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ABSTRACT
This study proposed a new reconstruction of theotecsedimentary evolution of the Lake Albert
Rift based on a biostratigraphical, sedimentoldgared structural re-evaluation of the outcropping

data and on an exceptional subsurface dataset.

The infilling of the rift consists of lacustrine glesits wherein two major unconformities dated at

6.2 Ma and 2.7 Ma were characterized, coeval wefonsubsidence and climatic changes.

Combined with the fault analysis, the evolution artribution of the subsidence highlights a four-

steps evolution of the rift after its initiationtdd at 17.0 Ma.

The first phase (17.0 — 6.2 Ma) consists of low aliffluse extension associated with low
accommodation rates ranging from 150 to 200 m/Mesticted in the southern part of the basin, the
depocenter location is poorly controlled by fautteeaning that the basin extension was potentially

larger at this time.

The second time interval (6.2 — 2.7 Ma) shows ameimse of accommodation rates with values
reaching more than 800 m/Ma. These high rates awdbivith the location of the major depocenters

down the bounding faults argue for a first truéng phase.

Between 2.7 Ma and 0.4 Ma, the accommodation d#ersases to reach less than 400 m/Ma and
the individualization of major depocenters contindewn the major fault in the southern, and

northwestern parts of the basin.

Finally, between 0.4 Ma and present-day, a latétugt the formation of the Ugandan scarp.

Comparison of the Lake Albert Rift evolution withet data available in the rifts of both branches
of the East African Rift System shows that mosth# sedimentary basins experienced the same
geometrical evolution from large basins with linditult control during Late Miocene to narrow true

rift in Late Pleistocene.



1. INTRODUCTION
Extending from the Afar triple junction in the nor{northern Ethiopia) to the Funhalouro Rift

(Limpopo Plain, Mozambique, Fig. 1a) in the sotitie, East African Rift System (hereafter referred to
the EARS) is an incipient divergent boundary betwdleree major tectonic plates: the Arabian,
Nubian (African) and Somalian plates (Calais et 2006; Saria et al., 2014; Stamps et al., 2014,
2008). The rifts and associated sedimentary basdinbe EARS are located on two broad elevated
"domes", the Ethiopian and East African domes (§4in1989). These wide regions of anomalously
high topography are related to the thermal and mhmactivity of one or several mantle plumes
connected to the so-called African asthenosphemerswell or superplume (Burke, 1996; Ebinger
and Sleep, 1998; George et al., 1998; Nyblade astiinRon, 1994; Pik et al., 2006; Ritsema et al.,

1998; Simmons et al., 2007), potentially at thgiardf the extension.

Although the EARS is one of the most extensivelydi&d rifts in the world, several questions
remain about (1) the age of the initiation of thisr (e.g. Macgregor, 2015), (2) the age of thenohy
(pre- to post-rift; e.g. Pik et al., 2003), (3) tivdstence and the age of the rift shoulders (sympost-
rift; e.g. Bauer et al., 2016, 2012, 2010a; Spiegeall., 2007; van der Beek et al., 1998) and l{é) t
different stages of evolution of the rifts and theslationships with the deformation. In the preésen
study, we mainly focus on this last point thougtatigraphical and structural analysis of one of the
EARS basins, the Lake Albert Basin (Uganda) locaedhe northern termination of the western

branch.

Three main types of sub-basins can be defined almdEARS: (1) rifts valleys superimposed or
filled by volcanic rocks and few sediments withifiptl margins (eastern branch of the EARS - e.g.
Gregory rift), (2) rift basins with few or no vole& rocks and little uplift of the rift shoulders.g.
Tanganyika and Malawi rifts) and (3) non-volcarift Ibasins with an uplifted margin on one or both
sides (e.g. Turkana, Albert and Rukwa rifts). Tge af the volcanic rift initiation is documented on
the basis of volcanic infilling dating (e.g. Ebimg&989a; Ebinger and Sleep, 1998; George et al.,
1998; Kampunzu et al., 1998; Nyblade and Brazi@022 Pouclet et al., 2016; Zanettin et al., 1983).

Conversely, the age of initiation and evolutiontlteé non-volcanic and non-uplifted rifts are poorly



known due to the absence of deep drillings reacttiegsubstratum and the limited attention paid to
the biostratigraphy of the sedimentary basins (@igkford et al., 1993; Van Damme and Pickford,

2003).

The aim of this study is to discuss the geologisalution of the Lake Albert Basin on the basis of
new data (wells and 2D seismic dataset) and amabfsihe outcropping sediments (biostratigraphy
and sedimentology). Our objective is to proposeafipge model for the sedimentary infilling and its
sequence stratigraphic framework and (2) a nevonecstratigraphic calendar for the Lake Albert

Basin evolution.

2. REGIONAL SETTINGS

2.1. THE EAST AFRICAN DOME RIFT SEGMENTS

The EARS is divided into two branches, an eastathwaestern branch, surrounding an Archean
craton and lying on Proterozoic mobile belts arlbfang their preexisting crustal-scale fabric tdsn
(e.g. Chorowicz and Sorlien, 1992; Corti et al.020Morley, 2010). The eastern branch (or Kenyan
rifts) extends from Lake Turkana in the north tdifuse zone of extension referred to the Tanzanian
Divergence in the south (Fig. 1a). This eastermdiras characterized by moderate seismic activity
and significant magmatism. In contrast, the westwanch, extending from the Azwa Precambrian
lineament in the north (Fig. la-b) to Lake Malawi the south, corresponds to a succession of
seismically active asymmetric rifts segmented laydrerse fault zones (TFZ; e.g. Bosworth, 1985;
Chorowicz and Sorlien, 1992; Ebinger, 1989b; Maorl2§10, 1999; Rosendahl, 1987; Fig. 1b) and
displays an alternating sense of asymmetry (Ebjrig9a). One of the characteristics of this wester
branch is the rare volcanic activity restricteds&veral provinces such as Toro-Ankold®.6 Ma),
Virunga (first episode at 12.6 Ma), South Kive2{l Ma) and Rungwe=~8.6 Ma) (see review in
Kampunzu et al., 1998 and Pouclet et al., 2016)tt5of the East African dome, the EARS expose a
diffuse pattern of extension connected to the D&iglge in the south-east and propagating toward
Namibia in the south-west where the Okavango D@t@tswana) shows an incipient rifting stage

(Fig. 1a).



Along the eastern branch, magmatism began in the Qigocene — Early Miocene (Baker et al.,
1971; Bishop et al., 1969; McDougall and Brown, 20Morley et al., 1999c) and ages tend to
document an overall southward migration of thaémngftthough time until the Tanzanian Divergence
(e.g. Baker, 1987; Baker et al., 1971; Ebinger,9898-oster et al., 1997; George et al., 1998;
Kampunzu et al., 1998, 1991). The timing of the tess branch is uncertain because of the rare
volcanic activity. On the basis of the oldest voicaepisodes occurring in the Virunga between 12.6
(Bellon and Pouclet, 1980) and 11 Ma (Kampunzuletl®98 and literature therein), the western
branch is usually interpreted as being younger thaneastern branch. Nevertheless, recent studies
based on new sediment analysis and dating (bimgaphy, magnetostratigraphy) indicate that the
rifting initiation probably began as soon as the l@ligocene in the Rukwa rift (Roberts et al., 201

2010).

For a long time, the direction of the present-dajemsion related to the EARS opening was
debated as being either an oblique opening moddisting of a SE drifting of the Somalian plate
(e.g. Chorowicz, 2005, 1990; Chorowicz and Mukoii@80; Daly et al., 1989; Kazmin, 1980; Scott
and Rosendahl, 1989; Tiercelin et al., 1988; Whealel Karson, 1994) or an orthogonal opening
model based on the actual overall E-W extensiom witdirection of extension that slightly varies
along the two branches (e.g. Delvaux, 2001; Delenck Barth, 2010; Ebinger, 1989a; Lezzar et al.,
2002; Morley, 2010, 1999; Morley et al., 1999b)cRatly, both earthquake slip vector data and GPS
geodesy studies support the second hypothesisgeharal E-W extension (e.g. Calais et al., 2006;
Delvaux and Barth, 2010; Saria et al., 2014, 2&t8mps et al., 2014, 2008).

2.2. THE ALBERTINE RIFT SYSTEM

The Lake Albert Basin belongs to the Albertine RBftstem which includes Lake Albert, Lake
Edward and Lake George (Pickford et al., 1993).ri8i®a by the Azwa lineament to the north and by
the Virunga volcanic province to the south (Figa. & 2), this system is characterized by an
outstanding 5000 meter high relief located betwkake Albert and Lake Edward, the Rwenzori

Mountains (Fig. 2).



The Lake Albert Basin was traditionally considessdan asymmetric half-graben dipping to the
north-west where the major bounding Bunia faulteys(Fig. 2) probably led to the uplift of the 2100
m high Blue Mountains (Ebinger, 1989a and gravitydeiling of Ebinger et al., 1991; Karner et al.,
2000; Upcott et al.,, 1996)The eastern boundary consists of westward-dippimitfhatic Toro-
Bunyoro and Tonya fault systems (Fig. 2) which calieéd the uplift of the 1200m high topographic
escarpment observed at the eastern border of kbgdifference in elevation with the lake level~of
400m). By matching the observed and modeled topbgravith free-air gravity, Karner et al. (2000)
assumed a crustal extension ranging from 6 to 16dtna sediment thickness up to 5 km deposited
during 5 Ma. Recently, on the basis of new seishaita and gravity re-processing, Karp et al. (2012)
shows that the Lake Albert Basin is ratherfdl-graben” that "has subsided symmetrically and
continuously in the Late Cenozoic along two extensive boundary fault systems on either side of the

basin".

Focal mechanism (Delvaux and Barth, 2010) and GRfflegic studies (Calais et al. 2006; Stamps
et al. 2008) indicate that the Lake Albert Basircusrently opening at 2 mm/a in a predominantly
WNW-ESE extensional stress regime. However, loedlizgarthquakes showing strike-slip solutions
(e.g. Koehn et al., 2010; Ring, 2008), rare posifiower structures (splay geometry of faults) and
anticline structures (Abeinomugisha and Kasand&2pP@uggest that the Lake Albert Basin might
have experienced potential strike-slip movemeninduits evolution. These discussions about an
obligue component could be explained by the basestarcture heritage. South of the Nile, the Lake
Albert Basin is located at the interface of the Wgan Congo Craton and the Paleo- to Meso-

Proterozoic Kibaran mobile belt of which the basifows its roughly NE-SW trend.

The age of the rifting initiation in the Lake Allbd3asin is debated because the first Early Miocene
sediments preserved in the basin have not beemdeoed as syn-rift deposits but rather pie-rifting
fluvial sediments' (Ebinger, 1989a; Hopwood and Lepersonne, 1953keB on the biostratigraphy
available at this time, the first syn-rift lacusgisediments were considered to be Late Mioceagen
(8 Ma; Ebinger, 1989a; Pickford et al., 1993), daling a first volcanic episode of the Virunga

Province dated from 12.6 to 9.0 Ma (Kampunzu et E998; Pouclet et al., 2016 and literature



therein). This first major rifting phase might hadveen responsible for the formation of a paleo-lake
(Lake Obweruka) covering the entire Albertine Rifea until the Rwenzori uplifted around 2.5 Ma
(Pickford et al., 1993; Taylor and Howard, 1999nMaamme and Pickford, 2003). Recent petroleum
exploration and biostratigraphical investigationgug for an older rifting initiation, uppermost Bar

Miocene in agex17.0 Ma; Abeinomugisha and Kasande, 2012).

The origin of the Rwenzori Mountains is still dedtaie. Both thermochronological (Bauer et al.,
2016, 2015, 2012, 2010a; MacPhee, 2006) and biiggaphical data (e.g. Pickford et al., 1993)
indicated a last uplift during the Upper Pliocead’teistocene, mainly around 2.5 Ma. A first stage
exhumation probably compensated by erosion occuttgthg Jurassic times (Bauer et al., 2012).
Seismological data, (Homuth et al., 2016; Woélbdrale 2010) shows the absence of a crustal root
and thinned crust below the Rwenzori Mountains.tl basis of microtectonic measurements and
focal mechanism analysis, the tectonic settindiefRwenzori Mountains is assumed to be dominated
by strike-slip movements (e.g. Koehn et al., 20M6¢Connell, 1959; Ring, 2008; Sachau et al., 2016).
Two main mechanisms are proposed to explain theereet uplift of the Rwenzori Mountains: (1)
isostatic response related to the removal of crustderial in the hanging wall of a normal fault
(Koehn et al., 2016, 2010); the horst uplift isghibhe consequence of the "cantilever effect" (Kiszn
and Ziegler, 1992), and (2) the delamination of lttveer crust and mantle lithosphere due to pre-

existing weak-zones (Wallner and Schmeling, 200802.

By performing a sedimentary study of the Kisegi-Blysosi area outcrops, Roller et al. (2010)
defined a four-staged evolution of the Lake AlbBasin: (1) from 14.5 to 10 Ma, the first stage
corresponds to a sag basin with little accommodatjpace creation infilled by fluvial sediments. (2)
From 10.0 to 4.5 Ma, the second phase is charaeteiy the creation of limited accommodation
space and records successive rises in the lakk ssvéndicated by a transition from a distal fhivi
plain to a lacustrine environment. The increaseth@ accommodation/sediment supply ratio is
believed to record an initial rifting activity. (Between 4.5 and 2 Ma, the third stage corresptmes
classic rift controlled by sediment-supply rathbart by accommodation. The lacustrine deposits

record lake-level highstands. (4) Finally, from® 1.5 Ma, an overall increase in the subsidence



associated with a significant sediment supply #poasible for the acceleration of the uplift of the
flanks. This infilling corresponds to stacked tmgmessional cycles from a fluvial to lacustrine

environment.

3. MATERIAL AND METHODS

3.1. DATA AVAILABLE

The study of the Lake Albert Basin presented hersirbased on the analysis of field and
subsurface data. The field data consist of numesbosgt sections (from 5 to 170m, Fig. 3) on which
both sedimentological and biostratigraphical aredysvere performed, most of them having
previously been studied by Pickford and co-autlferg. 1993). The outcropping areas are restricted i
(1) the Kisegi-Nyabusosi area, at the northernofighe Rwenzori Mountain (the so-called Semliki
area), (2) in the Kaiso-Tonya flat, on the ceng@btern shore of Lake Albert and (3) in the norther
part of the lake (Fig. 3). The subsurface datasesists of approximately 300 2D seismic lines abd 2
interpreted wells. Here, we present the interpi@adf 11 regional seismic lines and five wells
selected in order to represent the characterigtmmgtrical configurations of the Lake Albert Basin
(sections 1 to 11 and wells 1 to 5; Fig. 3). Iniadd to five exploration wells, two fictive wells
resulting from seismic interpretation (well A andmBg. 3) are presented in order to illustrate st

subsiding part of the basin. Unfortunately, thes@dre limited to the Ugandan side of Lake Albert.

3.2. BASIN-SCALE CORRELATIONS

Stratigraphic cycles transgressive and regressive cyelegere interpreted from the evolution of
the sedimentary environments (alluvial to distauktrine). These environments were defined on the
basis of (1) sedimentary facies analysis of theropt, (2) the palynomorph content (pollens and

spores in wells and outcrops) and (3) the welldiogatures of the sedimentary facies.

By definition, the stratigraphic cycles are boundgd Maximum Regressive Surfaces (MRS —
Catuneanu et al., 2009) which correspond to thet prmximal environment. In between, Maximum
Flooding Surfaces (MFS; Posamentier and Allen, 1998 defined. These surfaces are marker of the

most distal environment and represent turnarounthces between transgressive and regressive



trends. Unconformities (Un; Embry, 2009) can oatuiring the regression and record either an aerial

erosional surface or a downward shift of the sediamy facies in a subaqueous environment.

Depending on the distance separating the wellspisasle correlations were performed in two
different ways. In the case of wells separated byemal kilometers (e.g. Kaiso-Tonya flat),
correlations are made by applying stacking pattechniques (Homewood et al., 1992; Van Wagoner
et al., 1990, 1988) and then validated by the dhterstics of the algae, pollen and spore trends (e
maximum amount oBotryococcus, Pediastrum, Podocarpus or Poaceae). Three cycle orders were
defined, possibly 3 4" and %, the latter was only used for the stacking pattmrrelations. When
wells are separated by several tens of kilometeosielations were made in favor of the major

stratigraphic cycles and were strongly constrainethe palynomorph records.

3.3. SEISMIC INTERPRETATION

The 2D seismic reflection dataset mainly displaysagallel configuration of reflection, with very
few localized divergent or sigmoidal (progradingnoforms) reflectors. Consequently, the classical
seismic stratigraphy analysis using truncationsil(¢aal., 1977) and offlap migration ("shoreline
trajectory” sensu Helland-Hansen and Martinsen, 1996) cannot beiepiuccessfully in the Lake
Albert Basin. The only variations concerned themit facies packages and the continuity, amplitude
and frequency of the reflectors. This implies tihat stratigraphic surfaces (MFS, MRS, Un) werd firs
defined from the wells and then propagated to #ignsc lines. The structural analysis (mainly fault
distribution and geometries) was performed usingersd reasonable vertical exaggerations (1:1 to

1:2).

Both sediment thickness and sedimentation rate nasge compiled for three time intervals.
Sedimentation rate maps (under-compacted) are asea proxy of the spatial distribution of the
accommodation rate. In addition, eleven regionatiees based on the 2D seismic interpretation
illustrate the relationships between the structanel sedimentation. Regional 2D sections and
thickness maps (isopach maps) were converted gpthdusing a time (ms) to depth (m) conversion

law constrained by the wells and provided by thiegbeum company Total.



3.4. AGE MODEL

Pickford et al. (1993) divided the outcropping Neog and Quaternary sedimentary succession of
the Lake Albert Basin into eight lithostratigraptiarmations in the Kisegi-Nyabusosi area and into
four major formations in the Kaiso-Tonya area (B&g 3 for the location and 81.4.2 for a detailed
description). This subdivision of the sedimentanfilling is based on lithologies and biostratigraph
content such as mammals (e.g. Pickford et al., H9@Bliterature therein), mollusks (Van Damme and
Pickford, 1994) and, more recently, pollens, pasesl algae (Lukaye, 2009; Shaw et al., 2009).
Mammals are the only fossils that can be useddbibration on the international chronostratigraphic
chart (Gradstein et al., 2012). Mollusk associatiare limited to the Albertine rift area and Neagen
pollens and spores mainly record environmental gbandriven by the climate. In this study,
vertebrate biozonations are calibrated in age&)ilKénya, where radiometric dating of tuffs andasv
constrain the age of the vertebrate taxon rangewloen species were not described in Kenya, (2) in
favor of the international European vertebrate bz chartThe time range of each vertebrate taxon
is reported on the stratigraphic sections (and, tbmghe associated lithostratigraphic formaticars],
according to their degree of evolution, classifietb five main categories: primitive, early, mature
late and end of phylum. For each formation, the mom range of the different characteristic

vertebrate species defines a time-interval forcthesidered lithostratigraphic units (Yalden, 2011).

The first limit of this approach is the use of maatgnas dating elements because (1) their
preservation is highly controlled by the type oflisgentary environment, (2) for some time intervals,
few (or no) species were sampled and (3) the temge of some species is poorly constrained. The
second limit is that these mammals were only foandoutcrops. Thus their ages need to be
propagated in the subsurface data using sequeratigstphy and paleo-environmental data (pollens

and spores record) correlations.

For these reasons, we proposed to test the outgepmodel extended to the wells by doing a
comparison with the regional paleo-climatic chaifte basin-scale climatic chart is based on the
following assumptions: humid conditions are rela@geriods of maximum lake growth emphasized

by Botryococcus algae and more arid conditions correspond to amim lake extension (large



alluvial plains and littoral environments) highligd by an increase in aerial flora, ileoaceae.

Transitions from humid to arid conditions correspoio a sharp decrease in water depth, i.e.
unconformities. This basin-scale climatic signathien compared to the dated regional climatic ¢hart
here mainly the one of Bonnefille, (2010) basedhmn"tree cover" of East-Africa estimated from the

percentages of tree and shrub pollens.

3.5. ACCOMMODATION SPACE MEASUREMENT

In order to quantify the vertical displacement \itthe Lake Albert Basin (subsidence and uplift),
the accommodation space was measured using thetbpplng method (e.g. Watts and Steckler,
1979). Accommodation is defined as the space aeatdhe sea, or in a lake, in response to the
vertical movement of the base of the basin (retativlithospheric/mantellic deformation) and thiecla
level, a consequence of the hydrological budgeitedl to climatic variations. This is not a direct
measurement of the subsidence because we werbladbaemove the lake level variations related to
the climatic variations. Nevertheless, a changthévertical facies from a shallow lake to a cdasta
plain or alluvial plain environment, suggests madiervariations in the lake level and thus indicates

that most of the accommodation space creationnsated by tectonic vertical movements.

Accommodation measurements require: (1) previowsdfined (8 3.2) time-lines (turnaround
surfaces, MFS and MRS or unconformities, Un) anel r@&ferred in absolute ages (8 3.3.4), (2)
porosity data deduced from well-log signatures euttings and (3) an estimation of the paleo-depths
interpreted from facies analysis (outcrops analysadl-log signatures and palynological content)eT
decompaction is based on the depth-porosity coefidor the different lithologies, here mainly gla
and sand. Different scenarios were tested by applyncertainty ranges associated with the absolute

ages, paleo-depths and lithologies.

Accommodation space variations were measured aiglls (wells 1 to 5; Fig. 3). In addition,
two “fictive wells" interpreted from the 2D seismlmes aim to illustrate the accommodation

variations in the most subsiding parts of the bagiere no wells are available (wells A and B; Bj.



4. RESULTS
4.1. DEPOSITIONAL MODEL AND SEQUENCE STRATIGRAPHY ANALY SIS
4.1.1Depositional model
Five major facies associations (referred as Fapwefined on the outcrops and well-logs in the
infilling of the Lake Albert Basin (Fig. 4): distadleep” lacustrine (Fal), proximal "shallow" lacuss
(Fa2), deltaic lacustrine (Fa3), lacustrine shoeland embayment to lacustrine coastal plain (Fa4)

and alluvial plain environments (Fab).

4.1.1.1. Distal "deep" lacustrine (Fal)
It essentially corresponds to homolithic, massivdarizontally laminated dark grey clays. Some
intervals can be either more silty or organic-rigith abundanBotryococcus algae. The biological

content is poor, with ran@-situ freshwater bivalves (with connected shells) bubmurbations.

The depositional setting is the one of a pererala (freshwater algae and bivalves) as indicated

by the lack of mud-cracks or soils (even hydromaph

In the subsurface, the well-log signature of thiginment consists of a high natural radioactivity
(gamma-ray) and a symmetrical evolution of the dgrsnd porosity (Fig. 4). More radioactive

intervals correspond to an organic-rich clayeyrivae

4.1.1.2. Proximal "shallow" lacustrine (Fa2)

These environments consist of an alternation ofscial) and coarse- to fine-grained sands
several to tens of centimeters thick. These sardg re most of the time poorly sorted, structess-|
(massive) and do not show either normal or revgrseling. Some of them show crude planar
horizontal laminations (upper flow regime) or pmbievidence of fine-grained sand with bedload
current ripple cross-beddings (no occurrence ahluilng current ripple cross-beddingBediastrum

are observed in the clayey intervals.

These lacustrine beds do not correspond to eithssical lacustrine turbidites (no normal grading,
no Bouma or Stow sequences; e.g. Wells et al.,)189® hyperpicnal flows (no reverse grading, no

climbing current ripples; e.g. Olariu and Steeld200lariu et al., 2010). They look similar to skee



flood deposits directly supplied from the aeriahdin (structure-less, poorly graded and sortedh suc

as the classical examples of Turner (1973) or Muitél. (2000).

The well-log is characterized by high variatiortsr{tpeaks) of radioactivity (low and high gamma-
ray) and porosity values (from clay to sand; Fig.The overall gamma-ray trend generally exposes a

slight funnel shape (slight coarsening upward tyend

4.1.1.3. Lacustrine delta (Fa3)

Lacustrine deltasire mainly made up of homolithic coarse-grainedisamganized in coarsening
upward units (from medium- to coarse-grained safideveral meters with 2D-3D (sinuous crest) to
3D current megaripples, some of which are climbimixed bedload — suspended-load transport;
Allen, 1981). On another scale, these megaripplessaperimposed onto sand bars (wavelength >
10m) forming compound cross-beddings. Both the Badsmegaripples migrate in the same direction.

The clayey intervals contain a significant amournPediastrum algae.

The occurrence of climbing megaripples and comparmds-beddings (indicating sand bars) are
characteristic of mouth bars along a river delenfrsystem (e.g. Coleman and Wright, 1975;

Galloway, 2001; Olariu et al., 2012).

The high porosity and funnel shape (coarsening upwaf the low gamma-ray values are a

characteristic response of a prograding mouthrbtlrd well-logs.

4.1.1.4. Lacustrine shoreline and embayment (Fa4)

These deposits correspond to green to grey cldgsbigdded by fine- to medium-grained sandy
beds (from tens of centimeters to two meters thidk)e clays are green to grey, massive and
occasionally silty and frequently lignite-rich. Tkandy facies mainly consist of well-sorted highly
bioturbated and clean sandstones with current aaldaching ripples and megaripple cross-beddings

and locally numerous gastropod debris (coquina)vanigdus plant residues.

These facies suggest a deposition in a lacusttimeebne to coastal plain environment with

embayment and marshes (lignite).



The clayey facies of this environment are charamdrby high radioactivity (gamma-ray), high
porosity and low density values; the last two caregolve symmetrically and record woodland plant

and lignite debris (Fig. 4).

4.1.1.5. Lacustrine coastal plain (Fa5) and river channelsKa6)
Lacustrine coastal plain (Fa5) environment congidtenassive dark-grey to green clays with

plants debris, hydromorphic soils and a significanbunt of aeriaPoaceae (Gramineae) pollens.

River channel (Fa6) facies are sometimes interlabdliighese coastal plain clays. These facies
correspond to very-coarse- to medium- grained sangsnized in fining-upward sequences (several
meters thick) with 2D and 3D current megaripplessrbeddings. The base of these sandy units is

sharp and erosional and sometimes topped by themvals of pebbly to conglomeratic sandstones

(lag).

The fining-upward trend within the cross-beddeddsars characteristic of distributary fluvial

channels in an alluvial plain (e.g. Allen, 1965;allli2006).

The channel well-log signature consists of low eadtivity values showing bell shapes (fining-

upward trend) and a rapid shift of the gamma vahie¢ke base (Fig. 4).

4.1.2Paleo-bathymetry
The absence of turbidite and hyperpicnal flows ssgga quite flat domain with no major slopes
and thus a quite shallow lake, not very differeotf the present-day one (average depth of 25m; e.g.
Howard and Karundu, 1992). This is supported byr#lve occurrence of clinoforms on the seismic
lines and the parallel and continuous configuratérthe seismic reflector along which the facies

evolves from distal lacustrine to coastal plainimmments. The clinoforms are not higher than 100m.

4.1.3Sequence stratigraphy analysis: basin-scale corrdlans
Five major cycles with a mean duration of 2 to 5 (84 order;Figs. 5 & 6) were identified and
correlated on both the outcrops and wells basetherfacies variation defined above. Numerous
cycles of shorter duration {40 5" orders) were identified offshore and correlatesrfrwell to well

with respect to their stacking pattern (Fig. 5).



Cycle 1 (S, — S3) is a highly asymmetrical cycle; its transgressiend is locally recorded as
the transition from a 0-2m thick poorly-sorted clamgerate overlying a weathered basement to
lacustrine facies. The regressive half-cycle c@oasds to the shift from mouth bars (Fa3) to coastal

plain (lignitic clays, Fa5) and alluvial facies gttibutary channel, Fa6; SYRS).

Cycle 2 (S1to S2) is one of the most lacustrine-dominated cyclesh(witcle 3, C3) as indicated
by the distal clays (Fal) which are characterizaethlge amount of organic material and intervaé th
are very rich inBotryococcus algae, illustrating the maximum flooding (§2The regressive trend is
characterized by the transition from flood depogitgernating clays and sandy sheet-floods, Fa2) to

the mouth bar (Fa3) where the MRS is positioned)(S2

Cycle 3 (S2to S3) is the most lacustrine cycle. It is dominatedchays (withBotryococcus and
organic material) and heterolithic clay-sand akdions (flood lobes). The regressive trend is
characterized by a major unconformity (g3coeval with a sharp facies transition from distal
lacustrine deposits (Fal) to proximal mouth bae3jFand alluvial deposits (Fa5 and Fa6; I8RS).
This transition is concomitant with a change inaalgpecies froBotryococcus to Pediastrum and an

increase irPoaceae pollens.

Cycle 4 (S3to S4,n,) shows all the facies from the distal lacustrifal) to deltaic sheet-flood
(Fa2 and Fa3), coastal plain (Fa5) and alluviainpvironments (Fa6). The lack of a significant
amount ofBotryococcus indicates that the most lacustrine faciesJS¥e not as distal and "deep" as
cycles 2 and 3. The regressive half-cycle is chared by two % order unconformities ($¢; and
S4,n,), the most important being the youngest one,{$4lt records a sharp transition from distal
lacustrine to lacustrine shoreline (Fa4) and adluylain environments (fining-upward sequences;

Fab).

Cycle 5 (S4.. to the present day) is dominated by aerial alludigposits withPoaceae and
Podocarpus pollens, this latter species being charactergdticigh elevations. The maximum flooding
(S5y) is located in shallow lacustrine clays with astant increase iBotryococcus and Pediastrum

algae.



4.2. AGE MODEL

Several attempts to date sediments using faundusks| vertebrates) were made from the 1920’s
to the 1970’s on isolated outcrops of the Kisegablysosi and Kaiso-Tonya areas (e.g. Adam and
Lepersonne, 1959; Bishop, 1971, 1965; Cooke angrdon, 1970; Gautier, 1965; Hooijer et al.,
1963; Hopwood, 1926; Hopwood and Lepersonne, 19%fersonne, 1949; Maclnnes, 1942;
Wayland, 1926). Nevertheless, the first dating base a clear lithostratigraphy nomenclature was
proposed by the Uganda Palaeontology Expedititineaturnaround of 1980’s/1990’s (e.g. Pickford et

al., 1993).

Vertebrates are only preserved in the Kisegi-Nyabuarea (Fig. 2), south of Lake Albert, where
six formations were dated (Kisegi, Kakara, Olukgablurogo, Nyakabingo, Nyabusosi Formation;
Fig. 6) and in the Kaiso-Tonya area (Fig. 3), oe #mstern shore of Lake Albert where four
formations were defined (Nkondo, Warwire, Kyeora dfaiso-Village Formations) (Pickford et al.,

1993).

Located on the Congolese side of the rift (Sindd Karugamania sites; Pickford et al., 1993;
Yasui et al., 1992), the oldest sediments are Bditcene in age as illustrated by the presence of
Deinotherieum hobieyi and Brachyodus aequatorialis. On the Ugandan side, the first sediments are
dated at the second-half of the Middle Miocene @fale Member, upper part of the Kisegi
Formation, 12.5 Ma) by vertebrate fossils includiRteidon moharensis as well as a small
Rhinocer otidae paradiceros mukirii. The Late Miocene is characterized by the Kakatay — 9.0 Ma)
and Oluka (6.5 - 5.0 Ma) formations whose the mcsaracteristic fossils ar&etralophodon
anthracothere, Stegotetrabel odon, Primelephas gomphotheroides, Nyanzachoerus syrticus. The Early
Pliocene corresponds to the Nyaburogo Formatidh-4.0 Ma) in the Kisegi-Nyabusosi area and to
the Nkondo (5.1 - 4.6 Ma) and Warwire 4 Ma) Formations in the Kaiso-Tonya area. Thisetim
interval is characterized by numerous vertebratetuding Mammuthus subplanifrons, Torolutra
ougensis or different species dflyanzachoerus. The Nyakabingo Formation of the Kisegi-Nyabusosi
area and the Kyeoro (4.6-2 Ma) and Kaiso-Villag8.2 Ma) Formations of the Kaiso Tonya area

correspond to the Upper Pliocene with vertebratduding species of.oxodonta, Elephas,



Kolpochoerus or Giraffa. The transition between the Pliocene and Pleis®dg associated with the
Nyabusosi Formatior=(.5 Ma), in which examples @&lephas recki atavus or Kol pochoerus majus
were found. Notice that several time intervals weoé covered by the life range of the vertebrate
fossils found in the outcropping areas (e.g. 0.6kdaween the Kisegi and Kakara formations or 2.5

Ma between the Kakara and Oluka formations; Fig. 6)

The propagation of the proposed age model in thewstace requires a climatic chart based on the
correlation of the outcrops of the Kisegi-Nyabusasd Kaiso-Tonya areas dated by vertebrates and

subsurface data where a complete palynomorph recasts.

From the outcrops to the wells, five main stratidia 3¢ order cycles were correlated. In addition,
the 4" and %' order cycles were correlated offshore with respectheir stacking patterns (Figs. 5 &
6). The first & order cycle (C1, Lower Kisegi Formation — Earlyddéne) corresponds to a relatively
humid period as illustrated by a significant amoohtPediastrum. The second cycle (C2, Upper
Kisegi Formation to Lower Kara Formation — UpperimBarly Miocene to the first half of the Upper
Miocene) shows a major flooding highlighted by alpef Botryococcus algae both on the outcrops
and wells (SR MFS). The third cycle (Upper Kakara Formation takal Formation - Late Miocene)
is the most humid, with a significant amountRediastrum and Botryococcus and rarePoaceae. A
peak of Botryococcus emphasized a second major flooding ((S&hile the instant appearance of
Poaceae is associated with the §3unconformity. The 4 cycle (C4, Nyaburogo and Nyakabingo
Formations — Pliocene) records an overall aridificahighlighted by an increase Roaceae and the
transition from distal to coastal lacustrine enmir@nts. Unconformities (§4 and S4,.,) are
associated with the disappearancePediastrum in favor of Poacea. The last cycle (C5, Nyabusosi
Formation — Pleistocene) marks the return of a nhoimid climate, as suggested by the increase in

Botryococcus andPediastrum.

This climatic signal of the Lake Albert Basin basad algae, pollen and spore trends is in good
agreement with the regional climatic chart publébg Bonnefille (2010) (Fig. 6). The maximum lake

extensions interpreted from the significant amowhtBotryococcus (S2,, CycleC2 MFS; S3, Cycle



C3 MFS; S§, CycleC5 MFS) are associated with large-scale tree cgedraAfrica (humid period of
Bonnefille, 2010) while the increase oaceae observed close to the $3S4n; and S4y.»
unconformities are coeval with arid periods (sawmor glaciation, Bonnefille, 2010; Fig. 6). This
comparison is also a way to clarify the datinghe# turnaround surfaces using the time range of the

humid and arid periods as the interval of occureenfdVIFS and MRS.

4.3. ACCOMMODATION EVOLUTION

Both the cumulative accommodation space and accalatiom rates were measured for seven time
lines (SLn, S2. S3., S3n, S4n S4in and S4,,) using an average compaction hypothesis (Fig. 7).
The variation in both the trends and rates is dyotdek same regardless of which well is considered,
with maximum rates around the Miocene-Pliocene Hampn The accommodation curves show three

major periods bounded by two major unconformit®3,{, 6.2 Ma and Sé,, 2.7 Ma; Fig. 7).

Time interval 1 (S3,— S3)): Early (17.0 £ 0.8 Ma) to Middle (6.2 + 0.2 Ma)iddene:with mean
values of 150 to 200 m/Ma, the rate of accommodasipace creation is the slowest of the basin
history. The sediment accumulation is located i sbuthern half of the basin and accommodation
increases southward, with the cumulated accomnmmuatinging from 500m (wells 3 to 5; central
part) to more than 2500m (wells 1, 2, and B; sauthe central part). This time interval is subdidd
in two sub-periods: (1) the §l1- S2,(17.0 + 0.8 Ma to 12.4 + 0.4 Ma) interval shows mde
accommodation rates (<300 m/Ma, except in well B)lev(2) the S2— S3,,(12.4 + 0.4 Mato 6.2 £
0.2 Ma) interval highlights a significant decre&sen ~250 m/Ma to 125 m/Ma in the most subsiding

parts of the basin (wells A and B).

Time interval 2 (Sg,— S4n,): Middle Miocene (6.2 + 0.2 Ma) to Uppermost Pkoe (2.7 + 0.2
Ma): the S3, unconformity marks a sharp increase in the accodation rates in the whole basin
with mean values higher than 500 m/Ma. In the msosisiding areas (southern and central part of the
Lake Albert Basin), the accommodation frequentlgemds 600-800 m/Ma. Exceptions are observed
on the footwalls of the Butiaba and Semliki fagKsiso-Tonya and Semliki compartments) where the
sediment thickness is thinner (wells 3 and 4, sdew). The S4d,, unconformityis coeval with a

sharp decrease in the accommodation rates fron8600n/Ma to 100 m/Ma.



Time interval 3 (Sd..— Lake-floor): Uppermost Pliocene (2.7 £ 0.2 Ma)the Present Daythe
mean accommodation rate is significantly decreafiogm 450 m/Ma (Sg.; 2.7 £ 0.2 Ma) to 250
m/Ma (present day) in the most subsiding part eftibsin (wells 1, 2, A and B). The erosion of the
uplifted Kaiso-Tonya and northern Butiaba areasttedhe infilling of their accommodation space

during this time interval.

4.4. ACCOMMODATION DISTRIBUTION AND INFILLING GEOMETRY: ISOPACH

MAPS AND REGIONAL SECTIONS

4.4.1Main geometries and fault patterns*

The main characteristic of the Lake Albert Basithis symmetrical graben geometry of the central
segment. Both the thickness map and regional sscthow that four major faults accommodate the
sedimentation between the N40° to N60° striking,780 dipping bounding fault systems (Bunia fault
on the Congolese side and Toro-Bunyoro and Toryth $gstems on the Ugandan side, Figs. 2 & 8).
Parallel to the N70° dipping Toro-Bunyoro boundifagilt system, the N60° striking, 60° dipping
Butiaba fault delimitates the Kaiso-Tonya comparit&ig. 9; section 4). In the south-eastern phirt o
the basin, the N80° Semliki fault dips toward thé&/Idt an angle of 50° and individualizes the Semliki
compartment (Fig. 9a; section 2). These compartsngrdominantly exposed parallel reflectors with
only slight unclear thinning of the infilling towdthe major faults (Fig. 9). The sedimentation ¢xins
of predominantly tabular stacking of the sedimestmwing thickness variations on each side of the
major faults (e.g. Butiaba and Semliki fault; Fg.sections 2, 4 and 5). Thickness variation atg on
observed along the axis of the rift (thinning todvéine north, Figs. 8 & 9; sections a and b). In the
central part of the basin, the Kaiso-Tonya flat atituites a structurally complex relay-ramp zone
where the N40° Tonya fault system and N60° ToroyBua fault system are overlapping (Fig. 8).
Connected to the Kaiso-Tonya flat, the N140°-N18@assa transverse fault subdivides the basin into
two sets, the southern one being thicker than dinhern one. A last major N°40 striking, 40° dipgpin
fault, the Rwenzori fault, is observed at the nemthtip of the Rwenzori Mountains, south of Lake

Albert (Figs. 8 & 9, section 2).



Displacements related to the major N40-60° fauthika gradually die out in diffuse zones of
deformation, the Butiaba and Semliki transfer faglhes (TFZ; Figs. 8 & 9). Essentially observed in
the Butiaba TFZ, a secondary N20° fault group shawslative short length and small throw and is
connected to the N60° trending fault. These faalte responsible for the horst and graben
configuration of this TFZ. This northern Butiaba Z,Hike the southern Semliki TFZ, exposed a
complex highly faulted pattern (Fig. 9a-b, sectidhs?7, c, d) where several folded (pop-up like)

structures and "ramp-and-relay shapes" of the fdaites are locally observed.

4.4.2Deformation evolution
The seismic dataxposed numerous onlapping terminations of thel lsagiments on the basement
unconformity (Si,) but the infilling does not present any obviousvgh strata (structural wedges).
"Pre-rift" structures are locally observed below ®il,, Mainly located to the south of Lake Albert,
these "valley-like" structures are approximatelY0m0deep and 4 km wide and show an onlapping
reflector but no growth strata (Fig. 9, section Spme of these structures are asymmetric and

controlled by a fault on one of their sides.

From the early to upper Miocene (time interval 1,5 S3;,), sedimentation occurs all over the
basin with a maximum accommodation space credtidime southern part, between the N80° striking,
50° dipping Semliki transverse fault and the N14IBBP striking, 70°-60° dipping Ngassa fault.
During this period (mostly between $lnd S2) of moderate sedimentation rates (50 to 250 m/Ma),
sharp thickness variations along the NE-SW (Buti@odt) to ENE-WSW faults (Semliki TFZ) form
tabular and roughly isopach compartments (Kaisoyioand Semliki compartments, Fig. 8). The
infilling is also thicker south of the Ngassa faUulFig. 8; section a). During this time intervall($-
S3un), the finite displacement on the basin base{(SAanges from 1000m to 1600m down the Butiaba
fault (Fig. 9a, section 5), 1200m down the Rwenfawit (Fig. 9a, section 1), 800m down the Semliki

fault (Fig. 9a, section 2) and 1500m south of tigadéa fault (Fig. 9b, section a).

The second time interval (time interval 2;,$3 S4,,,) shows a sharp increase in the sedimentation
rates in the whole basin (up to more than 600 m/Mg, 8). The accommodation space creation

migrates northward, beyond the Ngassa fault. Sews@ocenters (thickness > 1600m; Fig. 8) are



individualized (1) to the north-west of the bagilown the SW-NE Butiaba fault, (2) in the central
part, down the N140° Ngassa fault and (3) to thetweé the N40° Rwenzori fault in the southern

corner of the basin (Fig. 8).

During this period (S3 — S4u,), the finite displacement on surfacey$8anges from 500m to
800m west of the Rwenzori and Semliki faults, 8601000m down the Butiaba fault and around
500m south of the Ngassa fault. The infilling caetsiof a thick isopach interval (up to 2000m, Big.
characterized by a configuration of parallel refbes. S4,1 — S4.. interval is locally marked by

discrete differential accommodation and localizea stand wedges (Fig. 9; sections 5, b and c).

The Pleistocene (time interval 3; 34— Lake-floor) shows an overall trend of sedimditkening
toward the central part of the basin (up to 150@ng. 8) with the individualization of a major
depocenter located down the Butiaba fault. Thektigss distribution highlights erosion on the Kaiso-
Tonya flat and in the northern termination of treesin. Another area of maximum accommodation
space creation is located west of the Rwenzorit fdld00m, Fig. 8). Compared to the second time
interval, the sedimentation rates decrease unifoimthe whole basin (from 500-600 m/Ma to less

than 300 m/Ma; Fig. 8).

During this period, the fault throw gradually diest. The finite displacement decreases in the
whole basin and rarely exceeds 300m. The seismaditguassociated with this interval is poor.
However, the differential subsidence is highlightey] some unclear low stand wedges and the
Pleistocene series are onlapping the,Sdnconformity in the northern uplifted part of thasin

(Butiaba area, Fig. 9, sections a and b).

4.5. ALBERT RIFT EVOLUTION
The Lake Albert Basin evolution can be subdividetb ifour major stages: a "pre-rifting" period

and three "syn-rift" stages. Their characteristiessummarized on the Figure 10.



4.5.1Pre-Rift (? to 17.0 £ 0.8 Ma, SJ,)
The first sediments are deposited on the weathdsagpment or filling incised "valley-like"
structures (84.4.2). The age and origin of thesmsions are debated. Three scenarios can be prpose

based on regional geological knowledge:

(1) Carboniferous to Early Permian (Karoo) glacial smmns filled by post-glacial lacustrine
sediments (Ecca-type facies). This scenario is g by numerous evidences of glacial
valleys on the Congolese side of the EARS describedeveral authors (e.g. Cahen and
Lepersonne, 1981; Linol et al., 2015) since the kwof Boutakoff (1948), and by the
occurrence of Early Permian glacio-lacustrine sedits north of Lake Victoria (Entebbe area;
Schlueter et al., 1993). In this scenario, theseigl valleys were later faulted during the
Triassic extension, a widespread episode of defioomavell known in eastern and southern

Africa (e.g. Catuneanu et al., 2005).

(2) A fluvial origin (bedrock channels) recording a {oifé¢ drainage flowing toward the Atlantic
Ocean, as suggested by de Heinzelin (1962) and bgtether authors (e.g. Pickford et al.,
1993). The age of this network is not properly knobut should be older than the Early

Miocene and not the Pliocene as suggested by deélai (1962).

(3) Structures controlled by normal faults during tlaeliest stage of the rift as supported by the
occurrence of the first extensional geometries,£S2,) in the same area (south of Lake

Albert).

The weathering profile (laterite) corresponds tolkdtized basement rocks (5 to 20m thick in
several wells). These laterite profiles are welbwn on both sides of the rift and are related to
African-scale climatic events (Beauvais et al.,0urke and Gunnell, 2008; Chardon et al., 2006).
They were first described in Uganda by Ollier (1p@&dd characterized at the Ugandan scale by
McFarlane (1976) and Taylor and Howard (1998). linG@ongolese side, they are dated as Paleocene
- Early Eocene using cross-cutting relationshipth whe volcanic rocks of the Cameroon Volcanic

Line (Guillocheau et al., 2015). These ages arsisteant with the absolute dating performed in West-



Africa by Beauvais et al. (2008). These weathenmgfiles are associated with humid periods

recorded around the Early Eocene Climatic Optimum.

4.5.2Uppermost Early Miocene To Late Miocene (17.0 £ 0.Blato 6.2 £ 0.2 Ma; Si-
S3n): low extension phase
The first sediments are preferentially located lsanft the Ngassa fault where up to 2300m of
accommodation space is created according to a naerof 150-250 m/Ma. In the early times (time
interval 1a; Sd, - S2,), the accommodation is controlled by the faultthie southern Lake Albert
Basin, as illustrated by the moderate thicknessatrans on each side of the major faults (e.g.

Rwenzori fault; Figs. 8 & 9).

The sedimentary infilling (cycles C1, C2 and tramesgive half-cycle C3; Fig. 6) consists of
lacustrine deposits (from distal "deep" facies éitaic mouth bars and flood lobes), sometimes with
fluvial deposits that are only observed on the B&isnya flat and in the northern Butiaba (Fig. 83la
associated with the MRS. The C2 and C3 transgredslf cycles correspond to two major organic

matter-rich lacustrine floodings (Fig. 6).

The main remaining questions are (1) the tectoatane of the basin at this time (rift vs. flexural
basin) and (2) its geographical extension comptydtle present-day Lake Albert, with a larger lake

at the time of deposition that later collapsecattime of the true rifting.

(1) The main depocenter locations (Fig. 8, time intetyaare not clearly controlled by the faults,
suggesting a flexural deformation regime rathenthgure extension controlled by the major
bounding faults. This is supported by the low accmdation rate during this time interval
which ranges from 125 m/Ma to no more than 250 m/Ma

(2) The arguments for a larger basin extension thapithgent fault bounding the Lake Albert rift
are:

- a northern large flexure, as stated above, suggestipossibly larger basin than the
present-day Lake Albert;
- the presence of lacustrine distal facies at the winthe major lake flooding close to the

present-day bounding faults (Toro-Bunyoro faulgs-i2 & 8), along the Kaiso-Tonya flat



(well 3 and well 4; Fig. 3), indicating a shorelilogated beyond the present-day bounding
faults;
- the absence of a true alluvial fan along the Kdisaya flat, close to the present-day

border of the rift.

From a climatic point of view, this time intervaéaords two humid periods, the second one
corresponding to large-scale forest developmemtrdea from Niger to East Africa and dated around

7 Ma (forest-phase; Bonnefille, 2010; Fig. 6).

These results question the age of the beginninthefsedimentary basin formation and of the
initiation of the significant rifting. Previouslthe rifting was considered as having initiated he t
Uppermost Middle Miocene and Upper Miocene coevih whe initial Virunga volcanic episode
(12.6 - 9 Ma, Kampunzu et al., 1998 and literathezein), following a "pre-rift" phase consistinfjao
shallow downwarp in Middle Miocene times (Pickfoet al., 1993). Our work shows that
sedimentation began as soon as the Uppermost Hashene (17.0 + 0.8 Ma) in this downwarping
(or flexure) which probably results from lithospicestretching and thinning responsible for the loca
evidence of early and minor normal faulting obsdrwe the infilling from the Uppermost Early

Miocene (17.0 £ 0.8 Ma) to Late Miocene (6.2 + Ma).

4.5.3Late Miocene To Lower Pleistocene (6.2 £ 0.2 Ma &7 + 0.2 Ma; S3,-S4yn,): first
rifting phase
The transition with the previous interval coinciodeish a sharp basin-scale unconformity (surface
S3,,). This time interval is characterized by a higlh@aomodation rate (up to 800 m/Ma; Fig. 7) and

the location of the main zones of subsidence ané@ited by the faults (Fig. 8).

The sedimentary infilling (C3 regressive half-cyaled cycle C4; Fig. 6) mainly consists of distal
shallow lacustrine facies passing laterally to aeliand fluvial facies. Above the $4looding, the
progradational trend results from an infilling dfetbasin by littoral (Fa4) to fluvial (Fa5) depssit
coeval with a sand enrichment and an increag®aceae pollens(Fig. 6). The unconformities (S4

and S4,,) are associated with the rapid disappearan&ediistrum in favor ofPoacea (Fig. 6).



The remaining question is the nature of the deftionaegime, pure extensional or oblique. Some
authors have previously argued for such an oblexgension on the basis of possible splay geometries
of a few faults (negative and positive flower stares; Abeinomugisha and Kasande, 2012) and the
obliquity of Lake Albert in the framework of the stern branch (e.g. Abeinomugisha, 2003;
Abeinomugisha and Kasande, 2012; AbeinomugishaMugisha, 2004; Delvaux and Barth, 2010;
Logan et al., 2009). Nevertheless, our seismicrpnédations (Fig. 9) do not highlight either the
existence of clear flower structures (when lookaghe 1:1 exaggeration scale) or an en echeldn fau

pattern, thus making it difficult to come to a clusion about a possible major strike-slip component

The high subsidence rates (600-800 m/Ma; Fig. @) the location of the depocenters down the
major faults (Fig. 8) argue for a rifting phaseeThck of typical rift structures (e.g. growth s&rand

tilted blocks; Fig. 9) could be explained by theetce of shallow decollement levels.

4.5.41L ower Pleistocene (2.7 £ 0.2 Ma, $#) to Present Say: second rifting phase
The transition to the last stage corresponds toagomunconformity (S3.). Sedimentation
occurred along two major depocenters located tatith-west, between the Bunia and Butiaba faults
and to the south-west, down the Rwenzori fault. fie&an accommodation rates decrease from 400 to
200 m/Ma (Fig. 8). The infilling (C5) is dominatdyy shallow lacustrine to fluvial deposits and the
locations of the depocenters, combined with thesisi@imce rates, argue for a second rifting phase

controlled by normal faults (Fig. 8).

The basal unconformity (§3) is related to the uplift of the Rwenzori Mountiand, probably,

the Blue Mountains as indicated by:

(1) the field mapping and paleontological dating of #ezlimentary succession of the Kisegi-

Nyabusosi area (Pickford et al., 1993), which iaths tilting and truncation at this time;

(2) the thermochronological data (Bauer et al., 2008522012, 2010a; MacPhee, 2006) showing

a major exhumation phase for the Rwenzori Mountatriee Pliocene-Pleistocene interface;

(3) the occurrence oPodocarpus pollen which develop at an elevation higher tha®Qig,

confirming the growth of a close relief (i.e. thevéhzori and Blue Mountains).



These vertical movements are coeval with the uplfithe present-day flats (or terraces; e.g. Kaiso-
Tonya) bounded by the Butiaba and Toro-Bunyorot$aaihd the uplift and tilting of the northeastern

part of the rift, the Butiaba area.

The S4,, unconformity can also be correlated with a majoage of aridity that is well identified

around 2.5 Ma (Bonnefille, 2010; Fig. 6).

During the Middle Pleistocene: (400 Ka), a second period of deformation and retiefation
occurred with the flexuration of the Tanzanian @nain response to the uplift of both the western
branch (Bauer et al., 2015, 2012, 2010a, 2010b)eastern branch of the East African Rift System
(Gregory Rift and North Tanzanian Divergence; Baleal., 1978; Fairhead et al., 1972; Foster et al.
1997; Le Gall et al., 2008). This corresponds tmajor drainage inversion and the creation of the
Lake Victoria local base level (Pickford et al. 989 Talbot and Williams, 2009; Taylor and Howard,
1998; Williams et al., 2003). This could be thewgifo period for the present-day Ugandan escarpment
of the Albert Rift with reactivation of the Toro-Bworo and Tonya bounding faults, as suggested by

the perched incised valleys observed at the tapeo$carp.

5. DISCUSSION

The question here is whether to discuss the looalEARS-scale meaning of the periods of
deformation pattern changes in the Lake Albert Bamiound 17.0, 6.2 and 2.7 Ma. From this
perspective, we have summarized the evolution efdifferent basins in the EARS based on the
tremendous amount of publications that have fogugedbasin, on (1) the dated volcanism, (2) the
sedimentary succession, (3) the known unconformieording changes of deformation and (4) the
denudation periods provided by the thermochronoldgilata (Fig. 11). Unfortunately, no absolute

ages are available for two major non volcanic ritte Tanganyika and Malawi Rifts.

5.1. UPPERMOST EARLY MIOCENE (17.0 Ma)
The first period dated at 17.0 Ma (late Early Miogg i.e. initiation of the subsidence in the Lake
Albert Basin — low and diffuse extension), is refms on the northern part of the East African Dome

along the eastern branch of the EARS in centralsandhern Kenya and in the Anza Rift. This is not



the case in the northern Kenya rifts (Turkang, on the gap between the Ethiopian and East &iric

Domes, where it is not recognized.

In the Anza Rift (Morley et al., 1999a), this capends to the end of the subsidence of the basin
under a strike-slip tectonic regime characterizg@ Imajor unconformity and the last marine flooding

in the area.

In central Kenya (South-Kerio and Baringo-Bongohasins), the Uppermost Early Miocene is
associated with the end of a first depositionaiqeeof unknown age which possibly filled a first
graben (Kimwarer and Kamego Formations; e.g. Chaparad Brook, 1978; Hautot et al., 2000;
Tiercelin et al., 2012) overlapped by volcanicggésio and Samburu basalt, Uasin-Gishu, Sidekh and
Tim phonolites) onlapping both sides of the presi@arly sedimentary basin with a clear flexural
pattern (Baker, 1987; Chapman and Brook, 1978; ¢laeit al., 2000; Mugisha et al., 1997). This
period is also coeval with the first occurrencevoicanism (Kishalduga nephelinites;16 Ma) in
southern Kenya, in the area of the Upper Miocereg@y Rift (Crossley, 1979; Crossley and Knight,

1981).

5.2. LATE MIOCENE (6.2 Ma)
The initiation of significant rifting at 6.2 Ma (e Miocene) in the Lake Albert Basin (Rift stage 1)
can be related to a set of deformation events mgnfiom 7.5 to 6 Ma (with a lot of dating
uncertainties) on the East African Dome, from tleetiern Kenya basins to the northern Tanzania

basins, along the eastern branch and up to the &Bwin the central part the western branch.

In the northern Kenya basins, this period corredpda the beginning of the outpouring of the Gombe
Basalt which follows a hiatus of 6 Ma in both treoanic and sedimentation record in the Koobi Fora
Sub-basin (Nabwal Hills; north-east of the presday-Turkana Rift; McDougall and Watkins, 2006,
1988). This can also be the age of the discontirhgtween the Nawata and Nachukui formations in
the Lothagam area (south-west of the present-dayaia Rift; McDougall and Feibel, 1999). In the
central Kenyan Rifts, this period of deformatiorulcbbe recorded by the unconformity occurring at

the base of the Kabernet Trachyte in the Tuges kilhapman et al., 1978; Chapman and Brook,



1978). In the Rukwa Rift, the Late Miocene couldrespond to the beginning of a second period of

rifting (Morley et al., 1999b; Roberts et al., 202P10; Wescott et al., 1991).

In central Kenya, thermochronological data indisatee denudation and uplift of the rift flanks

between 7 and 4 Ma on the eastern side and betwaed 2 on the western side (Spiegel et al., 2007).

5.3. PLIOCENE-PLEISTOCENE TRANSITION (2.7 Ma)
The change in rifting mode in the Albert Rift reded at 2.7 Ma (Pliocene-Pleistocene transition;
coeval with the uplift of the Rwenzori Mountaing,not easy to relate to one precise deformation
event occurring along the East African Dome becaidhe several tectonics pulse (and associated

unconformities) and deformation pattern changesroszl in both the western and eastern branches.

It could be related to the reactivation of thengfiin the Baringo-Bongoria Rift in central Kenya
(Chapman and Brook, 1978; Hautot et al., 2000; bl & al., 2000; Morley et al., 1992) or to the
different stages of extension recorded in the Isasfrthe North Tanzanian Divergence (2.5 and 1.5

Ma, Natron, Manyara and Eyasi Basins; Foster e1887; Le Gall et al., 2008)

Taking into account an error bar=f Ma, the main unconformities of the Lake AlbersBaseem to
occur at the East African Dome scale, even ifhistitnoment, it is impossible to infer and charazeer
the regional deformation changes at the time afeéhenconformities. A second interesting result is
that the basins of both branches experienced the gaometrical evolution from large basins with
limited fault controls during the Late Miocene tarrow true rifting in the Late Pleistocene (norther
Kenya basins: Evans, 2013; Central Kenya BasigsGhapman et al., 1978), in agreement with the
volcanism distribution, which was large (width >01Km) during Miocene times, narrower (width x
10 km) from Late Pliocene to Pleistocene timesiaridday limited to narrow rifts (Baker and

Wohlenberg, 1971).



CONCLUSIONS
In the present work, we have proposed a new reatisin of the tectono-sedimentary evolution
of the Lake Albert Basin based on a re-evaluatibthe outcropping data (sedimentary facies and

biostratigraphic data) and on an exceptional sdaserdataset. We were able to:

- carry out the first sequence stratigraphic framdéwor one of the East African Rifts (the Lake
Albert Rift) defining the major stratigraphic surés (maximum flooding and unconformities)
and cycles on the basis of outcrops, well-logsckitey pattern) and pollen/spore trend (proxy

of the lake level variations) correlations,

- propose an age model based on the onshore mamioatsiés propagated at the basin-scale
by onshore — offshore correlations and climatogfraphy (palynology and sequence

stratigraphy),

- quantify the accommodation (as a proxy of subsidgegolution though time using all of the

previously mentioned data.

On the basis of biostratigraphical studies, eaglyasition in the Lake Albert Basin occurred during
Early Miocene times (17.0 Ma), much older than lthée Miocene age previously considered on the

basis of volcanic events and old biostratigraphécgs.

The infilling essentially consists of lacustringpdsits wherein two major unconformities dated at
6.2 Ma (Uppermost Miocene) and 2.7 Ma (PliocenasRieene boundary) were characterized, coeval

with major subsidence and climatic changes.

Combined with the fault analysis, the evolutiontloé subsidence and its distribution highlight a

four-step evolution of the Lake Albert Basin:

- Incision of the basement of unknown origin and lagieprior to the Early Miocene.

- 17.0 to 6.2 Ma: the flexural basin was potentidilyger than the present-day rift and was

infilled by organic-rich lacustrine deposits.



- 6.2 to 2.5 Ma: first phase of rifting characterizegl high subsidence rates in depocenters

controlled by the fault.

- 2.5 to 0 Ma: a second rifting phase following thdifti of the Rwenzori Mountains and,
potentially, the Blue Mountains. The locations lo¢ depocenters are controlled by the major

faults and predominantly located in the central smathern part of the basin.

The specificity of the Lake Albert Basin is its geetrical configuration. Actually, it consists of
isopach fault-bounded units with no clear charéties of a rift (i.e. tilted blocks, growth stratiaut
with relatively high subsidence rates, possiblygasging low extension rates and a lack of a shallow

decollement level.
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FIGURE 1: (2 columns fitting image)

Figure 1: The East African Rift System and its western branch. Morphological and Cenozoic

geological settings of the East African Rift System (Fig. 1a) and geological features of the

western branch from the Archean (cratons) to Mesozoic (Karoo basins) and Cenozoic (East

African rifts) (Fig. 1b). Faults and geological contours from Chorowicz (2005), Le Gall et al.

(2000, 2004, 2005), McCarthy (2005) and the Tectonic map of Africa, Milesi et al. (2010).
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FIGURE 2: (2 columns fitting image)

Figure 2: The Albertine Rift System. Geological and structural map of the Albertine Rift

system from the Azwa lineament to the Virunga volcanic province. Geological contours,

faults and structural lineaments modified after MacDonald and the Department of Geological

Survey and Mines of Uganda, 1966 and GTK Consorsium, Jenett et

al. (2009).
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FIGURE 3: (1.5 column fitting image)

Figure 3: Location map of the interpreted data. The wells and field-sections are localized
onshore on the Ugandan side of the Lake Albert Basin. Wells 1 to 5 correspond to petroleum

exploration wells while wells A and B are fictive wells interpreted from the seismic data.

T
n L o3s

3(;,5
@ Interpreted well
@ Well interpreted in term of West-Nile @
accommodation area \

O Measured field section
OQutcropping area

9 S5l

:p@° 7

@ bt
U ]
7 ogWell5o

] Regional sections
(5) - Interpreted from 20 seimic ines

—  Uganda/DRC border
=== Major faults ¥ @
1 Buniafault system o
2 Toro-Bunyoro fault system
3 Tonya fault system
4  Butiaba fault o
5 Ngassadault Zah
6 Semliki fault 7 -~
7 Rwenzori fault ',, 4, Vg @ ';
4 >
# Well B <
4 a
DEMOCRATIC REPUBLIC -~ y
OF CONGO % 3 -
o Y a
1 o", ' /" ¢",
I Wellh g 3B o
L ¢ Kaiso-Tonya o
' O :')6 ’c"/ relay-ramp =
4 d
y Well 3
J
e
I"‘
@ Well2
4
£ UGANDA

-Nyabusosi
area 0 10 20 40Km
T —




FIGURE 4: (2 columns fitting image)

Figure 4: Main characteristics of the

litho-facies associations.

Main depositional

environments, lithologies, palynomorph and well-log signatures of the five facies associations

identified on the outcrops and wells.

FACIES ASSOCIATION 1 (Fa1): Distal "deep" lacustrine

0 Gamma-Ray 200 0.75 Porosity 0.15

1.7 Density 2.7
. . Bioturbation & Process of formation A
Lithology and granulometry Sedimentary structures biological content Interpretation Well-logs facies signature
Homolithic and massive or Few ferrugineous nodules and concretions; - Botryococcus algae - Decantation I”‘“ \ iz
horizontally laminated dark tolight ~ diagenetic gypsum - Rare in-situ freshwater bivaves - Distal lake i
grey clays - Organic-rich (carbonaceous) i iz 3
Cylindrical and homolithic to slightly silty
N " " . heterolithic facies; high radioactivity (clays)
FACIES ASSOCIATION 2 (Fa2): Proximal "shallow" lacustrine
. : Bioturbation & Process of formation e
Lithology and granulometry Sedimentary structures biological content Interpretation Well-logs facies signature
- Alternation of grey clays, silty clays - Clays: massive or horizontally laminated - Occasional vertical and/or horizontal - Decantation perturbated 7
and thin beds (1-20cm) of fine to - Sands: most of the time massive; rare burrows in sand by floods I 3
medium sands unidirectional current ripples or megaripples - Most of the time monospexcific; rare beds - Shallow lake <
- Poorly sorted sands cross-bedding, horizontal bedding showing plurispecific bioturbations - —a
- (lay dominated - Pediastrum algae High variations (thin peaks) of radioactivity
- Locally organic-rich (gamma-ray) and porosity values. Funnel shape
. of gamma-ray (coarsening upward trend)
FACIES ASSOCIATION 3 (Fa3): Lacustrine delta
. : Bioturbation & Process of formation A
Lithology and granulometry Sedimentary structures biological content Interpretation Well-logs facies signature
- Fine- to coarse-grained (a) Current ripple and megaripple (30) - Occasional monospecific bioturbation - Lacustrine delta:
sandstones; predominantly cross-bedding; decimetric set; localized (vertical burrows) subaquatic distal
medium- grained (decimetric to reactivation surfaces and interbedded clays - Pediastrum algae in layey interval mouth-bars
plurimetric beds; 20cm - 2-3m) (b) Climbing ripple and megaripple and 30/2D
- Well sorted, occasional coarsening garipples cross-bedding d on sand =2
upward trend bars -> (compound cross-bedding); - el shapes (comsening p trenkl); sandy
(a) and (b): top of bed-set locally consisting of N -
. heterolithic facies. Sharp radioactive top (clays)
by-passing surface (peeble level)
FACIES ASSOCIATION 4 (Fa4): Lacustrine shoreline
. . Bioturbation & Process of formation A
Lithology and granulometry Sedimentary structures biological content Interpretation Well-logs facies signature
- Massive fine- to medium-grained - Current and avalanching ripple/megaripple - Very bioturbated; horizontal and vertical - Lacustrine shoreline Similar to Fa2 electro-facie due to numerous
clean and well sorted sandstone cross-bedding burrows, plurispecific bioturbation - Lacustrine embayment interstratifations of dlayey intervals (Fa1)
(decimetric to metric beds) - Local coquina (gastropods debris)
FACIES ASSOCIATION 5 (Fa5): Lacustrine coastal plain
. . Bioturbation & Process of formation A
Lithology and granulometry Sedimentary structures biological content Interpretation Well-logs facies signature
- Dark-grey to green massive clays, ~ None - Rare burrows (insect?) - Decantation IM ,,’.f
locally silty - Plant remains, lignite (cuticles, wood - Lacustrine coastal plain: § X9
- Few hydromorphic soil debris) marshes, ponds Bell and cylindrical shape; low density, high
- Poaceae, graminae - Water saturation porosity and radioactivity (lignite and clays)
FACIES ASSOCIATION 6 (Fa6): River channel
Lithology and granulometry Sedimentary structures Bioturbation & Process of formation Well-logs facies signature
biological content Interpretation
- Very coarse- to medium-grained - Megaripples (2D) cross-bedding in decimetric Rare burrows (insect?) - Bedload
reddish sandstones (decimetric to laminasets - Distributary channel of a
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FIGURE 5: (2 columns fitting image, landscape orientation)

Figure 5: Basin-scale correlations. Examples of correlated wells along the Lake Albert Basin.
Correlations were performed with respect to the sequence stratigraphy method and paleo-
environmental data (palynomorph, example in Figure 6 for well 1). The locations of the wells

and outcrops are given in Figure 3.
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FIGURE 6: (2 columns fitting image, landscape orientation)

Figure 6: Age model of the Lake Albert Basin sedimentary infilling. Ages of the seven
stratigraphic surfaces interpreted from field and subsurface analyses. The biostratigraphic
ages are compared to the paleo-environmental (palynomorph; Total, pers. comm.) and

regional climatic chart (Bonnefille, 2010).
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FIGURE 7: (2 columns fitting image)

Figure 7: Accommodation and associated accommodation rate evolution of the Lake Albert
Basin. The accommodation is measured using the backstripping method on five exploration
wells (wells 1 to 5) and two fictive wells (wells A and B) interpreted from the seismic data.

See Figure 3 for the location of the wells.
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FIGURE 8: (2 columns fitting image)

Figure 8: Isopach and sedimentation rate maps of the Lake Albert Basin. Compilation of

thickness (isopach) and sedimentation rate maps for three time intervals (T1, T2, T3).
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FIGURE 9: (2 columns fitting image; 9b :landscape
orientation)

Figure 9: Regional sections. Transverse (Fig. 9a) and longitudinal (Fig. 9b) regional sections

of the Lake Albert Basin based on the interpretation of the 2D seismic lines. See Figure 3 for

the location of the sections.
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FIGURE 10: (2 columns fitting image; landscape
orientation)

Figure 10: Synthetic chart of the Lake Albert Basin evolution. Climatic chart from Bonnefille
(2010) and ages of the volcanic episodes in the western branch from Ppuclet el al. (2016)

and Kampunzu et al. (1998; and literature therein).
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FIGURE 11: (2 columns fitting image; landscape
orientation)

Figure 11: Synthetic chart of the initiation and main stages of evolution of the rift basins of
the western and eastern branches of the East-African Rift System based on the age of their

sedimentary and volcanic infilling (based on a bibliographic synthesis, references in the

figure).
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RESEARCH HIGHLIGHTS

» Early deposition in the Lake Albert Basin occurred during Early Miocene times (17 Ma), much
older than the Late Miocene age previously mentioned.

* The sedimentary infilling essentially consists of sub-aguatic lacustrine deposits wherein major
unconformities related to subsidence and climatic changes were characterized.

» The Lake Albert Rift evolution consists of three major steps: (1) low and diffuse extension from
17.0t0 6.2 Ma, (2) firgt phase of rifting from 6.2 to 2.5 Maand (4) second rifting phase and uplift
of rift shoulder from 2.5 and 0 Ma.



