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Abstract. Run-up of long waves on a beach consisting of
three pieces of constant but different slopes is studied. Linear
shallow-water theory is used for incoming impulse evolution,
and nonlinear corrections are obtained for the run-up stage.
It is demonstrated that bottom profile influences the run-up
characteristics and can lead to resonance effects: increase of
wave height, particle velocity, and number of oscillations.
Simple parameterization of tsunami source through an earth-
quake magnitude is used to calculate the run-up height ver-
sus earthquake magnitude. It is shown that resonance effects
lead to the sufficient increase of run-up heights for the weak-
est earthquakes, and a tsunami wave does not break on cho-
sen bottom relief if the earthquake magnitude does not ex-
ceed 7.8.

1 Introduction

Resonance phenomena play a significant role in the run-up
amplification and lead to different physical effects for waves
in coastal zones: long duration of water oscillations, later ar-
rival of waves with maximal amplitude compared with lead-
ing waves, and group structure of waves. Meanwhile, usually
these effects are neglected when the run-up processes are
studied. A large part of theoretical results for run-up stage
are based on rigorous analytical solutions of the shallow-
water theory for waves climbing on a beach of constant slope.
This approach was suggested in the pioneer work by Carrier
and Greenspan (1958). They applied the hodograph transfor-
mation to the nonlinear system of shallow-water equations

and obtained a linear wave equation for an auxiliary func-
tion; all physical variables (free surface displacement, depth-
averaged velocity, offshore coordinate and time) were ex-
plicitly expressed using this function and its partial deriva-
tives. The main advantage of wave equations for an auxil-
iary function having a form of cylindrical wave equation is
that it has to be solved on a semi-axis with given bound-
ary conditions while the initial equations have to be solved
in a domain with an unknown moving boundary (shoreline).
Meanwhile, the explicit form of the analytical solution gen-
erally requires the numerical manipulations to present physi-
cal variables in the wave field. That is why various shapes of
the incident solitary wave have been specially analyzed: soli-
ton (Pedersen and Gjevik, 1983; Synolakis, 1987), sine pulse
(Mazova et al., 1991), Lorentz pulse (Pelinovsky and Ma-
zova, 1992), Gaussian pulse (Carrier et al., 2003; Kânoğlu,
2004; Kânŏglu and Synolakis, 2006), N waves (Tadepalli
and Synolakis, 1994; Kânoğlu, 2004), and some specific lo-
calized disturbances (Tinti and Tonini, 2005; Pritchard and
Dickinson, 2007; Dobrokhotov and Tirozzi, 2010). It should
be noted that different formulas for maximum run-up of soli-
tary waves of various shapes can be provided in terms of
wave amplitude and significant wave length describing prac-
tically important cases with good accuracy (Didenkulova et
al., 2008; Didenkulova and Pelinovsky, 2008; Antuono and
Brocchini, 2010a, b). Various shapes of the periodic incident
wave trains such as the sine wave (Carrier and Greenspan,
1958; Madsen and Fuhrman, 2008), cnoidal wave (Synolakis
et al., 1988; Synolakis, 1991) and nonlinearly deformed pe-
riodic wave (Didenkulova et al., 2006, 2007) have been also
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studied to obtain the run-up characteristics. It is important to
mention that the run-up height is higher if a periodic incident
wave is cnoidal or a nonlinearly deformed wave compared
with a simple sine wave of the same amplitude and period.
Some results are obtained for irregular incident waves mod-
eled by the Fourier superposition of the sine waves with ran-
dom phases (Didenkulova et al., 2010, 2011) or the random
set of solitons (Brocchini and Gentile, 2001).

In all studies mentioned above, the rigorous analytical
solutions are obtained if the wave propagates on a plane
beach of constant slope. Really, such a plane can approxi-
mate the face-shore bathymetry only, and then it has to be
matched with a horizontal bottom profile. In fact, the rigor-
ous analytical solutions can be obtained here in the linear
theory only (Synolakis, 1987; Pelinovsky, 1996, 2006; Mad-
sen and Fuhrman, 2008). If the bottom slope in face-shore
area is small, the extreme run-up characteristics weakly dif-
fer from a case when the bottom has constant slope every-
where. Nonlinearity leads to the correction of obtained re-
sults. First of all, there is nonlinear wave deformation in the
region where inclination of bottom changes. This effect is
thoroughly investigated with use of boundary value approach
for pulse-like and periodic input including waves propagat-
ing over different kinds of non-planar bathymetries in Broc-
chini et al. (2001) and Antuono and Brocchini (2007, 2008,
2010b). In this case the wave evolution seems to be unaf-
fected by the bottom perturbations. The second one is that
a wave moving on horizontal bottom nonlinearly deformed
within nonlinear shallow-water equations as Riemann wave
and its shape in the entry of plane beach differs from an ini-
tial shape (Didenkulova et al., 2006, 2007). It should be noted
that both factors amplify the run-up heights. A new effect that
appeared for the wave run-up on a plane beach matched with
horizontal bottom is the influence of the bottom slope on the
shape of water oscillations on the shore. If the incident wave
has a bell shape, the water oscillations on the shore repeat its
shape if the bottom slope is big (limiting case is a vertical
wall), and accompanied by the negative second oscillation if
the bottom slope is small. Such behavior is explained by the
resonance effects, which are weak for such geometry – from
a physical point of view, it is an open resonator1 (Pelinovsky,
1996, 2006; Madsen and Fuhrman, 2008). If the bottom slope
differs relatively little from the uniform value, the changes of
run-up height are also small (Soldini et al., 2013).

For more complicated geometry of coastal zone consist-
ing of several pieces with different slopes, the solutions for
each region of constant slope are matched (Kânoğlu and Syn-
olakis, 1998; Didenkulova, 2009). Simplified solutions in
the form of a product of such elementary solutions can be
given if the incident wave length is less than a bottom piece
length. For general ratio between these different lengths, as
it is known, the resonances appear due to multi-reflection

1If the wave maker is located near the shore, of course, the reso-
nant effects are big (Stefanakis et al., 2011; Ezersky et al., 2013).

from matching points and interference between such waves.
Some allusion on possible resonances for wave run-up can
be found in Kajiura (1977) and Mazova (1985). They in-
vestigated linear approximation of the run-up characteristics
due to sine incident wave. Resonance phenomena are impor-
tant for tsunami waves (LeBlond and Mysak, 1981; Massel,
1989; Mei, 1983; Neu and Shaw, 1987). Photos of tsunami
wave trains in different coastal locations became well known
after the 2004 Indonesian and 2011 Japanese tsunamis. Usu-
ally the appearance of resonance effects is connected with a
complicated two-dimensional bathymetry of bays and jagged
coastal line. In the present paper, we aim to investigate run-
up resonance phenomena for a one-dimensional case of wave
propagation. We intend to show that, for certain frequencies
depending on bottom profile, run-up amplification may be
high even for very simple bathymetry, and it influences the
shape of the water oscillations on the coast.

The paper is organized as follows. In the second section
we describe our model of bottom profile and present the re-
sults for run-up amplification versus the frequency of linear
harmonic incident wave. In the Sect. 3 results of calculations
of the run-up characteristics caused by Gaussian impulse and
N-wave impulse are presented. Section 4 is devoted to non-
linear effects appearing in run-up. Discussion of result appli-
cability for natural hazard description and some conclusions
are given in Sect. 5.

2 Theoretical model and run-up due to linear harmonic
wave

Long wave run-up on a long beach is described by 1-D non-
linear shallow water equations:

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

∂η

∂t
+

∂

∂x
[u(h + η)] = 0, (2)

whereu is the depth-averaged velocity,h = h(x) is the un-
perturbed water depth,η = η(x, t) is the free surface dis-
placement, andg is the acceleration of gravity. In the linear
approximation, the system in Eqs. (1)–(2) is transformed into
one equation:

∂2η

∂t2
− g

∂

∂x

[
h

∂η

∂x

]
= 0. (3)

To demonstrate the resonance effects in the run-up character-
istics, we use three piece-wise profiles of unperturbed depths
that are typical for a real ocean bottom: (Zone A) continental
shelf 0≤ x ≤ x0, (Zone B) continental slopex2 < x < 0, and
(Zone C) constant depth (see Fig. 1). Such topography was
used in numerous papers on tsunami run-up. We would like
to emphasize that in some cases such a simple model of bot-
tom profile describes very precisely natural conditions. For
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Fig. 1.Schema of bottom profile.

instance, exactly such a model was used to prepare numeri-
cal simulations of tsunami near the Indian coast (Neetu et al.,
2011).

The wave field in zone of constant depth (Zone C) is pre-
sented as a sum of incident and reflected harmonic waves
with constant amplitudeAi andAr:

η =

(
Aie

−ik(x0−x)
+ Are

ik(x0−x)
)
e−iωt . (4)

In zone (Zone B) with a constant bottom slope tanβ (conti-
nental slope), we seek a harmonic solution of the following
form:

η = A(x)e−iωt , (5)

whereω is the frequency andA(x) is an amplitude function.
By inserting Eq. (5) into Eq. (3), the amplitude equation for
harmonic wave is represented as

g tan(β)(x1 − x)
∂2A

∂x2
− g tan(β)

∂A

∂x
+ ω2A = 0. (6)

After introducing the variable transformation,

σ̄ = 2ω

√
x1 − x

g tanβ
. (7)

Equation (6) can be simplified to the Bessel equation of the
first kind:

σ̄
∂2A

∂σ̄ 2
+

∂A

∂σ̄
+ σ̄A = 0. (8)

Its solution may be expressed as a sum of the zeroth order
Bessel functions of the firstJ0 and secondY0 kinds with two
constantsC1 andC2:

A = C1J0 (σ̄ ) + C2Y0 (σ̄ ) , σ̄ = 2ω

√
x1 − x

g tanβ
. (9)

In the nearshore zone (Zone A), the solution for wave am-
plitude is also presented in Bessel functions. Taking into

account that the wave field should be limited at the shore
(x = x0), the wave amplitude is described by

A = RJ0(σ ), σ = 2ω

√
x0 − x

g tanα
, (10)

whereR is also constant (in general, complex constant). It is
evident thatR describes the amplitude of the water level os-
cillation on unmoved shoreline (linear run-up height). If the
bottom has the constant slope everywhere, the value of|R |

computed in the linear theory coincides with run-up height in
nonlinear theory (Synolakis, 1987; Pelinovsky and Mazova,
1992). For more complicated geometry, this statement is not
proved and we will discuss this later.

Using continuity conditions for horizontal velocity and
free surface displacement forx = 0 andx = x2 (see Fig. 1),
one can match solutions in different segments at this transi-
tion points and obtain the following system of equations:

Forx = 0,

RJ0 (σ0) = C1J0 (σ̄0) + C2Y0 (σ̄0, ) (11)

RJ1 (σ0) = C1J1 (σ̄0) + C2Y1 (σ̄0.) (12)

Forx = x2,

C1J0 (σ̄1) + C2Y0 (σ̄1) = Aie
−ik(x0−x2) + Are

ik(x0−x2), (13)

C1J1 (σ̄1) + C2Y1 (σ̄1) = −iAie
−ik(x0−x2) − iAre

ik(x0−x2), (14)

whereσ0 = σ(x = 0), σ̄0 = σ̄ (x = 0), σ̄1 = σ̄ (x = x2), and
J1 andY1 are the first-order Bessel functions of first and sec-
ond kinds.

If the incident wave amplitudeAi is known, the linear run-
up heightR can be evaluated by solving the last system of
Eqs. (11)–(14):

R = K(ω)Ai,

K(ω) =
2(J0 (σ̄0)Y1 (σ̄0) − J1 (σ̄0)Y0 (σ̄0))

W (Y0 (σ̄1) − iY1 (σ̄1)) − N (J0 (σ̄1) − iJ1 (σ̄1))
e−ik(x0−x2), (15)

where

W = J0 (σ̄0)J1 (σ0) − J0 (σ0)J1 (σ̄0) ,

N = Y0 (σ̄0)J1 (σ0) − J0 (σ0)Y1 (σ̄0) .

The term in numerator of Eq. (15) may be simplified using
Wronskian (Abramovich and Stegun, 1964) as presented in
Kânoglu and Synolakis (1998):

J0 (σ̄0)Y1 (σ̄0) − J1 (σ̄0)Y0 (σ̄0) = −
2

πσ̄0
.

Figure 2 represents run-up amplification|R|/Ai for three dif-
ferent sets of bottom slopes characterized roughly for the In-
dian coast bathymetry (Neetu et al., 2011) where the Makran
tsunami was observed on 27 November 1945. If the bottom
slopes in zones A and B are the same, the resonance effects
are very weak (dash-point curve in Fig. 2), and this coincides
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Fig. 2. Run-up amplifications for three sets of bottom slopes,h0 =

2500 m,h1 = 200 m.

with known results (Pelinovsky, 1996, 2006; Madsen and
Fuhrman, 2008). But in the case of different bottom slopes
in zones A and B, resonance effects are clearly visible (solid
and dashed lines in Fig. 2). Several resonant modes with fre-
quencies (ω1,ω2, . . .) may be excited in the coastal zone, and
the amplification coefficient can reach values of 10–20 times.

Characteristic period of the first resonant peakT = 2π/ω1
is roughly 2 h, which coincides with the observed tsunami
record in this area (1.5–3 h) according to Neetu et al. (2011).

3 Run-up due of solitary bell andN impulses

Resonance curves given in the previous section show a sub-
stantial increase of run-up heights for certain frequencies of
harmonic incident waves. Whereas run-up height for har-
monic waves is given by Eq. (15), the oscillations of wa-
ter level on the shore (linear run-up) generated by solitary
tsunami wave may be presented using Fourier transforma-
tions:

R(t) =
1

2π

∫
K(ω)S(ω)e(−iωt)dω, (16)

whereS is the Fourier transformation of incident wave

S(ω) =

∫
η(t)e(iωt)dt . (17)

Usually the shape of the incident tsunami wave is unknown,
and it is characterized by different functions (see for instance
Didenkulova et al., 2008). We chose here two characteristic
and qualitatively different cases: the initial displacement of
the free surface of one sign and alternating displacement with
a zero averaged value. In the first case the incoming wave at
the pointx = x2 is a Gaussian pulse, and in the second one a
so-calledN pulse:

ηinG = η0e
(
−(t/τ0)

2)
, (18)

ηinN = η0

(
t

τ0

)
e
(
−(t/τ0)

2)
. (19)

Both pulses are characterized by two parameters: the du-
ration and amplitude. Within linear theory, the value of wave
amplitude is not important and can be used for scaling of run-
up characteristics. The second parameter, wave durationτ0,
plays an important role due to resonance effects.

Meanwhile, in tsunami practice, both parameters (ampli-
tude and duration) of the incident wave are not indepen-
dent and are determined by the parameters of the tsunami
source. Here we apply our theoretical results to tsunamis gen-
erated by underwater earthquakes. Now, the characteristics of
the tsunami source are calculated using the Okada solution
(Okada, 1985), and they depend on the several fault parame-
ters. For simplified estimates it is more convenient to have the
relations between tsunami source parameters and earthquake
magnitude. Such relations are known in seismology (Sato,
1979; Wells and Coppersmith, 1994). Similar relations are
given for parameters of tsunami source (Pelinovsky, 1996,
2006; Bolshakova and Nosov, 2011). Here we will use the
following relations between the displacement amplitude of
the free water surfaceη0 (measured in meters) and the char-
acteristic size of tsunami sourceL (measured in km) with the
earthquake magnitudeM (Pelinovsky, 1996, 2006):

log(η0) = 0.8M − 5.6, (20)

log(L) = 0.5M − 2.2. (21)

In the shallow-water approximation, the duration of tsunami
waves going out the source isτ0 = L/

√
gh, whereh is water

depth in the tsunami source. Of course, Eqs. (20) and (21)
are very approximated and should be used only for simplified
estimations.

Thus, we can use the magnitude of a earthquake to de-
scribe solitary bell, or N wave. The results of calculations of
linear run-up functionR(t) for various values of the earth-
quake magnitude are presented in Fig. 3. Duration of the
incident tsunami waves decreases, and then magnitude de-
creases, and its spectrum width increases. This means that the
weakest earthquake induces more resonant modes in coastal
zones than the strongest earthquake. As a result, the number
of water oscillations on the shore increases with magnitude
decreasing (compare Fig. 3a and b). If the initial shape is
N wave, the number of oscillations is higher than for Gaus-
sian input because its spectrum is narrower (compare right
and left graphs in Fig. 3a). It is important to mention that
run-up height of N waves is higher than for bell waves, and
this was obtained firstly in Tadepalli and Synolakis (1994).
Using a simple formula, it is possible to estimate propaga-
tion time T1 (delay between incoming wave and computed
signal at the coast) for our model.

T1 =
2

tanβ

(√
h0

g
−

√
h1

g

)
+

2

tanα

√
h1

g
.

The propagation time for parameters corresponding to Fig. 3
is estimated asT1 ≈ 103 s. It should be noted that for longer
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Fig. 3. Incident wave and water oscillations on the shore for
h0 = 2500 m,x2 = 23 km,h1 = 150 m,x0 = 15 km, tanα = 0.005,
tanβ = 0.1, and different earthquake magnitudes:(a) M = 7.5
(L = 35 km) and(b) M = 8.5 (L = 110 km).

impulses (Fig. 3b), calculated propagation time (T1 ≈ 450 s)
is less than for shorter impulses (T1 ≈ 850 s) (Fig. 3a). This
difference is evidently due to duration of impulses. The
length of a long impulse is longer than the length of a shelf
zone, and reflected waves should be taken into consideration
when propagation time is calculated as a time needed for im-
pulse maximum, or impulse zero to reach the shore.

Figure 4 demonstrates that the run-up amplification factor
(R/η0) decreases with increasing earthquake magnitude up
to M = 7, and then it remains almost constant. A tsunami
generated by strong earthquake has a long wavelength, and in
this case as indicated in Fig. 4, the resonance effects are very
weak. The weakest tsunamis having the shortest wavelength
are amplified more due to resonance effects. Increasing of the
bottom slope in zone B (tanβ) reduces the run-up height as
it might be expected.

Maximal run-up height grows with earthquake magnitude
increasing as it is shown in Fig. 5. It should be noted that
resonance effects “lift up” the values of run-up height for the
weakest earthquake, whereas run-up height weakly depends
on the values of the bottom slopes in the given ranges under
consideration. It is important to note that curves in Figs. 4
and 5 are obtained in the linear approximation. Criteria for
applicability of the linear solution will be discussed in the
next section.

Fig. 4. Run-up amplification factor for Gaussian impulses and
N wave impulsex0 = 40 km (tanα = 0.005),x0 = 10 km (tanα =

0.02),x0 = 4 km (tanα = 0.05),h0 = 4000 m, andh1 = 200 m for
different inclinations of continental shelf and continental slope:
(a) tanβ = 0.1 (x2 = 40 km), (b) tanβ = 0.5 (x2 = 8 km), and
(c) tanβ = 3 (x2 = 1.3 km).

4 Estimations of nonlinear effects

Calculations of maximal run-up heights in Sects. 2 and 3
were done in linear approximation. As it is indicated above,
it is difficult to solve the nonlinear shallow-water equations
for piece-wise bottom profiles. Taking into account that bot-
tom slope is changed at depth of 4000 and 200 m, and wave
amplitude does not exceed a few meters, we may assume that
all nonlinear effects are manifested in the last run-up stage.
In this case we may use the rigorous solution of the nonlin-
ear shallow-water equations for the long wave run-up on a
beach of constant slope, which is very well developed (see
references in Introduction). Here following Pelinovsky and
Mazova (1992), we convert the obtained linear solution into a
“nonlinear” solution. According to this procedure, we should
firstly find a “linear” expression for horizontal velocity on the

www.nat-hazards-earth-syst-sci.net/13/2745/2013/ Nat. Hazards Earth Syst. Sci., 13, 2745–2752, 2013
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unmoved shoreline (x = 0), which is followed by kinematics:

U(t) =
1

tanα

dR

dt
, (22)

where as earlier tanα is bottom face-slope. “Nonlinear” ve-
locity of the moving shoreline,u(t), can be obtained from the
linear functionU(t) by the Riemann transformation (Peli-
novsky and Mazova, 1992):

u(t) = U

(
t +

u

gtanα

)
. (23)

It is evident that maximal values of “nonlinear” and “linear”
velocities coincide.

Vertical displacement of the moving shoreline,r(t) can be
found from a kinematic condition:

r(t) =

∫
u(t)dt

tanα
.

And after, substitution of Eq. (16) can be reduced to

r(t) = R

(
t +

u

tanαg

)
−

u2(t)

2g
. (24)

It should be noted that this is only true for the analytical
structure of the solution, but the solution itself also depends
on the data assignment as an initial value or a boundary value
problem (Antuono and Brocchini, 2007).

The important conclusion from Eq. (24) is that extremes
of the vertical displacement in the linear and nonlinear theo-
ries coincide (in this moment the horizontal velocityu = 0),
confirming the use of linear theory to predict extreme values.
Therefore, the linear theory adequately describes the run-up
height.

Simple formulas of Riemann transformation from linear
to nonlinear solutions allow us to obtain the wave-breaking
criterion. Strictly speaking, this criterion is found from the
zero condition for a Jacobian of hodograph (Legendre) trans-
formation. Note that this transformation was used to obtain
Eqs. (15)–(17). On the other hand, the solution for velocity
in Eq. (16) resembles the well-know Riemann wave in non-
linear acoustics and hydrodynamics (the role of coordinates
plays the inverse value of theg tanα). Such a wave would
overturn with an increase of amplitude. Exactly this fact
has been used in Pelinovsky (1996, 2006) and Didenkulova
(2009) to find wave-breaking criteria on the shore. From
Eq. (16) it is easy to calculate the time derivative of the ve-
locity in an incident wave.

du

dt
=

dU/dt

1−
dU/dt
g tanα

(25)

tends to the infinity when the denominator approaches zero.
As follows from the theory of hyperbolic equations, it leads
to the gradient catastrophe identified and to the plunging

Fig. 5. Maximal run-up height (in m) versus the earthquake magni-
tude for Gaussian impulses and N wave impulse forx0 = 40 km
(tanα = 0.005), x0 = 10 km (tanα = 0.02), x0 = 4 km (tanα =

0.05), h0 = 4000 m, andh1 = 200 m for different inclinations
of continental shelf and continental slope:(a) tanα = 0.1 (x2 =

40 km), (b) tanα = 0.5 (x2 = 8 km), and (c) tanα = 3 (x2 =

1.3 km).

breaking of the long water waves. In this case a water dis-
placement contains the jump of its first derivative. This im-
plies the condition of the first wave breaking:

Br =
max(dU/dt)

tanαg
=

max(d2R/dt2)

tan2αg
= 1, (26)

where the parameter Br has the sense of breaking parame-
ters. Figure 6 shows the temporal evolution of the break-
ing parameter, linear and nonlinear water level oscillations
on the shore and shoreline velocities versus time for soli-
tary impulse andN wave impulse for magnitudeM = 8. The
difference is clearly seen between linear and nonlinear solu-
tions for a moving shoreline. It is important to mention that
the breaking parameter is less than 1, so the tsunami wave
should climb on the shore without breaking for the chosen

Nat. Hazards Earth Syst. Sci., 13, 2745–2752, 2013 www.nat-hazards-earth-syst-sci.net/13/2745/2013/
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Fig. 6. Breaking parameter Br, linear (solid line) and nonlinear
(dash line) variations of water level R on shore and shoreline veloci-
tiesU versus time for h0 = 4000 m, h1 = 200 m, tanα = 0.005,x0 =

40 km, tanα = 0.1,x2 = 23 km, andM = 8: (a) Gaussian wave, and
(b) N wave.

bottom geometry. It should be emphasized that for all results
presented in Figs. 4 and 5 criterion Br< 1 is satisfied.

5 Discussion and conclusions

The run-up of tsunami waves on the coast is studied for the
following bottom geometry: ocean of constant depth, steep
continental slope, and beach of gentle constant slope. It is
demonstrated that run-up characteristics strongly depend on
the frequency of the incident wave due to resonance ef-
fects. They are studied for conditions of the Indian coast
where the 1945 Makran tsunami was recorded. Amplifica-
tion ratio can be 10 times higher than for a case of a uni-
form, averaged slope. The run-ups of solitary waves of bell
or N shape are studied in detail. It is found that run-up of
N wave is higher than for solitary waves. This is due to
stronger manifestation of the resonance effects for N wave
than for bell-shaped waves. Using simple parameterization
of tsunami source through an earthquake magnitude, the run-
up heights are calculated versus earthquake magnitude. It is
shown that the resonance effects can “lift up” the values of
run-up heights for the weakest magnitudes due to resonance
amplification of the shortest waves generated by the weakest
earthquake. Nonlinear correction of obtained results is given.
It is shown that, for typical conditions of the Indian coast

where the 1945 Makran tsunami was observed, the break-
ing parameter is less than 1, and tsunami waves climb on the
coast with no breaking.
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