

represents rock nature. Finding real-log is an open problem in the well-logging, while ideal-log is 

definite. So, useful in validation. 

Synthetic-log is convolution of ideal-log over a vertical resolution. It resembles well-log in real 

data. 

2.2 Synthetic cases 

The first stage in generating a synthetic-log is defining specifications of its ideal-log (Table 1). 

Vertical resolution is zero in ideal-logs, i.e. no depth uncertainty.  

In Table 1, each case represents a petrophysical change in presence of a thin-bed (cases 1-5 and 7) 

or a single fracture (case 6). Synthetic-log generator for thin-beds (cases 1-5 and 7) convolves the 
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ideal-log (Masoudi et al., 2017). For the case 6, simulator generates a synthetic-log based on 

geological specifications of a single fracture. It calculates the effect of a predetermined fracture on the 

well-log (Mazaheri et al., 2015).  

2.3 Real data 

Well-log data (GR, RHOB, NPHI and DT) of five exploratory wells are used to check the 

developed methodology. The wells are located on the axis of an anticlinal oil-field in the Abadan 

Plain, SW Iran (Figure 1a). The well-logs are limited to the interval of Sarvak Formation (Figure 1b), 

a homoclinical carbonate ramp, deposited from Albian to Turonian (Ghazban, 2009). In homoclinical 

carbonate ramps, there is a slight seabed dip toward the sea. This term belongs to a topological 

classification of carbonate ramps (Read, 1985). Vertical resolution of well-logs (Table 2) within 

Sarvak interval is previously inferred from geostatistical variography (Masoudi et al., 2017). 

2.3.1 Volumetric constraint of well-logs 

Although a well-log value is a recording over a volume of investigation, it is assigned to a single 

depth (Figure 2a). In fact, small-dimension heterogeneities, i.e. variations smaller than the volume of 

investigation, are ignored by the logs. In mathematical language, the recorded value is the integral of 

petrophysical values over geological beds (Equation 1). The equivalent discrete form (Equation 2) is 

presented on Figure 2b. 

Note that the depth of investigation is out of the scope of this paper, and it is only sketched (Figure 

2) to illustrate the mechanism of logging. The focus of the figure and the article is on the vertical 

resolution. The recorded well-log (black circles) with the vertical resolution of    , is replaced by 

simulated-log (white circles) with the vertical resolution of    . The superscripts r and t stand for 

recording and target, respectively. 

  ( )  ∫   ( )   (   )    
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where   ( ) is the well-log value at depth  ,   ( ) is real petrophysical value of the formation at 

depth  .   scans a focal element of recording (vertical resolution) around the depth  . Simulated-log, 

   ( ), is discrete equivalent of   ( ). The weight,  (   ), is for increasing the relative impact of 

petrophysical values, closer to the centre of volume of investigation.     stands for focal element of 

recording, and is equivalent to the vertical resolution of tool.    stands for sampling rate, distance 

between two adjacent records. 

In the Equations 1 and 2,   ( ) is a known measured value,     and    are known specifications 

of logging tool. The weight  (   ) is a linear function of depth. So, the only unknown function is 

  ( ) or    ( ), could be determined by a back propagation procedure. The concept of “volumetric 

constraint of well-logs” is an important technical fact that is used here not only in an optimization 

process but also for validation and choosing the best realization. 

3. Dempster-Shafer theory 

DST enables a mathematical tool for inferring and decision-making in uncertain situations. The 

most basic difference between the Bayesian theory of probability and DST is that neither Probability 

Distribution Function (PDF) nor membership function are needed in DST. The first stage in applying 

DST is defining a Body Of Evidence (BOE) that is a basic structure for calculations. BOE consists of 

two parts: (i) focal elements: some subsets, containing possible happenings; (ii) mass function: a 

measure for the happenings, which is equivalent to the probability function. Each mass value is 

assigned to a focal element, and can move freely inside it, while satisfying imposed limitations of the 

problem. The displacing of mass values creates belief (plausibility) function which is the minimum 

(maximum) possible mass in a focal element. As an example, mass of focal element “A” can move 

freely within it (Figure 3a); while probability of “A” is fixed according to a predefined triangular PDF 

(Figure 3b). 
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3.1 Body of Evidences 

3.1.1 Focal elements 

In a series of observations (or measurements, evaluations, etc.), each evidence is assigned to a 

subset, called focal element. As this name suggests, the available evidence focuses on focal elements 

(Klir and Yuan, 1995). Here, focal elements are defined as depth intervals, i.e. focal elements are one 

dimensional. We have defined two types of focal elements: (i) recording (r) that represents vertical 

resolution of the logging tool, and (ii) target (t) which is the target resolution, defined by user. Figure 4 

shows focal elements of recording and target when vertical resolution is four times larger than 

sampling rate. In fact, the aim is to improve the vertical resolution of well-logs from the focal element 

of recording (   ) to a focal element of target (   ). 

3.1.2 Mass function of focal element of recording 

Corresponding to each    , a mass value is defined, which is free to move inside it. In addition to 

the BOE, redistribution of the mass has to obey the constraints of the problem, here geological and 

technical conditions. Mass function is always non-negative, and the summation of mass values over all 

the focal elements should be one (Equation 3) (Liu and Yager, 2008).  The symbol “ ” means that the 

equation is defined by user, and it is not derived from calculations. 

∑  (   
 )

       
 

   (3) 

Petrophysical well-logging is a volumetric measurement, i.e. assigns a recorded value to a volume 

of investigation. So, these recordings satisfy the requirements for designing a BOE: log values as mass 

functions, corresponding to the volume of investigation (focal elements). Hence, uncertainty of well-

logs could be modelled by DST, and the ignored geological heterogeneity could be rebuilt. In order to 

satisfy Equation 3, for each log, mass function is defined as normalized value of well-log. Modelling 

unpredictable situations is not the concern of this study, therefore the mass function of null set ( ) 

does not take part in the calculations, i.e.  ( )   . The null function in DST corresponds to a 

situation that the defined BOE is not valid; e.g. well-logging under abnormal situations: high-noise, 

logging tool does not work properly, turbulences, etc. 
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3.1.3 Theoretical belief and plausibility functions for focal elements of target 

As illustrated in Figure 4, the recorded well-log is acquired over four subset focal elements of 

target. The petrophysical value of each focal element of target affects the four adjacent well-log 

recordings. In the language of BOE, mass values of the four adjacent focal elements of recording 

could freely pass through a common focal element of target (    
  in Figure 4). DST-based structure 

helps us to find lower (belief) and upper (plausibility) probabilities for each focal element of target 

(Equations 4 and 5). Belief (plausibility) function shows the least necessary (most possible) mass 

value within the focal element of target (Liu and Yager, 2008).  

   (   
 )  ∑  (   

 )

   
     

   

 
(4) 

   (   
 )  ∑  (   

 )

   
     

 

 
(5) 

3.2 Compatibility of DST with well-logging  

3.2.1 Main uncertainty assessment theories  

There are three major theories for decision-making in uncertain situations: Bayesian theory of 

conditional probability (Bayes and Price, 1763), DST and possibility theory of fuzzy logic (Zadeh, 

1999). Comparative studies could be done theoretically and fundamentally (Klir and Yuan, 1995; 

Zadeh, 1999), or based on application check and outcomes (Challa and Koks, 2004; Tangestani, 

2009). In the next part, applicability of probability and possibility theories is shown through two 

examples. Then, for the case of volumes of investigation of well-logs, the importance of DST, and its 

inconsistency with the other two theories is discussed. 

3.2.2 Domains of uncertainty theories  

The analysis of a dice game, using probability theory, leads to a PDF with the probability of  
 

 
  for 

each of the six sides. In this example, the BOE consists of six focal elements, each containing only one 

number (one to six). The focal elements do not have any intersection with each other, e.g. when the 

dice shows number four, it cannot hold any other value simultaneously. So, the theory of probability is 

compatible with dice game. 



10 

 

In the other example, consider a person who may eat some eggs (e.g. one to six eggs) at breakfast. 

Probability theory could be used to predict how many eggs he eats every day. So, due to statistics (a 

priori knowledge), he mostly eats two or three eggs per day, rarely zero, one or four, and never five or 

six eggs. Thus, the result is a PDF with a value of zero for five and six eggs, and a height at two and 

three eggs. 

Approaching this problem by the possibility theory means that possibility of eating four eggs has 

the possibility of eating three, two or one egg(s). In the language of the set theory, in each pair of 

subsets, one is subset of the other. So, the focal elements are eccentric and the result will be 

cumulative (a property of the fuzzy measure) with the highest possibility for eating one egg, and the 

lowest possibility for eating five eggs. 

Volume of investigation does not have probabilistic nature, so PDF, i.e. the theory of probability, is 

not an ideal theory for modelling them. Instead, volume of investigation has a membership nature, 

because it shows belongness of a volume to a record. So, fuzzy membership function, i.e. the theory of 

possibility, or focal element, i.e. DST, could be used. 

3.2.3 Consistency and configuration of focal elements in uncertainty theories  

It is shown by the examples that the probability (possibility) theory is applicable in separated 

(eccentric) focal elements. In the DST, the property of freely movement of the mass function within 

focal elements has made it powerful in assessing all BOEs (separated, eccentric, etc.). So, wherever 

possibility and probability theories work, DST works too (Table 3).  

When the theories of probability (possibility) and DST are both valid, it is called that they are 

consistent.  Probability and possibility theories are never consistent with each other, because they are 

two end-members of configuration of focal elements. To verify the consistency, either focal elements 

or consistency conditions should be checked. The simplest consistency condition (Relation 6) is the 

probability value between the belief and plausibility values (Klir and Yuan, 1995): 

   (   )    (   )     (   ) (6) 
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Defined     (Figure 4) are comparable with the bottom-most case in Table 3: the focal elements 

are neither separated nor eccentric, but they have intersected intervals. So, analytically, neither 

probability nor possibility theories are expected to be helpful in assessing uncertainty of the well-logs. 

The theory of probability does not provide any reasoning for the intersecting focal elements like in 

well-logging. On the other hand, Relation 6 is not always valid, i.e. the output of the probability 

measure (averaging function) is not always between belief and plausibility values (Figure 5). The 

incompatibility is due to BOE of well-logs and the axiomatic structure. The conclusion of this part is 

to emphasize on the compatibility of DST with the focal elements in volumetric well-log data though 

DST is not still well-developed in well-log interpretations. 

4. The proposed methodology 

4.1 Part one: DST-based uncertainty range 

4.1.1 Geological constraints as an axiomatic structure 

Whereas Equations 4 and 5 are valuable theoretically for defining belief and plausibility, they are 

not practical because the uncertainty range will be too large due to: (i) belief function that is absolutely 

zero since the condition    
     

  of Equation 5 is never valid in the defined BOE; (ii) plausibility 

which is always a too big value, i.e. summation of adjacent recordings. 

An axiomatic structure is then designed to impose geological facts and DST-based constraints on 

belief and plausibility functions. Applying three axioms results in a reasonable uncertainty range: (i) 

volumetric constraint of the well-logs: for each horizon, belief (plausibility) is the minimum 

(maximum) well-log value within the interval of a vertical resolution, centred at the depth of 

recording. It should be taken into account that we cannot generate or remove the mass, but the mass 

can move within its corresponding focal element of recording. (ii) No uncertainty in homogenous 

conditions: if the well-log remains constant within an interval of at least one vertical resolution, i.e. a 

focal element of record, there would be no uncertainty range in the middle of the horizon. Thus belief, 

plausibility and mass functions will be equal. (iii) Shoulder-bed effect: at peaks and troughs a 

destructive effect occurs which have to be compensated. So, at peaks (troughs), belief (plausibility) 

has to be equal to the mass function (Figure 5). 
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4.1.2 Practical functions of belief and plausibility  

Based on the axiomatic structure and defined mass function on the    , belief and plausibility for 

    is formulated (Relations 7 and 8): 
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 (8) 

If  (   
 ) is neither at peak nor at trough, then the minimum (maximum) of mass functions of 

intersecting    
  is defined as the belief (plausibility) value. If  (   

 ) is at the peak (trough), the 

belief (plausibility) is defined to be the exact amount of the well-log, and the plausibility (belief) will 

be the maximum (minimum) of intersecting    
  plus (minus) an epsilon. The epsilon is a positive 

value to compensate the shoulder-bed effect, and will be optimized in the next section (Figure 5). 

Finally, both belief and plausibility values are rescaled to well-log range. From the application 

viewpoint, normalization (Equation 3) and rescaling could be ignored, since here the goal is not multi-

sensory fusion. 

4.1.3 Compensating shoulder-bed effect by the epsilon 

For compensating shoulder-bed effect, the epsilon ( ) is defined by comparing the well-log to its 

weighted averaging filter. A well-log itself is a weighted averaging operator over petrophysical 

properties of a volume of investigation. So, we applied the same smoothing on the well-log. Then, the 

difference between the original well-log and its smoothed curve is considered as   to compensate the 

shoulder-bed effect at peaks and troughs (Figure 5). In the validation part, it is shown that   cannot 

fully compensate the shoulder effect, since the well-log is much smoothed, and a multiplier, named 

factor of Shoulder-bed Effect (SE) is necessary for calibration. The concept of   is comparable with 

resolution enhancement equation of Flaum et al. (1989). 
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4.2 Part two: Simulators  

Since well-log is a volumetric data acquisition, a recording is not exactly the same value as the real 

petrophysical value of the measuring point. The uncertainty range helps us to have a range interval in 

which the real petrophysical value (real-log) probably occurs. In this part, four DST-based simulators 

are developed in order to enhance the vertical resolution of the original well-log. In fact, simulated-

logs are corrected well-logs due to the vertical resolution. 

4.2.1 Random simulator 

This is the simplest designed simulator that only produces uniform random values between belief 

and plausibility. Heterogeneity is the highest in the uniform distribution, so the simulator can generate 

the most heterogeneous realizations, which is usually desired in unknown geological conditions. In 

fact, this is a base simulator, and it is expected that other simulators provide more accurate results in 

general. 

4.2.2 Random-optimization simulator 

Second simulator starts by random simulation. But a sequential optimization is going to be applied 

on the generated random values, iteratively. The optimization is based on the volumetric constraint of 

well-logs. It means that each record should be a weighted average of simulated values within an 

interval of a vertical resolution (Equation 9 and Figure 6). Within the interval, distance is defined as 

extraction of well-log from weighted average of the corresponding simulations (Equation 10 and 

Figure 6). 

   ( )  ∑ *   ( )   (    ⌊
     

 
⌋   )+

  ⌊
     

 
⌋

    ⌊
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 (9) 

    ( )  |  ( )     ( )| (10) 

where    ( ) is weighted average of simulated-log,    ( ), over a vertical resolution. Vertical 

resolutions of    ( ) and    ( ) correspond to    
  and    

 , respectively.     ( ) is distance of the 

well-log,   ( ), from    ( ), both have the same vertical resolution, so they are comparable.    ( ), 
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   ( ) and     ( ) are functions of depth.       is number of adjacent simulations, within a vertical 

resolution, e.g.         in Figure 6. 

Note that the methodology could be applied to all the possible combinations of sampling rate and 

vertical resolution if an appropriate       is found.   is a linear weight for prioritizing closer 

simulations to recording depth. To calculate the weights, the natural values 1, 2, 3, etc. are primarily 

attributed to the parameter  , in function of distance. Then, the weights are normalized by the 

summation of  . 

After a random generation, the corresponding distance of the first       simulations is calculated 

(Equation 10). For simplicity, and to avoid re-modification of the former optimized points, the 

distance is compensated only by one simulation point, which is the closest to the well-log record, e.g. 

S3 in Figure 6. The optimization continues through the well till the end of the well-log. After each 

round of simulation, summation of new distances is stored as the error of modified simulated-log. 

Modification could be iterated up to convergence of error plot. The convergence cut-off is a stop 

condition of the optimization process. It is recommended to set the convergence cut-off of 0.001 for 

the summation of all distances. The stages of the optimization algorithm are introduced in the section 

“4.4 The algorithm/ v.b”. 

4.2.3 Recursive simulator 

This simulator consists of two stages. In the first stage, uniform random values between belief and 

plausibility will be generated for the first (       ) data. In the second stage, the simulated-log for 

the remaining depths will be calculated recursively. The recursive Equation 11 is derived from the 

volumetric constraint of well-logs (Equation 9). 

   (  ⌊
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4.2.4 Recursive-optimization simulator 

The final simulator consists of three stages. The two first stages of recursive simulator, followed by 

the optimization process of random-optimization simulator. The interrelations and brief of the stages 

of the four developed simulators are provided in Figure 7a. Two of the simulators (random and 

random-optimization) start with free random generation, and two others (recursive and recursive-

optimization) start with constraint-based random generation. 

4.3 Validation criteria 

Different realizations could be generated by the introduced simulators. It is necessary to have a 

measure to validate and prioritize realizations, and finally choose the most accurate realization. An 

ideal criterion is to compare the simulated-log with the ideal-log (Equation 12). 

      ∑|    ( )        ( )|

   

 (12) 

where     ( ) and       ( ) are ideal- and simulated-log, respectively. The subscript of “int” 

shows that the simulated-log is interpolated at the depths of the ideal-log. Both are functions of depth 

but due to depth mismatch (sometimes) between simulated- and ideal-log, the simulations have to be 

interpolated to the exact depths of the ideal-log.       stands for total ideal-based error. 

Evidently in subsurface geology, we do not have ideal-logs, so Equation 12 is practical only in 

synthetic cases. In real data, instead of ideal error, summation of distances (Equation 10) is used as a 

validation criterion. Since the distance is based on the volumetric constraint of well-logs, the criterion 

is named “constraint-based error”. Both ideal- and constraint-based errors are applied to synthetic data 

and it is shown that they are highly correlated (R2=0.89, Figure 11). The advantages of constraint-

based error are: (i) providing error for each horizon (error profile), (ii) calculating total error (integral 

of error profile), (iii) validation only by the well-log, and no need to use other measurements like core, 

well-tests or ideal-log, and (iv) highly correlated with ideal-based error. 

4.4 The algorithm 

The algorithm consists of two parts: (i) DST uncertainty assessment and (ii) simulation (dashed 

rectangles, Figure 7b). In the first part, the uncertainty range of each record is defined and in the 
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second part, simulation is done within the uncertainty range. The details of stages of algorithm are 

provided below, and the background of each part is previously discussed. 

i. Input: the algorithm assesses well-logs individually, so one well-log has to be selected to apply the 

algorithm to it. The well-logs without volume of investigation, like geochemical logs or calliper 

log, could not be chosen. Both synthetic-log and well-logs could be used for this algorithm. 

ii. Vertical resolution: corresponding to the vertical dimension of volume of investigation of the 

chosen well-log, the vertical resolution should be defined. The catalogue of the logging instrument 

could be used for this purpose. In case no catalogue is available, vertical resolution could be 

approximated by a measure of continuity. To find out the number of adjacent records correlated 

with each other, three steps are addressed: (a) experimental variography analysis, (b) selection of 

its linear part, and (c) considering vertical resolution as its length. 

iii. Mass function: spatial domain of each well-log record is considered as a linear focal element, 

called focal element of recording (   ). The recorded well-log value is considered as the mass 

value within its corresponding    . Theoretically, the mass value has to be normalized in order to 

satisfy Equation 3. However, since in this algorithm there is no multi-sensory fusion, the 

normalization is not necessary. The     and its mass function construct a BOE, which should be 

honoured in the next step. 

iv. Belief and plausibility functions: goal of DST part of the algorithm is to provide an evidence-

based reasoning for intersection of the adjacent    . Based on ratio of vertical resolution to 

sampling rate, number of adjacent intersecting records (Figure 4) is calculated. The intersecting 

interval is called focal element of target (   ). The mass functions, which move within different 

   , provides a range of mass values for    . Mass value of     cannot exceed maximum mass 

value of intersecting     (Figure 4). Therefore, for honouring the records (which are our 

evidences) the belief (plausibility) is limited to the minimum (maximum) of intersecting mass 

functions (Relations 7 and 8). Belief and plausibility functions are limits of the created uncertainty 

range. This process contains two steps: (a)       ⌊
  

  
⌋, and (b) calculating belief and plausibility 

functions. 
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v. Simulation: simulation could be done by one of four designed simulators (Figure 7a).The 

simulator could be chosen according to a validation criterion (Equation 10 or 12). All the 

simulators start by a random generation stage. In recursive simulator, random generation is limited 

to a few number of focal elements. However, in random simulator, all the elements are guessed 

randomly. If the designed optimization process is applied to the outputs of random or recursive 

simulators, the errors will converge.  

(a) If recursive simulator is used, Equation 11 will be used for calculating simulated-log for the 

rest of the depths. 

(b) If the optimization process is used: 

(b1) The distance (Equation 10) is computed for the ith well-log data. 

(b2) The distance is compensated by the ith simulated-log data. 

(b3) i=i+1, then go to the line (b). 

vi. Validation: the validation is done either regarding ideal-log (ideal-based error, Equation 12) or 

well-log (constraint-based error, summation of Equation 10). Ideal-based error is only applicable in 

synthetic cases, and constraint-based error could be calculated for both synthetic and real data. In a 

homogenous formation, the order of the errors is like in Figure 8. This general order could be 

violated in heterogeneous formations. So, precision of all the simulators have to be always checked 

to find the most accurate simulated-log. 

vii. Simulated-log: the simulated-log with the least error is selected as an alternative for the original 

well-log. The advantage of the simulated-log is that its vertical resolution is equal to the     which 

is much more accurate than the original well-log resolution. 

5. Application check on synthetic cases 

Worthy to remind that the aim of the developed methodology is to get closer to a real-log (or an 

ideal-log), corresponding to the well-log (or the synthetic-log). Four simulated-logs can be generated 

by the designed simulators. All the simulators are applied on all the cases (Table 1). The predefined 

ideal-log (stars) and corresponding synthetic-log (black dots) of case 1 are presented in Figure 8a, and 
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the other cases are interpreted in the Appendix A. To calculate ideal-based error, the realizations are 

first interpolated to the depths of the predefined ideal-log (if necessary). Then, the mismatch of the 

realization with the ideal-log is calculated for each depth, called error profile (Figure 8b). As indicated 

in Figure 8c, the summation of the error profile through the well-log is named total ideal-error. 

Random simulator never satisfies the goal. In this case, it has neither recreated the shape of the 

ideal-log, nor its real value. Comparing to other simulators, it has the highest profile and total errors 

(Figure 8c). The best realization of random-optimization simulator is exactly the realization of 

recursive-optimization simulator. Both random-optimization and recursive-optimization simulators 

provided the same result for 48 iterations out of 50. They pass through the same optimization 

procedure (Figure 9), so convergence of the realizations is justifiable. The same reasoning is valid for 

the other cases (Appendix A). 

5.1 Discussion on results of the synthetic cases 

Since none of the simulators were able in detecting the single fracture of case 6, it is exempted 

from further evaluation. Both ideal- and constraint-based errors agree that recursive-optimization 

simulator is the most accurate in cases 1, 3 and 5 (Table 4). In case 2, random-optimization simulator 

is the best. However recursive-optimization simulator is a competing simulator, and it is only 0.6% 

less accurate than random-optimization simulator. The same for case 7. For case 4, constraint-based 

error votes for recursive-optimization simulator though ideal-based error selects random simulator. 

The descriptions are summarized in Figure 10. From the viewpoint of ideal-based error, in 50% 

(8%+42%) of the cases, recursive-optimization simulator provides the best output (Figure 10). 

Random-optimization simulator is the most accurate simulator only in 33% (8%+25%) of the cases. 

On the other hand, from the standpoint of constraint-based error, recursive-optimization simulator is 

also the best, since it is valid in 67% (8%+42%+17%) of the cases. 

There is another advantage for recursive-optimization simulator: optimization starts from a lower 

error value, compared to random-optimization simulator, subsequently, convergence is reached within 

only 6 epochs (Figure 9). Therefore, less time is required for recursive-optimization simulator to reach 

a local minimum point. In the synthetic cases, recursive-optimization simulator is the best. Recursive 
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simulator was never successful, compared to the others; but random simulator provides the best result 

only in case 4 whereas the other simulators are not satisfactory (Table 4 and Figure 10). 

5.2 Validating constraint-based error by the synthetic cases 

It is impossible to calculate ideal-based error in the well-logs, because it needs an ideal-log that 

does not exist in the real data. Instead, it is suggested to use developed constraint-based error; i.e. 

summation of distances in Equation 10. To verify constraint-based error, the synthetic data are used. 

The 24 pairs of errors (Table 4) are plotted (Figure 11). Cross plot of errors shows high positive 

correlation between the two errors (R2=0.89), however constraint-based error is an overestimation of 

ideal-based error. Therefore, the behaviours of both the errors are similar, and constraint-based error 

could be used as a validation criterion in real datasets. 

6. Application to the real data  

The four developed simulators are applied on the four well-logs of the five wells under study. Due 

to total constraint-based error, random-optimization simulator is the most accurate simulator in all the 

situations (Table 5). However, the error of recursive-optimization simulator is not much higher than 

that of random-optimization simulator. This may be interpreted such as random-optimization simulator 

searches for the minimum points more effectively, hence it can get closer to the global optimum point 

but recursive-optimization method does not check the variety of possibilities for each depth. Further 

studies are applied on random-optimization simulator. 

6.1 Optimizing factor of Shoulder-bed effect 

The factor of Shoulder-bed Effect (SE) is the only parameter in the simulators that requires manual 

optimization. SE is checked from 2 to 7 for random-optimization simulator (Table 6). The optimum 

SE for GR and DT is 3, but for GR in the second well the optimum SE is 4. For RHOB and NPHI, the 

optimum SE is between 5 and 7. 

6.2 Results of resolution improvement of well-logs 

To apply random-optimization simulator to well-logs, the optimized parameters (Table 7) are used. 

Here, the results of resolution improvement are illustrated for the interval of 3157-3159 m, well#1 

(Figure 12a). Each track in Figure 12 contains: (i) the original well-log (solid black line) with the 
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vertical resolution of 61-91 cm (Table 2); (ii) the uncertainty range (blue zone) which is between the 

belief and plausibility; (iii) ten realizations from random-optimization simulator (dots), and (iv) the 

best one is marked by dashed line (simulated-log). The vertical resolution of the realizations is 15 cm 

(    in Figure 2b).  

The uncertainty range honours the predefined axiomatic structure (Relations 7 and 8). (i) The lower 

(upper) boundary is the minimum (maximum) value over the       neighbouring values. (ii) The 

uncertainty in the top half metre (3157-3157.5 m) is about zero due to constant value of the original 

well-log for some neighbouring records. (iii) The SE is compensated (to some degree) by the sparks at 

the peaks and troughs; i.e. small variations are amplified (Figure 12a). 

All the well-logs show less uncertainty range in the half top metre (3157-3157.5 m, Figure 12a), 

compared to the other parts. It means that the top part is more homogeneous, while the heterogeneity 

arises downward. Therefore, any interpretation (estimation of porosity, permeability, etc.) within the 

homogeneous part is more certain than the heterogeneous part. In fact, heterogeneity of rocks is 

quantified by DST uncertainty range. 

In Figure 12b, the available core box is provided to evaluate core porosity vs. NPHI and thin-bed 

thickness. The target is here to characterize a black porous thin-bed, ~2802.9 m. GR shows a finning 

(deepening) upward pattern, and there is no sign of a thin-bed. RHOB shows a trough, however there 

is a depth mismatch. NPHI shows a peak, with the plausibility of just below 8%, which is comparable 

with the core porosity, 8.4%, of the black thin-bed. However, the best simulated NPHI (dashed-line) is 

about 5%. Hence, NPHI is corrected from 3.8% to about 5%, even if the plausibility is very close to 

the core porosity. At about the same depth, DT shows a positive anomaly too. 

Therefore, if a thin-bed (>15 cm) shows a petrophysical anomaly, DST-based method identifies it. 

When comparing NPHI and core porosity (Figure 12b), the vertical resolution is improved in the 

corrected well-log (dashed-line). However, depth mismatch (half of SR: ~7.5 cm) and lack of 

thickness estimation are its weaknesses. The outputs of the other wells are provided in Appendix B. 
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7. Discussions 

7.1 The role of lithological heterogeneities in interpretations 

If there is a lithological change while no petrophysical variation, neither well-logging nor the 

developed method are sensitive to this change. The well-logs are sensitive to the petrophysical 

variations which occur in the dimension of more than a vertical resolution. However, the developed 

methodology reacts to smaller dimension variations (~15 cm), showing an increase in the uncertainty 

range. Higher the heterogeneity, wider the uncertainty range. Heterogeneities, originated from the 

small dimensions, less than 15 cm, will not affect the uncertainty range. Hence, lithological variations 

which result in petrophysical variations with the dimension of more than 15 cm, affect the uncertainty 

range. 

7.2 Comparing DST- and geometry-based algorithms in thin-bed characterization 

A thin-bed at depth of 3158.19 m within well #1 is characterized by two developed thin-bed 

characterization algorithms: geometry-based (Masoudi et al., 2017) and DST-based algorithms (Table 

8). Noteworthy that when the uncertainty measures (under the column of DST-based algorithm) are 

smaller than the Root Mean Square Error (RMSE) (under the column of geometry-based algorithm), it 

means that DST-based algorithm is more precise than geometry-based algorithm. On the other hand, if 

the RMSE is smaller than the uncertainty measures, it does not necessarily mean that geometry-based 

algorithm is more precise than DST-based algorithm. 

The process of Relations 13 to 16 proves mathematically that the RMSE is smaller than the 

uncertainty range. There are n estimations,   , corresponding to the true values,   . The uncertainty 

range (right-hand in Relation 13) is always larger than the error (left-hand) because the uncertainty 

range considers all the possible situations; i.e. the maximum possible distance (error) from the real 

value but the RMSE is error of the most probable case. When          , it is evident that 

Relation 16 is true. But in case          , direction of the inequality changes twice. The first 

change occurs when squaring (generating Relation 14 from Relation 13), because both parts are 

considered as positive values, smaller than one. The second direction change happens when rooting 

both sides (Relation 16). The reason for the second change is that when          , necessarily 
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error, square of errors and Mean Square Error (MSE) are smaller than one too. So, rooting results in 

change of direction of inequality in Relation 16. 
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In overall, comparison of the errors of the both developed algorithms (Table 8) shows that DST-

based algorithm is more accurate than geometry-based algorithm in well-log value correction. But 

DST-based algorithm is not able in estimating thickness of thin-beds. Whereas geometry-based 

algorithm has the advantage of thickness modelling. 

7.3 Advantages of the proposed algorithm 

The principle goal of the proposed algorithm is “uncertainty assessment of the well-logs”. Two 

uncertainty ranges are created at each depth. The broader range, DST range, is provided by belief and 

plausibility functions. A usually narrower range, which is simulation range, is created by realizations 

within DST range. The simulation range is much affected from nature of the designed simulator, and 

could vary, using other simulators. For instance, simulation range for random simulator is exactly 

equal to DST range, but narrower for the other simulators. At depth of about 3157.2 m in DT well-log 

(Figure 12a), both the uncertainty ranges are narrow. At the same depth, the uncertainty ranges of 
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other well-logs are relatively narrow too, so interpretations at this interval are relatively certain, 

because this interval is relatively homogenous. 

Another advantage is reduction of the focal element (        ). It means that an alternative log 

with a smaller vertical resolution can be regenerated: the dashed-line (Figure 12) is a regeneration 

from the original well-log after scanning within DST range of uncertainty. By scanning, different 

petrophysical values are checked and the best one, according to the volumetric constraint of well-logs, 

is selected. Regenerated log contains higher frequencies. The recreated frequencies are one realization 

of many possible high-frequency variations which honour the volumetric nature of well-logs. 

In addition, the proposed algorithm is automated and applicable by usual computers; i.e. it does not 

require specific hardware facilities. Compared to geometry-based algorithm, DST-based algorithm 

provides more precise petrophysical values, while it cannot estimate thickness of thin-beds. As an 

example, for thin-bed characterization (Table 8), (i) RMSE of GR in geometry-based algorithm, i.e. 

±6.50, is reduced to ±0, under the column of simulator uncertainty; i.e. 100% error reduction; (ii) 

RMSE of RHOB, ±0.031, is reduced to ±0.028, i.e. 71% reduction in the uncertainty of the output. (iii) 

Similarly, error of NPHI is reduced by 66%. 

7.4 Uncertainty conversion by DST 

By means of DST, the overall uncertainty is not reduced. In fact, the location uncertainty is 

converted into a value uncertainty. Heisenberg principle of uncertainty (Busch et al., 2007) is still 

valid in this context. So, multiplication of value uncertainty by location uncertainty is always higher 

than a certain value of delta (Relation 17). 

                       (17) 

8. Conclusions  

Volumetric nature of the well-logs imposes resolution limitation on the recordings, i.e. the 

measurements are not well-representative of high-frequency petrophysical variations, and only provide 

an average value over the interval of measurement (between the transmitter and receivers). For coping 

with this resolution problem, a DST-based algorithm (with four simulators) is devised to modify logs 
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and improving the vertical resolution (Figure 7b). By comparing the consistency of the theories of 

probability, possibility and DST, it is analytically proved that DST is a compatible theory for 

uncertainty assessment of well-logs. 

The application of the proposed DST-based algorithm was checked on synthetic and real data. 

Recursive-optimization simulator was the best simulator for uncertainty assessment in the synthetic 

cases, and random-optimization simulator provided the most precise realizations in the real data. The 

reason is that getting close to the global optimum point is much more difficult in real data, because of 

heterogeneity. So vast random generation process within random-optimization simulator helps in 

searching for the optimum points, more effectively.  

Realization selection is done by two errors: constraint- and ideal-based errors. Ideal-based error is 

only practical in synthetic cases, where ideal-log is predefined. While constraint-based error does not 

need any reference, i.e. ideal-log, for assessing simulated-log. Constraint-based error validates the 

simulated-log by comparing it to the original well-log, considering its volumetric nature. Constraint-

based error for selecting the best realization is validated by the synthetic cases, and shows high 

positive correlation (R2=0.89, Figure 11) with ideal-based error. So, constraint-based error is a 

practical measure in prioritizing and validating realizations, i.e. outputs of simulations. 

Advantages of the developed DST-based algorithm could be summarized in: (i) providing 

uncertainty assessment measures for well-logs. (ii) Simulating an alternative well-log with the vertical 

resolution of about 15 cm, from the original well-log with the vertical resolution of 61-91 cm. (iii) 

Regenerating and amplifying high-frequency petrophysical variations, within the well-logs that were 

filtered during logging measurements. (iv) An automated algorithm, without significant manual 

interference, which could be run by usual processors in the market. (v) The proposed algorithm 

provides more precise petrophysical values for thin-beds, compared to the previously developed 

geometry-based algorithm. As an example, uncertainty range of DST-based algorithm is 100%, 71% 

and 66% smaller than the geometry-based algorithm for GR, RHOB and NPHI logs, respectively 

(Figure 12a). It shows high performance of DST-based algorithm in reducing the destructive shoulder-
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bed effect. However, DST-based algorithm cannot estimate thickness of thin-beds, while geometry-

based algorithm provides it. 
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Appendices 

A. Application check of the DST-based simulators on the synthetic-logs 

Outputs, error profiles, total errors and interpretation of DST-based simulators on cases 2-5 and 7 

(Table 1) are provided. 

Case 2: Deepening (fining) upward of GR 

None of simulators reproduce exact shape of the ideal-log, however they were able in generating 

very similar shapes, especially random-optimization and recursive-optimization simulators (Figure A-

1a). The reason is incompatibility of depths of ideal- and simulated-log. This deficiency exists when 

the     is the integration of even number of    . Due to the formulas, when       is odd, there is no 

problem. So, this deficiency is in GR and DT (       ), not in RHOB and NPHI (       ). 

Due to ideal-based error, recursive-optimization is the most accurate simulator, while due to 

constraint-based error, random-optimization should be used (Figure A-1b,c). So, it is a 

counterexample of application of constraint-based error in examining the simulators. However, from 

statistical viewpoint, constraint-based error is used for validation of the realizations, with the 

correlation coefficient of 0.89 (Figure 11). 

Case 3: Trough in RHOB 

In case 3, because of miss peak of the synthetic-log, none of the simulators were able in well-

detecting the exact place of the thin-bed. However, random-optimization, recursive and recursive-
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optimization simulators have reduced shoulder-bed effect to some extent (Figure A-2). In brief, 

skewness of the measured well-log or synthetic-log will result in misplacing the anomaly. So, the 

developed methodology is more accurate in symmetric cases. 

Case 4: Increasing upward of NPHI 

This is an exceptional case that random simulator provides the best realization (Figure A-3a) 

though the error profile supports random- and recursive-simulators (Figure A-3b). So, this is another 

counterexample of universal effectiveness of constraint-based error for the validity check. In this 

specific example, random- and recursive-optimization simulators regenerated high-frequencies, while 

honouring the volumetric constraint of well-log records. However, the realizations are not satisfactory 

(Figure A-3a). 

Case 5: Peak in NPHI 

In this case, recursive-optimization simulator is considerably more accurate than the others. 

Although outputs of recursive and recursive-optimization simulators are the same qualitatively (Figure 

A-4a), the quantitative assessment (Figure A-4b, c) votes for the latter (Table 3). 

Case 7: Fractured Horizon in DT 

This is another counterexample of application of constraint-based error as validation. Because, 

ideal-based error selects random-optimization simulator (Figure A-5a), while constraint-based error 

chooses recursive-optimization simulator (Figure A-5b,c). 

B. Application check of random-optimization simulator on real well-logs 

The realizations and errors of random-optimization simulator on real data (GR, RHOB, NPHI and 

DT well-logs) of wells 2 to 5 are provided here. The intervals belong to the upper Sarvak Formation, a 

well-known high-quality carbonate reservoir. It is tried to recommend the best perforation point within 

the illustrated intervals. The perforation interval should have the best reservoir quality (for a successful 

production), simultaneous with less heterogeneity and uncertainty (for decreasing the operational risk). 

Well 2: 2766 – 2770 m 

The lower part (2767.5- 2770 m) of Figure B-1, shows higher quality, comparing to the upper part 

(2766.0 - 2767.5 m). Due to the DST uncertainty range, the lower part is a relatively certain part, 
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however GR log shows more variations. GR records the depositional changes very well. Because of its 

sensitivity, it can provide a prioritization in homogeneous parts, like in lower part of Figure B-1. The 

simulation has reduced shoulder-bed effect at the horizon of 2768.55 m, so this horizon is sharpened to 

be chosen as the best pay zone for perforation and production within the interval of 2766 - 2770 m. 

Well 3: 2809 – 2813 m 

Depth of 2809.5 m could be recommended for perforation. A slight GR through and an amplified 

NPHI peak were indicators for suggesting this depth. Relatively low RHOB, less than 2.4 g.cm-3 and 

high DT confirm the made decision. High heterogeneities within the interval of 2810.0 - 2813 m, 

increases the risk of operation (Figure B-2). 

Well 4: 2662 – 2666 m 

The peak of NPHI at 2664.1 m, is an indicator of a high porous thin-bed. The shoulder-bed effect is 

removed within all the four well-logs, showing a distinguishable event at this depth: decrease of GR, 

slight increase of RHOB, clear peak of NPHI and high DT (Figure B-3). 

Well 5: 2840 – 2844 m 

GR at about 2842 m represents low shale, which is confirmed by a peak in NPHI log, i.e. effective 

porosity. Relatively low DT confirms that the increase of porosity is only due to primary porosity, and 

not related to the fractures or vugs. RHOB reconfirms an event at about 2842 m (Figure B-4). 

 

Figure A-1 (a) Ideal-log, synthetic-log, uncertainty range, simulations (realizations) and the best 

realization of each simulator, case 2. Error comparison between the simulators: (b) the error 

profiles, and (c) total error of 50 iterations. 

Figure A-2 Same legend as in Figure A-1, case 3. 

Figure A-3 Same legend as in Figure A-1, case 4. 

Figure A-4 Same legend as in Figure A-1, case 5. 

Figure A-5 Same legend as in Figure A-1, case 7. 
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Figure B-1 The well-log (solid line), uncertainty range, simulations (realizations, dots), and the best 

realization (dashed line), within well# 2. Correlation of the well-logs and simulated-logs for 

suggested perforation depth is marked by solid red and dashed green line, respectively.  

Figure B-2 Well# 3. Same descriptions as in Figure B-1. 

Figure B-3 Well# 4. Same descriptions as in Figure B-1. 

Figure B-4 Well# 5. Same descriptions as in Figure B-1. 
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Figure 1 (a) Location of the anticline under study in the Abadan Plain. Modified after Sherkati and 

Letouzey (2004) and Rajabi et al (2010). (b) Lithostratigraphy of Sarvak Formation based on 

cuttings in well#5. 

Figure 2 Schematic representation of (a) a volumetric measurement in well-logging, and (b) a 

configuration of focal elements of a well-log (volumes of investigation) and its simulated-log. The 

primary volume of investigation is divided into four focal elements of target.  

Figure 3 Uncertainty assessment of volumes of investigation of well-logs by (a) the DST, and (b) the 

set theory (or the probability theory). Belief and plausibility functions are lower and upper 

boundaries of the uncertainty range, respectively. 

Figure 4 Four recordings and their volumes of investigation (   
 ), and the focal element of target 

between the records 2 and 3, i.e.     
 , are shown. 

Figure 5 Example of a well-log with vertical resolution of 91 cm (thick line), its average on five 

adjacent points (dashed line) and the uncertainty range (grey area) between belief and plausibility 

(dotted lines).   is a tool to compensate shoulder-bed effect at peaks and troughs. 

Figure 6 Scheme of the original well-log (solid line) and simulated-log (dashed line) within the 

uncertainty range. To compensate the shoulder bed effect,   is multiplied by 5 (SE). The R3 should 

be a weighted average of S1 to S5 because they are within the volume of investigation of the R3, 

i.e.    
   (hatched area). The weighted average of S1 to S5 is shown by a white square. Due to 

assumptions of the algorithm, the distance should be compensated by S3. 

Figure 7 (a) The processes of the four developed simulators. Random-optimization and recursive-

optimization simulators have to pass through an optimization process, while the other more basic 



32 

 

simulators only need a free or constraint-based random generation. The optimization process and 

the constraint-based random generation are based on the volumetric nature of well-log acquisition 

(Figure 6). (b) Flowchart of the DST-based algorithm for resolution enhancement of well-logs. The 

algorithm contains two parts. In the first part, the uncertainty range is created, and the input well-

log is corrected in the second part. 

Figure 8 (a) Well-log, ideal-log, uncertainty range and realizations of case 1. (b) Error profiles: 

Comparison of constraint-based errors vs. depth between the simulators in case 1. (c) Total error 

for 50 iterations. 

Figure 9 Total constraint-based error during optimizing case 1. Convergence is reached at 6 and 12 

epochs for random-optimization and recursive-optimization simulators, respectively. The term 

“epoch” refers to the number of iterations during the optimization process. To avoid confusion, the 

word “iteration” is specifically used for the number of random generation. 

Figure 10 Confusion matrix of correctness, e.g. in 25% of cases, random-optimization is selected by 

both errors. Cases 1-5 and 7 are shown in the circles, e.g. recursive-optimization simulator is the 

best simulator for the case 5 due to both the errors. Or for the case 2, constraint-based error selects 

random-optimization simulator, while ideal-based error selects both random-optimization and 

recursive-optimization simulators. 

Figure 11 Validating constraint-based error by ideal-based error. Giving a significant correlation 

coefficient (R2) reveals that the constraint-based error has the same functionality as ideal-based 

error. 

Figure 12 Well-log (solid black line) data for the four tools (GR, RHOB, NPHI and DT), uncertainty 

range (blue zone), ten realizations (dots) and the best realization (dashed line) as the simulated-log, 

within the interval (a) 3157-3159 m (well#1) and (b) 2801.65-2803.45 m (well#3). 
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Table 1 Specifications of defined ideal-logs to generate synthetic-logs. 

Case Well-log Description Lower 
bed 

Thin-bed 
or fracture 

Upper 
bed 

Bed 
thickness 

(cm) 

Vertical 
resolution 

(cm) 

1 GR 
(API) 

There is a peak at the horizon of the 
thin-bed. 

20 50 30 30 61 

2 GR 
(API) 

Shallowing-upward or coarsening-up 20 100 120 30 61 

3 RHOB 
(g.cm-3) 

There is a trough at the horizon of the 
thin-bed. 

2.8 2.4 2.6 15 76 

4 NPHI 
(%) 

Increasing upward 5 10 15 30 76 

5 NPHI 
(%) 

There is a peak at the horizon of the 
thin-bed. 

5 15 10 30 76 

6 DT 
(µs/m) 

A single fracture with the dip of 60 
degree, aperture of 1 mm, filled with oil 

(DT=281 µs/m) in a carbonate formation 
with the DT of 160 µs/m for each 

recording. 

160 281 160 0.1 61 

7 DT 
(µs/m) 

A 1 cm horizontal fracture (50% 
fractured) zone with the DT of 220 µs/m, 

within carbonate formation with DT of 
160 µs/m for each recording. 

160 220 160 1 61 

 

Table 2 Vertical resolution of well-logs GR, RHOB, NPHI and DT for wells #1 to #5, approximated 

by variography analysis. Units are in cm. 

Well-log Well#1 

(cm) 

Well#2 

(cm) 

Well#3 

(cm) 

Well#4 

(cm) 

Well#5 

(cm) 

GR 61 61 61 61 61 

RHOB 76 76 91 76 76 

NPHI 76 76 91 76 76 
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DT 61 61 61 61 61 

 

Table 3 Consistency of three typical BOEs with the uncertainty assessment theories. DST is consistent 

in all the configurations of focal elements. However the theory of probability is not compatible 

when the focal elements have intersections. In addition, the theory of possibility is only compatible 

when the focal elements are eccentric.  

schematic of 
BOE 

property of 
focal elements 

theory of 
probability 

theory of 
possibility 

DST consistency 

 

separated compatible incompatible compatible consistency of 
DST and 

probability 

 

eccentric incompatible compatible compatible consistency of 
DST and 
possibility 

 

intersected and 
not eccentric 

incompatible incompatible compatible inconsistency 

 

Table 4 Total errors of simulators for each synthetic case. Minimum errors are highlighted by bold 

characters. DST-based algorithm cannot detect a single fracture, case 6. 

Cas
e 

Well-
log 

Random simulator Random-optimization 
simulator 

Recursive simulator Recursive-
optimization 

simulator 

Constraint
-based 

bulk error 

Ideal-
based 

bulk error 

Constrain
t-based 

bulk error 

Ideal-
based bulk 

error 

Constrain
t-based 

bulk error 

Ideal-
based bulk 

error 

Constrain
t-based 

bulk error 

Ideal-
based 

bulk error 

1 GR 163.4 63.1 51.6 31.2 90.7 31.2 51.6 31.2 

2 GR 348.8 117.6 81.6 50.0 149.0 73.5 90.0 50.3 

3 RHOB 2.4 0.43 1.6 0.37 2.3 0.39 1.6 0.37 

4 NPHI 59.8 4.7 43.8 13.9 62.3 17.3 42.1 13.4 

5 NPHI 125.5 16.6 77.6 15.2 16.2 10.8 8.8 8.9 

6 DT - - - - - - - - 
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7 DT 112.6 33.0 77.8 22.0 81.7 28.0 70.9 22.8 

 

Table 5 Constraint-based total errors for the four simulators, applied on the real data. SE=5 and 

iteration=200. The reference for nfuse is the vertical resolution, presented in Table 2. The parameters 

of simulation, including nfuse, are summarized in Table 7. 

Well # Well-log Random 
simulator 

Random-
optimization 

simulator 

Recursive 
simulator 

Recursive-
optimization 

simulator 

1 GR 20’750 9’495 18’527 11’479 

RHOB 261’880 79’619 215’370 107’450 

NPHI 156 41 110 51 

DT 42’008 20’155 28’653 23’160 

2 GR 14’237 6’773 9’932 7’538 

RHOB 305’260 89’164 222’610 109’250 

NPHI 228 65 162 79 

DT 37’223 15’548 22’689 17’696 

3 GR 16’522 9’259 12’493 10’221 

RHOB 194’260 64’285 142’460 85’612 

NPHI 133 44 102 60 

DT 42’448 22’140 29’704 24’463 

4 GR 14’789 8’137 11’109 9’052 

RHOB 300’230 84’143 208’900 103’490 

NPHI 173 45 120 55 

DT 45’304 20’958 30’256 24’423 

5 GR 9’273 3’802 6’012 4’245 

RHOB 199’110 50’851 146’620 68’958 

NPHI 109 28 75 35 

DT 38’457 17’246 23’444 18’865 

 

Table 6 Optimizing SE in real data by comparing constraint-based total errors, iteration=50. Higher 

iterations are tested also, however due to stability of the outputs, the iteration is limited to 50 to 

have a clear plot view. The parameters of the simulation (including SE) are mentioned in Table 7. 

Well # Well-log SE=2 SE=3 SE=4 SE=5 SE=6 SE=7 

1 GR 8’231 8’161 8’170 8’304 8’496 8’762 
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RHOB 104’350 88’664 82’795 79’619 79’079 79’864 

NPHI 51 45 42 41 40 41 

DT 19’617 19’504 19’509 20’199 20’923 21’281 

2 GR 6’650 6’624 6’558 6’789 68’921 7’164 

RHOB 107’100 95’427 90’604 89’164 87’467 87’346 

NPHI 77.0 69.0 66.0 65.1 65.0 64.8 

DT 15’338 15’237 15’376 15’548 16’117 16’735 

3 GR 9’069 8’955 9’030 9’259 9’385 9’659 

RHOB 73’707 68’040 65’537 64’285 64’650 64’196 

NPHI 50.0 48.0 45.0 44.0 44.3 43.0 

DT 21’809 21’376 21’658 22’140 22’868 23’730 

4 GR 7’998 7’894 7’978 8’137 8’296 8’482 

RHOB 106’380 91’714 85’826 84’143 84’258 83’560 

NPHI 55.0 48.0 44.6 44.4 43.2 43.3 

DT 20’255 20’237 20’609 20’958 21’928 22’507 

5 GR 3’934 3’773 3’786 3’802 3’968 4’096 

RHOB 67’105 57’344 52’542 50’851 51’133 51’953 

NPHI 34.0 30.0 28.1 27.6 28.2 28.0 

DT 16’870 16’649 16’941 17’246 17’708 19’181 

 

Table 7 Optimized parameters for applying random-optimization simulator in real data. Summary of 

Table 5 and 6. 

Well # Interva
l 

Well-
log 

nfuse SE Well # Interva
l 

Well-
log 

nfuse SE 

W1 3157 
m 

3159 
m 

lower 
Sarvak 

GR 4 3 W2 2766 
m 

2770 
m 

upper 
Sarvak 

GR 4 4 

RHOB 5 6 RHOB 5 7 

NPHI 5 6 NPHI 5 7 

DT 4 3 DT 4 3 

W3 2809 
m 

2813 
m 

upper 
Sarvak 

GR 4 3 W4 2662 
m 

2666 
m 

upper 
Sarvak 

GR 4 3 

RHOB 6 7 RHOB 5 7 

NPHI 6 7 NPHI 5 6 

DT 4 3 DT 4 2 

W5 2840 
m 

2844 
m 

GR 4 3  

RHOB 5 5 
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upper 
Sarvak 

NPHI 5 5 

DT 4 3 

 

Table 8 An example of thin-bed characterization in Sarvak Formation (depth of 3158.19 m within 

well#1) and comparison of outputs of geometry- and DST-based algorithms. The most accurate 

values in each row are given in bold characters. 

 Well-log Geometry-based 
algorithm 

DST-based algorithm 

Thin-bed characterization RMSE Value RMSE Value DST uncertainty Simulator 
uncertainty 

Value 

GR Log value (API) -- 31.5 ±6.50 ≈36 ±6.02 ±0 37.52 

Thickness (cm) ±47.43 60.96 ±7.12 14.01 -- -- -- 

RHOB Log value (g.cm-3) ±0.06 2.677 ±0.031 ≈2.635 ±0.053 ±0.028 2.624 

Thickness (cm) ±56.59 76.20 ±8.20 18.80 -- -- -- 

NPHI Log value (%) ±11.82 4.00 ±6.32 ≈14 ±5.44 ±2.17 9.96 

Thickness (cm) ±64.30 60.96 ±7.30 12.10 -- -- -- 

DT Log value (µs/m) -- 206.5 -- -- ±10.8 ±6.4 211.1 

Thickness (cm) -- -- -- -- -- -- -- 

Final thickness (cm)  ±7.5 14.97  
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Highlights 

 The uncertainty of well-logs is quantified by Dempster-Shafer Theory. 

 The vertical resolution of well-logs is improved. 

 Shoulder-bed effect, i.e. effect of neighbouring beds, is reduced. 

 The proposed method is verified by synthetic and real data. 

 




