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Abstract 1 

A wide range of methods are available to quantify Earth's surface vertical movements but most of 2 

these methods cannot track low amplitude (< 1 km, e.g. thermochronology) or old (> 5 Ma, e.g. 3 

cosmogenic isotope studies) vertical movements characteristic of plate interiors. The difference 4 

between the present-day elevation of ancient sea-level markers (deduced from well dated marine 5 

deposits corrected from their bathymetry of deposition) and a global sea-level curve are sometimes 6 

used to estimate these intraplate vertical movements. Here, we formalized this method by re-7 

assessing the reliability of published global sea-level curves to build a composite curve that combines 8 

the most reliable ones at each stage, based on the potential bias and uncertainties inherent to each 9 

curve. We suggest i) that curves which reflect ocean basin volume changes are suitable for the ca. 10 

100 to 35 Ma "greenhouse" period ii) whereas curves that reflects ocean water volume changes are 11 

better suited for the ca. 35 to 0 Ma "icehouse" interval and iii) that, for these respective periods, the 12 

fit is best when using curves that accounts for both volume changes. We used this composite sea-13 

level curve to investigate the poorly constrained Paleogene to Neogene vertical motions of the 14 

Armorican Massif (western France). It is characterized by a low elevation topography, a Variscan 15 

basement with numerous well dated Cenozoic marine deposits scattered upon it. Using our method, 16 

we identify low amplitude vertical movements ranging from 66 m of subsidence to 89 m of uplift 17 

over that time period. Their spatial distribution argues for a preferred scale of deformation at 18 

medium wavelengths (i.e., order 100 km), which we relate to the deformation history of 19 

northwestern European lithosphere in three distinct episodes. i) A phase of no deformation between 20 

38 and 34 Ma, that has been previously recognized at the scale of northwestern Europe, ii) a phase of 21 

low subsidence between 30 and 3.6 Ma, possibly related to buckling of the lithosphere and iii) a 22 

phase of more pronounced uplift between 2.6 Ma and present, which we relate to the acceleration 23 

of the Africa-Apulia convergence or to enhanced erosion in the rapidly cooling climate of the 24 

Pleistocene. 25 

  26 
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1. Introduction 29 

Characterizing the Earth's surface vertical movements, i.e. its uplift and subsidence, by quantifying 30 

their amplitude and wavelength, and deciphering the nature of the processes responsible for these 31 

movements remain challenging questions for the geoscientist. These movements often result from 32 

lithospheric-scale deformations, which range in scale from short (× 10-6 – x 101 km) to long 33 

wavelengths (× 103 – x 105 km; Şengör, 2009). Plate boundaries, where topography commonly takes 34 

the form of narrow mountain belts and rifts, are characterized by short-wavelength deformation 35 

processes (e.g. faulting) where the amplitude of deformation often exceeds its wavelength (Bishop, 36 

2011). Conversely, in plate interiors, where topography takes mostly the form of large plateaus 37 

surrounded by plains, hills and flat sedimentary basins, medium (x 102 km) to long (x 103 km) 38 

wavelength deformation processes dominate, where the amplitude of deformation is two to three 39 

orders of magnitude smaller than its wavelength (i.e. × 102 m). The processes thought to be 40 

responsible for medium wavelength deformation are lithospheric buckling, crustal loading or 41 

underplating (Watts, 2001; Anell et al., 2009) and, for the longest wavelength deformation, mantle-42 

driven processes such as dynamic topography – the vertical deflection of the surface topography 43 

(gravitational stresses) required to balance the viscous stresses in the flowing mantle at the base of 44 

the lithosphere (Braun, 2010; Molnar et al., 2015). 45 

A wide range of methods, such as low-temperature thermochronology (Apatite Fission Tracks 46 

Analysis, for example), cosmogenic isotopes and OSL (Optically Stimulated Luminescence) studies 47 

were developed and used to quantify denudation at plate boundaries where uplift leads to 48 

substantial erosion and rock cooling. Unfortunately, these methods cannot be readily used in most 49 

plate interiors, because the vertical movements and associated denudation are often i) too low to be 50 

quantified by thermochronology or ii) too old (> 5 Ma) to be recorded by cosmogenic isotopes or OSL 51 

methods. Consequently, little attention has been paid to the non- or post-orogenic uplift and 52 

subsidence of plate interiors, characterized by low elevation plateaus and other small amplitude 53 

topographic features. 54 
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Recently, several studies have attempted to estimate the amplitude of vertical movements in 55 

continental interiors from the difference between the present-day elevation of dated ancient sea-56 

level markers and their respective initial elevations (e.g. Bétard, 2010; Braga et al., 2003; Dorsey et 57 

al., 2011; Pederson et al., 2002; Peulvast and Bétard, 2015). The modern elevations of ancient sea-58 

level markers are deduced from the elevations of well dated marine deposits corrected from their 59 

bathymetry at the time of deposition (corrected for sediment load and compaction effects in thick 60 

sedimentary series, e.g. Dorsey et al., 2011). The initial elevation of ancient sea-level markers can be 61 

inferred from any given global sea-level curve. Such a method is suitable for quantifying low 62 

amplitude vertical movements typical of intraplate domains and associated low elevation 63 

topography, but its results strongly depend on the assumed global sea-level curve used to infer the 64 

past sea-level elevation. This is especially true when the inferred amplitude of deformation is less 65 

than 200 meters, because of the large discrepancies that exist between several published sea-level 66 

curves (e.g. up to 200 m between the Haq et al. (1987) and Miller et al. (2005)'s curves during the 67 

Upper Cretaceous), which has led many to question their validity (e.g. Moucha et al., 2008; Müller et 68 

al., 2008; Miall, 2010).  69 

The main purpose of this study is to improve and formalize this simple method of quantifying the 70 

timing and amplitude of vertical movements in low elevation areas where thin marine sedimentary 71 

veneers are preserved, by taking into account uncertainties on bathymetry estimates and global sea-72 

level elevation at the time of deposition. As an accurate knowledge of global sea-level changes 73 

through times is a cornerstone in this method, we have re-assessed the reliability of many curves 74 

published since the pioneering work of Haq et al. (1987). We then constructed a composite sea-level 75 

curve by combining the most reliable intervals of several curves, taking into account the potential 76 

bias and uncertainties inherent to the methods used to build each curve. We then applied the 77 

method to compute improved estimates of uplift and subsidence of the Armorican Massif during the 78 

Cenozoic. 79 
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The Armorican Massif is one of numerous Paleozoic (Caledonian and Variscan) basement blocks of 80 

western Europe characterised by low to moderate elevation plateaus such as the Massif Central, the 81 

Rhenish Massif, the Bohemian Massif or the Scottish Highlands. Most of these basement blocks have 82 

experienced several episodes of burial and exhumation in the Mesozoic and/or Cenozoic (i.e. long 83 

after their post-orogenic planation; e.g. Barbarand et al., 2013). This is the case for the Armorican 84 

Massif (Bessin et al., 2015), that is part of the Variscan Belt (Ballèvre et al., 2009). This low relief and 85 

low elevation topographic feature was twice buried then exhumed between Jurassic and Paleocene 86 

times in response to relative movements between Iberia and Eurasia. However, as other western 87 

European basements, its Paleogene to Neogene uplift/subsidence and deformation history is still 88 

poorly constrained (Bessin et al., 2015) despite the presence of numerous well dated Cenozoic 89 

shallow marine deposits scattered upon it. The Armorican Massif is therefore an ideal place to use 90 

our method and derive from it improved estimates of the timing and amplitude of surface vertical 91 

movements. Using these estimates, we discuss the possible driving mechanisms responsible for these 92 

uplift/subsidence events in the framework of the recent tectonic history of western Europe. 93 

 94 

2. Calculation of vertical movements: methodology 95 

 96 

2.1 Principles 97 

Plate interiors often preserved scattered remnants of marine sediments as thin sedimentary veneers 98 

(up to x 1 m to 10-20 m thick). Their occurrence and preservation are function of three parameters: i) 99 

global sea-level changes, ii) surface uplift and subsidence and iii) sedimentary flux that can drive 100 

further subsidence (Posamentier et al., 1988). In low preservation environments (e.g. most of 101 

western Europe Variscan massifs), this latter driver can be disregarded as sedimentary thicknesses 102 

are usually low (< 50 m) and the additional subsidence they can generate by isostasy or compaction 103 

is negligible (Allen and Allen, 2013). Areas where no section is missing should be privileged to limit 104 

the uncertainty associated with unknown amounts of erosion. In this case, the presence of a marine 105 
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sediment can be related to global sea-level changes and surface uplift or subsidence events only. 106 

Consequently, the difference between the modern elevation of a marine sediment and an estimate 107 

of its initial elevation, i.e. at time of deposition, can be regarded as an accurate estimate of the sum 108 

of all vertical movements it recorded until present (finite vertical movement). To compute this 109 

vertical movement, one needs to accurately measure: 110 

- the age of the marine sediment, which is commonly obtained from its fossiliferous fauna and 111 

flora contents (biostratigraphic markers); 112 

- the bathymetry under which this sediment was deposited, which is also constrained by its 113 

fossiliferous fauna and flora content (palaeo-environmental markers) together with 114 

sedimentary facies; 115 

- the global sea-level at the time of sediment deposition, which we will obtain from a 116 

compilation of reliable global sea-level curves (as discussed in §3.3). 117 

The uncertainty on the estimate of vertical movement can also be obtained from uncertainties on 118 

estimates of paleo-bathymetry and global sea-level height, together with the uncertainty on the age 119 

of the marine deposit.  120 

 121 

2.2 Finite vertical movement calculation  122 

For a given dated marine sedimentary remnant    deposited in a low preservation environment, the 123 

vertical displacement it recorded from its deposition at time    to present-day ( 
 
), hereafter called 124 

finite vertical movement (fvm), is 125 

(1)                   
 –         

thus, 126 

(2)                   
 –            

 127 
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where      
 is its present-day elevation,     the global sea-level elevation at    (with respect to 128 

present-day global sea-level) and    the bathymetry under which    was deposited (Fig.1). For each 129 

location, we do not estimate a single value but a range of          by considering a range of past 130 

bathymetric estimates and a range of global sea-level values. The former is related to the uncertainty 131 

in bathymetry inherent to using palaeo-environmental markers and sedimentary facies of   . The 132 

latter is due to errors in global sea-level (amplitude) which have to incorporate the uncertainties in 133 

the ages of the marine deposits (timing). Theses ranges of bathymetry and global sea-level lead to 134 

estimates of fvm minimum (            ), mean (             ) and maximum (            ) 135 

values, which are obtained from (uplift case) 136 

(3)    
         

     
  

 –    
     

    
       

(subsidence case:             ) 137 

(4)                      
–                                138 

(5)                    
 –                     

(subsidence case:             ) 139 

where         and        are the minimum values of sea-level and bathymetry at    , respectively,  140 

        and        correspond to the maximum value of sea-level and bathymetry at   , respectively, 141 

and          is the mean value of global sea-level at    (Fig.1). These fvm computations were 142 

performed using several global sea-level curves currently available (e.g. Haq et al., 1987; Miller et al., 143 

2005; Kominz et al., 2008; Müller et al., 2008; Rowley, 2013) in order to define a range of possible 144 

sea-levels for any given time in the past and thus the related range of fvm values (Fig.1). 145 

 146 

2.3 Quantification of successive vertical movements through times and surface elevation restoration 147 

Each fvm quantified may integrate or "stack" several phases of uplift and subsidence which can be 148 

dissociated in some places. Indeed, some topographic surfaces, such as basement flats or lows, may 149 

have recorded several marine flooding events through time and low preservation marine deposits of 150 

different ages can therefore be preserved on these surfaces. As a consequence, if two remnants    151 
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and    
deposited at    and    (   being older than   ), respectively, are found close to one another 152 

upon a same topographic surface (and in the absence of faulting or subsequent erosion), they both 153 

underwent the same fvm from    to present-day ( 
 
),         , implying that the fvm recorded by    154 

from    to    
 
is 155 

(6)                       
 –           156 

Moreover,       the elevation of    
(i.e. of the flooded topographic surface) at    

can be restored 157 

from the equations (1) and (6): 158 

(7)                    
 –                   

thus, 159 

(8)                
 –           160 

Its range are computed from          
uncertainties, and therefore derived from the equations (3), 161 

(4) and (5) : 162 

(9)                   
 –                 (subsidence:           ) 163 

(10)                     
 –                 164 

(11)                    
 –                 (subsidence:           ) 165 

where          ,            and           are the minimum, the mean and the maximum elevation of 166 

   
at   , respectively. These computations were applied to a dataset from the Armorican Massif, 167 

using several global sea-level curves as discussed hereafter (see §3.3) in order to restore ranges of 168 

successive elevations of several topographic surfaces, and constrain the amplitude and rate of their 169 

vertical movement through times. 170 

 171 

3. A new compilation of available global sea-level curves for Mesozoic to Cenozoic times 172 

 173 
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3.1 Global sea-level change driving-factors 174 

Several short-term (100 – 104 yr) to long-term (106-109 yr) processes may lead to global sea-level 175 

fluctuations through times by changing i) ocean water volume or ii) ocean basin volume (Miller et al., 176 

2005; Miller et al., 2011; Conrad, 2013). 177 

Ocean water volume changes are mainly due to short-term (101– 104 yr, e.g. Milankovitch cycles) 178 

processes, chiefly ice sheet volume variations (up to 200 m of amplitude) between "icehouse" and 179 

"greenhouse" periods and ocean water thermal contraction or dilatation which together define 180 

climato-eustasy (Miller et al., 2011; Conrad, 2013). Such fluctuations trends can be sustained for 181 

several million years due to long-term climate change trends. Lower amplitude  ≈ 5 – 10 m 182 

amplitude) changes in ocean water volume can also be induced by variations in continental water 183 

storage (lakes and groundwater) and desiccation or flooding of marginal sea (Miller et al., 2011). On 184 

longer time scales (109 yr), variations in global water distribution between the Earth's surface and the 185 

mantle also induce low amplitude global sea-level changes (20 – 40 m amplitude; Conrad, 2013). 186 

Ocean basin volume changes are mainly related to long-term driving factors (106 – 108 yr) and are 187 

chiefly induced by mid-ocean ridge volume variations (amplitude: 100-300 m), through variations in 188 

oceanic crust production and ridge length (Müller et al., 2008; Miller et al., 2011; Conrad, 2013) 189 

related to mantle convection and the dispersal and assembly of continents (Conrad, 2013). To a 190 

lesser degree, seafloor loading changes due to oceanic plateaus emplacement and removal or 191 

terrigeneous sedimentary flux fluctuations can affect global sea-level (with amplitudes up to ca. 60 192 

m; Miller et al., 2005). On longer time scales, dynamic topography can induce extremely slow (up to 1 193 

m.Ma-1) global sea-level changes of relatively high amplitudes (up to 200 m; Spasojevic and Gurnis, 194 

2012). On shorter time scales (103 – 105 yr), Glacial Isostatic Adjustment (GIA or postglacial rebound) 195 

also induces global sea-level changes (< 5 m amplitude since 120 kyr; Conrad, 2013; Miller et al., 196 

2011; Pedoja et al., 2011) but these can be neglected when considering global sea-level changes on 197 

longer time scales (> 1 Ma; Miller et al., 2011). 198 
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 199 

3.2 Compilation of available global sea-level curves 200 

Since the end of the 1970's, numerous and often conflicting global sea-level curves have been 201 

published, based on different assumptions and datasets, for Mesozoic to Cenozoic times. They are 202 

built using five main methods, including (data available in Supplementary Material S1 and plotted in 203 

S2): 204 

(1) Coastal onlap analysis based on the recognition and measurement of coastal onlap 205 

constrained by correlations of stratigraphic sequences using boreholes, outcrops and seismic 206 

data. This method was used by Haq et al., (1987 ; global dataset) and Haq and Al-Qahtani 207 

(2005 ; Arabian platform regional dataset).  208 

(2) Continental flooding estimates based on using global hypsometric estimates combined with 209 

estimates of continental flooding through time derived from paleogeographic datasets. This 210 

method was used by Rowley (2013), using data from four global paleogeographic datasets 211 

(Scotese and Golonka, 1992; Smith et al., 1994; Markwick, 2011; Blakey, 2012). 212 

(3) Backstripping based on estimating the effects of sediment compaction, sediment loading and 213 

water-depth changes on sedimentary records at high biochronostratigraphic resolution 214 

located in presumably stable areas such as continental passive margins. These sea-level 215 

datasets mainly come from the eastern US margin (Miller et al., 2005; Kominz et al., 2008).  216 

(4) A method based on ocean floor age-area and depth-area distributions where ocean basin 217 

volume changes are obtained from the distribution of ocean floor area with age and a 218 

relationship between age and bathymetric depth, derived from global geodynamic models. 219 

This method was used by Müller et al. (2008) and Spasojevic and Gurnis (2012). 220 
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(5) Oxygen isotopes (δ18O) proxies based on δ18O/δ16O ratio measurements of marine 221 

carbonates (foraminifera) which provide indirect records of ice-volume and temperature 222 

changes since Late Neogene (ca. 9 Ma) times. This method was used by Miller et al. (2011). 223 

Backstripped curves were later corrected for the assumed effect of dynamic topography as 224 

published by Müller et al. (2008) from the Miller et al. (2005) dataset and by Kominz et al. (2008). 225 

The latest recalibration on the geologic time scale (Miller, 2013) and long-term filtering (Müller et 226 

al., 2008) were used for comparing the global sea-level curves. Mean, maximum and minimum 227 

sea-level values (including uncertainties) were computed for each geologic time scale stage since 228 

the Upper Cretaceous and at the dating resolution of studied marine sedimentary remnants 229 

(Supplementary Material S1; Fig.2). 230 

 231 

3.3. Reliability and selection of compiled global sea-level curves 232 

Our compilation of global sea-level curves shows large discrepancies between the available curves (of 233 

ca. 100 to 200 meters for some stage; Fig.2). For our calculations, we constructed a composite global 234 

sea-level curve (and associated uncertainty) by using different curves at different times, based on the 235 

nature of the data that was used to construct it and how reliable that data is for each time period 236 

considered (Fig.3; Supplementary Material S1). 237 

Haq et al. (1987) and Haq and Al-Qahtani (2005) global sea-level curves based on coastal onlap 238 

measurements were discarded because of i) the lack of complete dataset publication, ii) the 239 

overestimation of sea-level amplitude due to insufficient correction for compaction, loading and 240 

tectonic subsidence and iii) the chronostratigraphic imprecision of correlated sequence boundaries 241 

(see Miall, 2010 for a review).  242 

The latest curves from the backstripping method (Miller et al., 2005; Kominz et al., 2008) were 243 

selected for the "icehouse" times since ca. 35 Ma (Eocene-Oligocene transition) and the onset of 244 
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permanent Antarctic ice-sheet (Zachos et al., 2008). These curves are reliable for this period as they 245 

reflect well global sea-level changes driven by ocean water volume variations (Miller et al., 2011). 246 

They were however excluded for the preceding periods (pre-35 Ma) as the backstripping method 247 

used requires data from stable sedimentary basins and it is well known now that the eastern US 248 

margin used for constraining Miller et al. (2005) and Kominz et al. (2008)’s curves underwent 249 

dynamic topography due to North America's overriding upon the Farallon plate slab (Kominz et al., 250 

2008; Moucha et al., 2008; Müller et al., 2008). Further back in time, the resulting global sea-level 251 

amplitudes are consequently downward shifted by about 50 m with respect to continental flooding 252 

studies (Miller et al., 2011). The backstripped curves corrected from dynamic topography were 253 

discarded as they require for Eocene times either i) an unrecognised deformation event of the 254 

aastern US margin (Kominz et al., 2008) or ii) an unrealistically high global sea-level which requires 255 

melting of an ice-sheet volume three times higher than the present-day one (Rowley, 2013). For 256 

Pliocene times, the curve from Miller et al. (2011) based on oxygen isotope proxies of ice-volume 257 

changes was selected as it reflects ocean water volume variations, which mainly drives Pliocene sea-258 

level changes (Miller et al., 2011). 259 

The global sea-level curve of Müller et al. (2008) was selected for the "greenhouse" times before ca. 260 

35 Ma (Zachos et al., 2008). This method is however discarded for estimates of global sea-level 261 

changes since ca. 35 Ma because ocean water volume changes, which became the main driving-262 

factor of global sea-level changes ("icehouse" period; Miller et al., 2011), are not considered (Müller 263 

et al., 2008). The Spasojevic and Gurnis (2012) curve was not selected because sea-level amplitudes 264 

match the overestimated ones of the Haq et al. (1987) and Haq and Al-Qahtani (2005) curves for the 265 

pre-35 Ma times (Fig.2). 266 

The global sea-level curve of Rowley (2013), based on global hypsometry and global paleogeographic 267 

maps was selected for the entire period (i.e. since Upper Cretaceous) as it encompasses the effects 268 

of both ocean water and ocean basin volume changes on sea-level (Rowley, 2013). The use of global 269 
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data (paleogeography and hypsometry) lowers the influence of not having a stable reference for 270 

global sea-level measurements and removes local and regional effects (as the integral of dynamic 271 

topography over the E r h’s surface must be zero, assuming a constant radius for the Earth; Rowley, 272 

2013). The dispersion of estimates from each paleogeographic datasets used (Scotese and Golonka, 273 

1992; Smith et al., 1994; Markwick, 2011; Blakey, 2012) is responsible for the uncertainty on the 274 

resulting global sea-level curve (± 50 m for 100 to 60 Ma and ± 20 m for 60 to 0 Ma (Rowley, 2013)). 275 

It is worth pointing out that i) from c.a. 100 to 35 Ma, Müller et al. (2008)’s curve which reflects 276 

ocean basin volume changes and ii) from c.a. 35 to 0 Ma, (Miller et al., 2005) and (Kominz et al., 277 

2008)’s curves which reflect ocean water volume changes, both agree for these respective periods 278 

with Rowley (2013)’s curve which integrates the effects of both driving factors. 279 

 280 

4. Application to the example of the Armorican Massif for Cenozoic times 281 

 282 

4.1. Regional setting and available data 283 

The Armorican Massif, located in western France, is a basement that was strongly deformed from 284 

late Devonian to Carboniferous times as a part of the Variscan belt similar to many other western 285 

European massifs (e.g. Massif Central, Rhenish Massif, Ardennes Massif; Ballèvre et al., 2009). This 286 

basement is surrounded by three major sedimentary basins that started subsiding during Mesozoic 287 

times: i) the Western Approaches Basin to the north, ii) the starved South Armorican Margin to the 288 

west and south and iii) the intracratonic Paris Basin to the east (Fig.4). 289 

Like many other western European Variscan domains, the Armorican Massif corresponds today to a 290 

region of low topographic elevation ranging from 150 m to 200 m (highest peaks: 417 m). Its present-291 

day topography is made of three main upland plateaus or highs of elevation above 200 m: the 292 

Western Brittany Plateau to the west, the Vendée High to the South and the Lower Normandy 293 

Plateau to the North (Fig.5). These uplands plateaus are connected by low elevation plateaus 294 
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(ranging from 30 m to 100 m) such as the Eastern Brittany Low (Fig.5; Bessin et al., 2015). This 295 

collection of low relief plateaus is inherited from six stepped planation surfaces which have been 296 

dated using the marine sedimentary remnants scattered over them. Their analysis reveals that the 297 

Armorican Massif was (partly?) buried and exhumed twice in response to western European 298 

intraplate deformation events (Bessin et al., 2015): 299 

(1) A first burial event of the massif beneath marine sediments took place at a time of overall 300 

subsidence across western Europe, i.e. during Jurassic times; 301 

(2) The first exhumation event occurred during the early Cretaceous at the time of initiation and 302 

break-up of the rift between Iberia and Eurasia; 303 

(3) A second burial episode of the massif beneath chalk deposits took place during a second 304 

overall western European subsidence phase in the Late Cretaceous;  305 

(4) A second exhumation episode occurred during latest Cretaceous to early Eocene times, 306 

resulting from differential uplift of the Armorican Massif induced by the convergence 307 

between the African and Eurasian plates. 308 

The maximum depth of burial during each subsidence episode is thought to be low (< 500 m) as 309 

indicated by the small amount of coeval siliciclastic sediments in the surrounding basins. 310 

Previous sedimentological and geomorphological studies (Bonnet et al., 2000; Brault et al., 2004) 311 

found that the Armorican Massif low elevation topography was later incised during two successive 312 

episodes of river network development in response to the convergence between African and 313 

Eurasian plates. The first drainage network developed during Late Miocene times and the resulting 314 

valleys were later filled by Piacenzian to Gelasian marine (but also continental) deposits (Brault et al., 315 

2004). The present-day river network developed around the early to middle Pleistocene boundary. 316 

Up to 90 m of Pleistocene uplift has been estimated from measurements of the resulting incision 317 

(Bonnet et al., 2000). 318 
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However, no constraint is currently available regarding vertical movements that may have affected 319 

the Armorican Massif between early Eocene and Late Miocene times. Our purpose here is to quantify 320 

surface vertical movements over that period and identifying the processes that may have caused 321 

them.  322 

The data we will use for this come from marine sedimentary remnants deposited during the main 323 

Cenozoic marine flooding events of the massif (exhaustive reference list regarding dataset is 324 

provided in Supplementary Material S1). Marine sediments were dated using i) biostratigraphic data 325 

(benthic and pelagic foraminifera, ostracoda, charophytes, macrofauna, pollens, spores and 326 

dinocysts; see Guillocheau et al., 2003 for a review) and ii) Electron Spin Resonance data for Pliocene 327 

times (see Van Vliet-Lanoë et al., 2002 for a review). Respective bathymetric estimates at the time of 328 

marine sediment deposition were obtained from both paleo-ecological (fossiliferous fauna and flora) 329 

and sedimentological data (see Guillocheau et al., 2003 for a review). Four separate depositional 330 

environment types were defined: 331 

(1) Brackish environments with water depth ranging from ca. 0 to 5 m; 332 

(2) Foreshore environments with water depth ranging between sea-level at mean high tide and 333 

at mean low tide; these include bays and open lagoons (i.e. ca. 0-20 m) or inner estuaries (i.e. 334 

ca. 0-10 m); 335 

(3) Shoreface environments with water depth ranging between sea-level at mean low-tide and 336 

fair-weather wave-base (i.e. ca. 20-60 m); 337 

(4) Upper offshore (open marine) shelf environments with water depth ranging between fair-338 

weather wave-base and storm wave-base (i.e. ca. 60-100 m). 339 

Deposits corresponding to six marine flooding events during Cenozoic times are preserved on the 340 

Armorican Massif (Guillocheau et al., 2003). They correspond to a series of relative sea-level high 341 

stand during (1) the Ypresian (early Eocene; ca. 56-48 Ma), (2) the Bartonian (late Eocene; 41.0-38.0 342 
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Ma), (3) the Rupelian (early Oligocene; 33.9-28.1 Ma), (4) the Langhian-Serravallian (middle Miocene; 343 

16.0-11.6 Ma), (5) the uppermost Miocene (Messinian?; 7.3-5.3 Ma) and the Piacenzian (early 344 

Pleistocene; 3.6-2.6 Ma). Bartonian, Rupelian, Langhian-Serravallian and Piacenzian marine 345 

sediments were used for quantifying vertical movement as they match the following requirements: i) 346 

they are accurately dated (resolution around or lower than that of a Stage on the chronostratigraphic 347 

chart), ii) they are well distributed upon the massif and iii) their bathymetry at the time of deposition 348 

is well constrained. The Ypresian flooding, which was restricted along the South Armorican Margin 349 

(Guillocheau et al., 2003), and the Messinian flooding, which is exposed on too few outcrops (Brault 350 

et al., 2004), were not selected.  351 

Almost all of these deposits correspond to a thin veneer of sediments over pre-existing topography, 352 

that must relate to marine flooding with little to no contribution from compaction or isostatic 353 

subsidence by sediment loading. However, some of the Bartonian to Rupelian deposits are preserved 354 

in small narrow grabens bounded by N150E faults (e.g. 2 to 4 km width for 400 m depth for the 355 

largest one, the Rennes Basin; Fig.4; Bauer et al., 2016). Because we focus here on estimating 356 

medium to long wavelength surface subsidence, these short wavelength deformation gradients were 357 

restored by assuming that the present-day elevation of the top of these basins can be used as a 358 

proxy for the elevation of the sediments at the time of their deposition. 359 

 360 

4.2. Vertical movement of the Armorican Massif 361 

 362 

4.2.1. Finite vertical movements 363 

fvm calculations were performed for each global sea-level dataset available and for each timespan 364 

for which data match requirements for fvm computation (data available and plotted on 365 

Supplementary Material S1 and S3, respectively). Hereafter, we only present computations from the 366 

global sea-level curves that we selected for each time interval (see §3.2). The fvm values listed in the 367 
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text correspond to the mean fvm values computed (minimum and maximum values are plotted on 368 

Fig.6). 369 

The fvm calculations point to an overall subsidence of the Armorican Massif from 41.0-38.0 Ma 370 

(Bartonian) to present-day, except in the Northern (Trégor area) and Eastern regions (Fyé Basin; 371 

Fig.6; uplift of ca. 50 m). This subsidence is of long wavelength and its magnitude ranges from i) -372 

131.4 to -20.4 m using the Müller et al. (2008) global sea-level data to ii) -95.4 to 15.6 m using the 373 

Rowley (2013) global sea-level data. Both indicate a low differential subsidence (of ca. 100 m) 374 

between present-day offshore and onshore domains. This Armorican-scale differential subsidence 375 

characterized a deformation process with a wavelength of ca. 300 km, i.e. a medium wavelength 376 

deformation. 377 

Since 33.9-28.1 Ma (Rupelian), the fvm values suggest an overall uplift with a differential component 378 

between the central (Eastern Brittany Low, Léon Platform) and the northern parts (Western 379 

Approaches Basin and Carentan Flats) of the massif (Fig.6). The magnitude of this uplift ranges from i) 380 

33.8 to 97.0 m using the Kominz et al. (2008) global sea-level data to ii) 39.0 and 109.4 m using the 381 

Rowley (2013) global sea-level data for the central part of the massif. Uplift is lower in the western 382 

part of the massif with values of 25.1 m using the Kominz et al. (2008) global sea-level data and 21.7 383 

m using the Rowley (2013) global sea-level data. Conversely, the northernmost part of the studied 384 

area (Western Approaches and Carentan Flats) exhibits stronger subsidence with a magnitude of i) 385 

78.2 m using the Kominz et al. (2008) global sea-level data and ii) 73.0 using the Rowley (2013) global 386 

sea-level data. These values may be underestimated because the Western Approaches Basin 387 

sediment thickness estimates were not decompacted. At a regional scale, these estimates suggest a 388 

doming of the Armorican massif with up to ca. 180 m (175.2 m and 182.4 m respectively using the 389 

Kominz et al. (2008) and the Rowley (2013) global sea-level data) of differential vertical movement 390 

between the dome apex and its edges. 391 
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A finite uplift is evidenced by our fvm computations (Fig.6) since 16.0-11.6 Ma (Langhian-392 

Serravallian). Highest uplift magnitudes are located i) north of the central part of the Armorican 393 

Massif (North East of the Eastern Brittany Low) with up to 127.0 m to 130.7 m of uplift respectively 394 

computed using the Kominz et al. (2008) and the Rowley (2013) global sea-level data and ii) in a 395 

lesser degree, south of the central part of the Massif (East of Vendée Low) with magnitudes up to 396 

117.5 m from the (Kominz et al., 2008) global sea-level data and 121.2 m from the (Rowley, 2013) 397 

global sea-level data. Lower values are found to the north of the massif (Carentan Flats), to the west 398 

of the central part of the massif (West of the Eastern Brittany Low) and to the south of the massif 399 

(Vendée Low) with values ranging from ca. 30 m to 70 m using both Kominz et al. (2008) and Rowley 400 

(2013) global sea-level data. 401 

Since 3.6-2.6 Ma (Piacenzian), an overall uplift of the Armorican Massif is suggested by the computed 402 

fvm values (Fig.6, S1). Higher magnitudes are located west of the Eastern Brittany Low and north of 403 

the southern branch of the SASZ, with up to 153,4 m according to the Miller et al. (2011) global sea-404 

level data and 141.0 m when using the Rowley (2013) global sea-level data. Lower magnitudes of 405 

uplift ranging from ca. 55 m (Eastern Brittany Low) to ca. 70 m (northwestern and southwestern part 406 

of the massif) are found according to both Miller et al. (2011) and Rowley (2013) global sea-level 407 

data. Conversely, the northern part of the massif (Carentan Flats) is the only area of predicted 408 

subsidence since Piacenzian times, with subsidence values of ca. 25 m to 40 m using the Rowley 409 

(2013) and the Miller et al. (2011) global sea-level data, respectively. 410 

 411 

4.2.2. Intra-Cenozoic vertical movements 412 

Three areas of the Armorican Massif contain well dated marine sediments of different ages 413 

(Bartonian, Rupelian, Langhian-Serravalian, Gelasian) that are close to each other and unaffected by 414 

faulting or post-depositional erosion. These are the Carentan Flat (in its northern part), the Eastern 415 

Brittany Low (in its central part) and the Vendée Low (in its southern part; Fig.5, Fig.7). Using the fvm 416 
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values computed above, the intra-Cenozoic vertical movement recorded by these domains were 417 

estimated using global sea-level curves as discussed above, i.e. Müller et al. (2008) and Rowley (2013) 418 

until Bartonian times, Miller et al. (2005), Kominz et al. (2008) and Rowley (2013) for Rupelian to 419 

Miocene times and Miller et al. (2011) and Rowley (2013) since Pliocene times. Finally, the successive 420 

elevations of the topographic surfaces at Bartonian, Rupelian, Langhian-Serravalian and Gelasian 421 

times were restored for each sea-level curve (data available in Supplementary Material S4). The 422 

amplitude of the vertical movements are low and three main results are obtained (values hereafter 423 

listed are means of estimated vertical movement from selected global sea-level curves calculations 424 

plotted on Fig.7): 425 

- From 38 to 34 Ma (Priabonian), a phase of low subsidence is suggested for the northern 426 

(Carentan Flats) and southern (Vendée Low) parts of the massif. Values range between 7.5 427 

and 15.2 m of subsidence over that period (i.e. a subsidence rate of 1.3 to 2.1 m Ma-1). The 428 

38-34 Ma times are at the transition between the Müller et al. (2008)'s curve and the 429 

backstripped curves (Miller et al., 2005; Kominz et al., 2008) suitable periods which may 430 

introduce some bias. As no significant vertical movement is evidenced from the Rowley 431 

(2013)'s data (Fig.7), a phase of stability is therefore privileged. The central part of the massif 432 

(Eastern Brittany Low) underwent 65.9 m of subsidence, possibly overestimated due to fault 433 

gradients restoration. 434 

- From 30 to 3.6 Ma (Rupelian to Pliocene times), the three domains record subsidence, which 435 

we infer as evidence for subsidence of the entire Armorican Massif. Between 30 and 16 Ma 436 

(Rupelian to Langian-Serravallian times), vertical movement values ranges between 8.0 m of 437 

uplift (possibly overestimated due to fault gradients restoration) and 41.9 m (or rates of 0.4 438 

m Ma-1 of uplift to 2.2 m Ma-1 of subsidence). From 12 to 3.6 Ma (Serravallian to Piacenzian 439 

times), subsidence values range from 11.0 m (or a subsidence rate of 1.0 m Ma-1) in the 440 
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central part of the massif (Eastern Brittany Low) to 50.1 m (or subsidence rate of 4.7 m Ma-1) 441 

in its northern part (Carentan Flats). 442 

- During the last 2.6 Ma (Piacenzian time to present), a late phase of uplift of the northern 443 

(Carentan Flats) and central (Eastern Brittany Low) parts of the massif is inferred with uplift 444 

values ranging from 48 to 89 m (or uplift rates of 15.5 to 28.8 m Ma-1). No data is available 445 

for the southern part of the massif (Vendée Low) but 38 m of uplift can be inferred over the 446 

past 12 Ma (Serravalian to present) which corresponds to an uplift rate of 2.7 m Ma-1. 447 

 448 

5. Armorican Cenozoic vertical movements within the Western European tectonic framework 449 

 450 

From the uppermost Cretaceous to the early Cenozoic, the Armorican Massif is exhumed in response 451 

to medium wavelength (x 102 km) uplift which affected the overall NW European platform and 452 

marked the end of deposition and the deformation of the Upper Cretaceous chalk platform (Ziegler, 453 

1990; Anell et al., 2009). 454 

During Bartonian times (41 – 38 Ma), homogeneous sedimentary facies preserved on the massif and 455 

in surrounding basins (Bauer et al., 2016) point out to a nearly flat and low Armorican topography, 456 

suggesting a phase of no deformation, which extended through to Priabonian times (ca. 34 Ma) as 457 

evidenced by our vertical movement estimates. This Bartonian to Priabonian phase (41 – 34 Ma) is 458 

coeval with the period of no deformation that affected most of north-western Europe during Eocene 459 

times, except for offshore Britain and the northern North Sea, which experienced anomalous 460 

subsidence possibly related to the development of the Iceland thermal anomaly (see Anell et al., 461 

2009 for a review). 462 

The Rupelian to Piacenzian (30 – 3.6 Ma) phase of slow subsidence of the Armorican Massif 463 

evidenced by our computations (Fig.7) is likely to be related to the growth of numerous small 464 

sedimentary basins during Oligocene to middle Miocene times (ca. 35 – 10 Ma) along the western 465 
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side of the British Isles (Cornwall, Wales, northern Ireland and the Hebrides Sea; Walsh, 1999) in a 466 

largely strike-slip regime, which led to local basin inversions (Williams et al., 2005). This low 467 

subsidence phase of the massif is also coeval with Oligocene (Eocene?) to Miocene short-wavelength 468 

deformation observed in surrounding basins and on the northwestern European platform (Anell et 469 

al., 2009) that includes i) strike-slip to compressive folding along the South Armorican Margin 470 

(Guillocheau et al., 2003), ii) major basin inversion (e.g. up to 700 m of reverse fault movement) in 471 

the Western Approaches Basin (Le Roy et al., 2011) and iii) NNE-SSW striking left-lateral 472 

transtensional wrenching of the European Cenozoic Rift System (Bourgeois et al., 2007), all of which 473 

are taught to be related to reactivation of pre-existing structures by in-plane stresses (e.g. Anell et 474 

al., 2009). Reactivation of these structures are superimposed on a medium wavelength deformation 475 

that initiated around 35 Ma and is thought to be related to lithospheric mantle buckling in response 476 

to the Apulia-Eurasia collision (Handy et al., 2010; Cloetingh et al., 2015). The paroxysm of this 477 

buckling is thought to have taken place around 17 Ma (Burdigalian) with the development of folds at 478 

a wavelength of ca. 225-275 km (Bonnet et al., 2000; Bourgeois et al., 2007). Evidence for this 479 

buckling includes uplift of the Bohemian Massif and the Vosges-Black Forest Arch and amplification 480 

of uplift of the Massif Central that initiated at the Oligocene-Miocene transition in response to 481 

thermal thinning of the lithosphere. Conversely, we propose here that the Armorican Massif is 482 

possibly located on a lithospheric-scale syncline which induced the subsidence of the massif from 483 

Rupelian to Piacenzian times (Fig.6 and Fig.7), i.e. from 30 to 3.6 Ma. 484 

The Pleistocene uplift (2.6 – 0 Ma; of ca. 50 to 90 m; Fig.6) that we evidence is consistent with 485 

previous geomorphic studies of the Armorican Massif (Bonnet et al., 2000; Brault et al., 2004) which 486 

preclude a GIA origin from geomorphic data (Bonnet et al., 2000). This recent uplift is also observed 487 

in western Europe, e.g. in the Paris Basin (Antoine et al., 2007), the Ardennes Massif or the Rhenish 488 

Shield (Demoulin and Hallot, 2009). It is commonly thought to be related to either an enhanced 489 

convergence rate of the Apulia-Eurasia collision at the early–middle Pleistocene transition or a 490 
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climate-induced increase in erosion rate that led to topographic unloading and a change in stress 491 

regime (Cloetingh et al., 2015; Herman and Champagnac, 2016). 492 

 493 

6. Conclusion 494 

 495 

(1) We formalized a method to quantify low amplitude vertical movements which are difficult to 496 

document using low-temperature thermochronology, OSL dating or cosmogenic isotope methods. 497 

Our method is based on estimating the difference the present-day elevation of well dated marine 498 

sediments (corrected from their bathymetry of deposition) and selected global sea-level 499 

reconstructions at the time of sediment deposition. 500 

(2) We compiled available global sea-level curves and re-assess their reliability to build a composite 501 

one. Considering the various processes that may have caused global sea-level changes through time, 502 

we are able to disregard some of the global sea-level curves because of a clear bias they introduce or 503 

because the method used to construct them is inapplicable for the time period considered. We 504 

concluded that the Müller et al (2008) ’s curve is suitable for the ca. 100 to 35 Ma "greenhouse" 505 

period while the Miller et al. ( 2005) and the Kominz et al. (2008)’s curves better reflect global sea-506 

level changes during the ca. 35 to 0 Ma "icehouse" period. We also note that both agree with Rowley 507 

(2013)’s curve in their respective period of optimum reliability. 508 

(3) Based on our estimates of amplitude, wavelength and timing of the patterns of uplift/subsidence 509 

affecting the Armorican Massif, we suggest that lithospheric buckling related to the Apulia-Eurasia 510 

convergence is responsible for the medium-wavelength deformation we identify. More precisely, the 511 

Armorican Massif underwent i) a phase of tectonic quiescence characterizing most of NW Europe 512 

during Bartonian to Priabonian times (38 – 34 Ma) followed by ii) a phase of low subsidence during 513 

Rupelian to Piacenzian times (30 – 3.6 Ma) possibly due to the position of the massif within a 514 

downing limb of a lithospheric scale buckling instability driven by the Apulia-Eurasia convergence and 515 
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iii), most recently, a Pleistocene (2.6 – 0 Ma) phase of uplift related to either the intensification of the 516 

Africa-Apulia convergence or a climate-induced erosional enhancement of this long-term uplift. 517 
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Figure captions: 655 

Fig.1: Sketch illustrating our finite vertical movement quantification methodology based on i) the 656 

bathymetry of deposition and present-day elevation of well dated marine sediments versus ii) 657 

elevation of coeval global sea-level. 658 

Fig.2: Compilation of global sea-level curves since the Upper Cretaceous; vertical bars indicate the 659 

range of acceptable sea-level elevations for each curve and stage. 660 

Fig.3: Global sea-level curves since Upper Cretaceous times selected for their suitability in 661 

representing reliable proxy of global sea-level (see text for the details of the selection procedure). 662 

Fig.4: Synthetic geological map of the Armorican Massif and Mesozoic to Cenozoic surrounding 663 

basins. Note the Cenozoic marine transgressions on the massif and the Eocene-Oligocene basins 664 

scattered around the massif (data from 1:1.000.000 Geological Map of France (Chantraine et al., 665 

2003); Projection: RGF Lambert 1993). NASZ is North Armorican Shear Zone and SASZ is South 666 

Armorican Shear Zone. 667 

Fig.5: Location map of marine sedimentary deposits used to quantify Cenozoic vertical movements of 668 

the Armorican Massif. Black lines: faults from 1:1.000.000 Geological Map of France (Chantraine et 669 

al., 2003; Projection: RGF Lambert 1993). White lines: Border of Basement outcrops. Red line: 670 

present-day coastline. Fy. : Fyé Basin, Tr.: Trégor Platform, C.F.: Carentan Flat, W.B.P.: Western 671 

Brittany Plateau, E.B.L.: Eastern Brittany Low, V.L.: Vendée Low. 672 

Fig.6: Map illustrating computed finite vertical movement based on selected curves for global sea-673 

level change, i.e. Müller et al. (2008) and Rowley (2013) for the Bartonian, Kominz et al. (2008) and 674 

Rowley (2013) for the Rupelian, Kominz et al. (2008) and Rowley (2013) for the Langhian-Serravallian 675 

and Miller et al. (2011) and Rowley (2013) for the Piacenzian-Gelasian Rupelian. Black lines: faults 676 

from 1:1.000.000 Geological Map of France (Chantraine et al., 2003; Projection: RGF Lambert 1993). 677 

White lines: Border of Basement outcrops. Red line: present-day coastline. 678 

Fig.7: Predicted Cenozoic vertical movement and restored elevations for three Armorican lows, 679 

namely the Carentan Flats and the Eastern Brittany and Vendée Lows. 680 
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Supplementary material: 681 

S1: Dataset (.xlsx file) used for i) our compilation of global sea-level curves and ii) quantify finite 682 

vertical movements of the Armorican Massif since Cenozoic times. 683 

S2: Plot of global sea-level curves discussed in this study. Minimum, maximum and mean values were 684 

computed and plotted for each curve and each stage. 685 

S3: Geographical plots of finite vertical movement (fvm) estimated for the Armorican Massif for each 686 

available curve. 687 

S4: Dataset (.xslx file) of vertical movement and restored elevations through Cenozoic times for three 688 

Armorican lows, namely the Carentan Flats and the Eastern Brittany and Vendée Lows. 689 
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