

Kinetics of the Reactions of NO 3 Radical with Methacrylate Esters 2

Li Zhou, A. R. Ravishankara, Steven S Brown, Mahmoud S Idir, Kyle J Zarzana, Véronique S Daële, Abdelwahid S Mellouki

► To cite this version:

Li Zhou, A. R. Ravishankara, Steven S Brown, Mahmoud S Idir, Kyle J Zarzana, et al.. Kinetics of the Reactions of NO 3 Radical with Methacrylate Esters 2. Journal of Physical Chemistry A, 2017, 121 (23), pp.4464-4474. 10.1021/acs.jpca.7b02332 . insu-01527239

HAL Id: insu-01527239 https://insu.hal.science/insu-01527239v1

Submitted on 24 May 2017 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

3		
5 6	1	Kinetics of the Reactions of NO3 Radical with Methacrylate
7 8 9	2	Esters
10 11 12	3	Li Zhou, ^a A.R. Ravishankara, ^{a,b,*} Steven S. Brown, ^{c,d} Mahmoud Idir, ^a Kyle J. Zarzana, ^{c,e}
13 14	4	Véronique Daële, ^a Abdelwahid Mellouki ^{a,*}
15 16 17 18	5	
19 20 21	6	a. Institut de Combustion, Aérothermique, Réactivité et Environnement/OSUC, CNRS, 45071
22 23	7	Orléans Cedex 02, France
24 25 26	8	b. Departments of Chemistry and Atmospheric Science, Colorado State University, Fort Collins,
27 28 29	9	CO 80253, USA
30 31 32	10	c. National Oceanic and Atmospheric Administration, Earth System Research Laboratory,
33 34	11	Chemical Sciences Division, 325 Broadway, Boulder, CO 80305, USA
35 36 37	12	d. Department of Chemistry, University of Colorado, Boulder, CO 80305, USA
38 39 40	13	e. Cooperative Institute for Research in Environmental Sciences, University of Colorado,
41 42 43	14	Boulder, CO 80305, USA
44 45 46	15	*Address correspondence to:
47 48	16	A.R.Ravishankara@colostate.edu or Adelwahid.Mellouki@cnrs-orleans.fr
49 50 51	17	
52 53 54	18	
55 56 57 58 59 60	19	1

20 Abstract

21	Two different experimental methods (relative rate and absolute rate methods) were
22	used to measure the rate coefficients for the reactions of NO ₃ radical with six
23	methacrylate esters: methyl methacrylate (MMA, k_1), ethyl methacrylate (EMA, k_2),
24	propyl methacrylate (PMA, k ₃), isopropyl methacrylate (IPMA, k ₄), butyl methacrylate
25	(BMA, k_5), isobutyl methacrylate (IBMA, k_6). In the relative rate method, the loss of the
26	esters relative to that of a reference compound was followed in a 7300 L Teflon-walled
27	chamber at (298 \pm 2) K and (1000 \pm 5) hpa. In the absolute method, the temporal profiles of
28	NO_3 and $\mathrm{N}_2\mathrm{O}_5$ were followed using a dual channel cavity ring down spectrometer in the
29	presence of an excess of ester in the 7300 L chamber. The rate coefficients from these two
30	methods (weighted averages) in the units of 10^{-15} cm ³ molecule ⁻¹ s ⁻¹ at 298 K are: k ₁ =
31	$(2.98\pm0.35); k_2 = (4.67\pm0.49); k_3 = (5.23\pm0.60); k_4 = (7.9_1\pm1.0_0); k_5 = (5.71\pm0.56); and k_6$
32	= (6.24±0.66). The quoted uncertainties are at the 2σ level and include estimated
33	systematic errors. Unweighted averages are also reported. In addition, the rate coefficient
34	k_7 for the reaction of NO ₃ radical with deuterated methyl methacrylate (MMA-D8) was
35	measured using the relative rate method to be essentially the same as k_1 . The trends in the
36	measured rate coefficient with the length and nature of the alkyl group, along with the
37	equivalence of k_1 and k_7 strongly suggests that the reaction of NO ₃ with the methacrylate
38	esters proceeds via addition to the double bond on the methacrylate group. The present

3		
4	39	results are compared with those from previous studies. Using the measured values of the
5 6		
7	40	rate coefficients, along with those for reactions of these esters with OH, O ₃ , and chlorine
8		
9	11	atoms, the atmospheric lifetimes of methodrylate estars are calculated. We suggest that
10	41	atoms, the atmospheric metimes of methacrylate esters are calculated. we suggest that
12		
13	42	NO ₃ radicals do contribute to the atmospheric loss of these unsaturated esters, but to a
14		
15	43	lesser extent than their reactions with OH and O_3
16	10	
17		
10	44	
20		
21	45	
22		
23	16	
24 25	40	
26		
27	47	
28		
29	48	
30		
31	40	
33	49	
34		
35	50	
36		
37	51	
39		
40		
41	52	
42		
43	53	
44 45		
46	51	
47	54	
48		
49	55	
50		
52	56	
53		
54		
55	57	
56		
5/ 59		
59		3
60		

1 Introduction

59	Methacrylate esters are important unsaturated oxygenated volatile organic
60	compounds (OVOCs) used in the production of polymers. They are used extensively for
61	manufacture of industrial products such as resins and plastics. Due to their high volatility,
62	these unsaturated OVOCs may be released into the atmosphere, particularly in industrial
63	areas. For example, more than 5,000 tonnes of methyl methacrylate is produced every
64	year in the European Union. The maximum production capacity in each location
65	methacrylates is estimated to be around 10,000 tonnes per year and release from these
66	facilities are estimated to be between 0.005% to 1.1 % of the production values ¹ . If
67	emitted, their atmospheric degradation could lead to surface ozone and aerosols formation.
68	Once released, these unsaturated OVOCs are degraded in the atmosphere by reaction
69	with various reactive species, which include OH and NO ₃ radicals, chlorine atoms and O ₃ .
70	² The nitrate radical, NO ₃ , is a photochemically unstable radical that is prevalent at night,
71	especially in polluted areas that have large NOx emissions. NO3 is known to be an
72	important nighttime oxidant for OVOCs in the atmosphere. ³ Therefore, rate coefficients
73	for the reactions of NO ₃ radicals with methacrylate esters are needed to assess their
74	atmospheric loss rates, especially at night.
75	Kinetics and products of reactions of OH radical reactions with acrylates and
76	methacrylates has been the subject of several studies. ⁴⁻⁵ Reactions of several methacrylate

86 methacrylate (IBMA) - k_6 .

We used two different experimental methods: (1) a relative rate method where the loss
of the ester was measured relative to that of a reference compound while competing for a
common pool of NO₃ radicals; and (2) a direct method where the temporal profiles of NO₃
and N₂O₅ were measured using cavity ring down spectroscopy to detect NO₃ and N₂O₅ in

94	an excess of known concentrations of esters. Both N_2O_5 and NO_3 (which are essentially in
95	equilibrium) decay together when NO ₃ is lost via its reaction with the hydrocarbon.
96	Therefore, we used a box model consisting of 5 reactions (see later) to simulate the
97	temporal profiles of NO_3 and N_2O_5 and quantitatively compare them (via least squares
98	method) with the observed profiles of these species. The use of these two complementary
99	methods enhances our confidence in the measured rate coefficients. In addition, the rate
100	coefficient of deuterated methyl methacrylate (MMA-D8) with NO3 radical was also
101	investigated to shed light on the mechanism of the reaction. Using the obtained kinetics
102	data, the atmospheric lifetimes of methacrylate esters towards NO ₃ radicals were
103	calculated and compared with those due to loss via reactions with OH radicals, O ₃ and
104	chlorine atoms (Cl). The kinetics results also enhance the available database on NO ₃
105	reactions.
106	
	6
	ACS Paragon Plus Environment

2 Experiments and Results

In this section, we will describe our results from the two methods that were used.
Because the experimental methods were somewhat different, we will first describe the
chamber that was used for both methods followed by the analytical methods that were
employed. Subsequently, the obtained data are presented.

2.1 Experimental system: Indoor atmospheric simulation chamber

The kinetic of NO₃ with esters were studied at room temperature (298 \pm 2K) in the ICARE-7300L Teflon chamber (Figure 1), which has been described in detail.¹⁴⁻¹⁵ We will describe here only the features necessary to understand this study. The chamber was equipped with three key analytical tools: (1) a proton transfer reaction mass spectrometer, which was fed from the center of the chamber, to measure the concentrations of hydrocarbon reactants (and some of the products); (2) a Nicolet 5700 Magna FT-IR spectrometer (which sampled approximately 2m near the center of the chamber) the coupled to a white-type mirror system with roughly 70 passes resulting in an optical path of about 140 m; and (3) a cavity ring down spectrometer fed from the center of the chamber (with its inlet next to that for the PTR-MS) to measure NO₃ and N₂O₅. (We could also estimate the concentration of NO₂ using this system.) All the three analytical tools sampled essentially the same part of the chamber. The contents of the chamber were mixed by two

fans internal to the chamber. In addition, the chamber was equipped with multiple thermocouples to measure temperature and a set of capacitance manometers to measure pressure within the chamber, and a gas handling system to input known amounts of gases into the chamber. The atmospheric pressure (1000±5hpa) chamber was made of Teflon film and kept dark by shrouding it in a container equipped with black curtains. Purified dry air (relative humidity <3%) was constantly flowed into the chamber. The chamber was flushed with a large flow (about 120L/min) of dry air to clean out the chamber between experiments or to clean it overnight. However, during kinetics studies, a small flow (about 5-10L/min, depending on the sampling flow rate) of purified air was added just to compensate for the continuous withdrawal of gas from the chamber for analysis; such a flow maintained a constant pressure in the chamber that was slightly above ambient. This flow arrangement resulted in a constant slow dilution of the reactants in the chamber. We measured the dilution rate and mixing time in the chamber by injecting a sample of SF_6 (>99.99%, Alpha Gaz) into the chamber and measuring the temporal profile of SF_6 using the in situ FTIR spectrometer. The mixing time (for near complete mixing, >99%) was about 30 seconds, much shorter than the times for reactions studied here, and the dilution rate could be expressed as a first order rate coefficient of around $2.5 \times 10^{-5} \text{s}^{-1}$ (see below). The gas handling system, external to the chamber, was designed to inject a known volume of a gas into the chamber. We could also inject a known volume of liquid (that

ACS Paragon Plus Environment

probe

PTR-TOFMS

(VOCs)

CRDS

(NO3 and N2O5)

155 with methacrylate esters along with the analytical methods used to detect reactants. The gas

inlet system is shown on the left. The gas outlets and the curtains to keep the chamber dark are

157 not shown. The figure is not to scale.

FEP film

7300L

Fan

Pressure sensor

Liquid injection system

0.9

Gas

cylinder

Pump

2.1.2 PTR-TOFMS

159	The high-resolution proton-transfer-reaction time-of-flight mass spectrometer
160	$(PTR-ToF-MS)^{16}$ (IoniconAnalytik, PTR-ToF-MS 8000) with hydronium ions (H_3O^+) ion
161	source was used to measure methacrylates. The pressure and temperature in the
162	PTR-ToF-MS drift tube was maintained at 2.1 mbar and 333 K. A drift voltage of 400 V
163	was used such that the reduced electric field, E/N, was 98 Td (E is the field strength in V
164	cm ⁻¹ and N is the number density of gas in molecules cm ⁻³). The flow rate of air from the
165	chamber into the drift tube was approximately 150 mL min ⁻¹ . The mass resolution of the
166	mass spectrometer, m/ Δ m, typically ranged from 3500 to 4500. The mass spectral data
167	were analyzed by a PTR-ToF Data Analyzer software ¹⁷ and the normalized peak
168	intensities (in counts per second, ncps) were used for calibration and monitoring. The
169	measured signals varied linearly with the concentrations of the hydrocarbon. The
170	detection sensitivities for the hydrocarbons were derived from the slopes of the
171	calibrations plots of the measured signal (ncps) versus the partial pressure of the
172	hydrocarbon (ppbv) (See also Figure S1 in the supporting information). The detection
173	sensitivities (in units of ncps/ppbv, 1ppbv = 2.46×10^{10} molecule cm ⁻³ at 298K and
174	101.3kpa) at their monitored mass are shown in Table 1.
175	
176	Table 1. A list of specific masses monitored to detect various VOCs using the proton

ACS Paragon Plus Environment

1	
~	
2	
3	
4	
5	
Э	
6	
9	
7	
0	
0	
9	
10	
11	
11	
12	
12	
13	
11	
14	
15	
10	
16	
17	
17	
18	
10	
19	
20	
21	
າງ	
۷۷	
23	
~~	
24	
25	
20	
26	
27	
21	
28	
20	
29	
20	
30	
31	
~~	
32	
33	
55	
34	
25	
35	
36	
00	
37	
20	
30	
39	
40	
40	
41	
42	
12	
43	
44	
۸۳	
45	
16	
-0	
47	
10	
40	
49	
50	
51	
51	
52	
EO	
ეკ	
54	
55	
56	
50	
57	
БÖ	
00	
50	

177	transfer mass spectrometry.	The detection sensitivities are also listed.
-----	-----------------------------	--

	Mass charge	Detection sensitivities
	ratio (m/z)	(ncps/ppbv)
propene	43.05	5.22±0.09
propanal	59.5	7.13±0.09
MMA	101.06	38.9±0.5
d8-MMA	109.09	40.0±0.6
EMA	115.07	5.95±0.47
	87.05	39.2±1.7
PMA	87.05	51.4±0.5
IPMA	87.05	46.8±1.4
BMA	87.05	53.8±2.1
IBMA	87.05	26.1±0.5

178

179 2.1.3 CRDS

180 A two-channel cavity ring down spectrometer operating at 662 nm was used to 181 simultaneously measure the concentrations of NO₃ (in one channel) and $N_2O_5 + NO_3$ (in 182 another channel). The detection principle and operating characteristics of this instrument 183 has been described in detail elsewhere.¹⁸⁻²¹

184The first channel measured the concentration of NO3. The second, parallel, channel

185 was heated to convert N_2O_5 to NO_3 ; total NO_3 (which upon quantitative conversion of

186 N_2O_5 to NO_3) was measured and it represents the sum of NO_3 and N_2O_5 . The time

resolution of the instrument was 1s with detection sensitivities of between 0.4 and 2 ppt

188 for NO₃ and N_2O_5 for 1 second integration, as described in detail by Fuchs et al.²² The air

sample entering the CRDS system was passed through a filter to remove aerosols, which

2
2
3
4
5
6
-
7
8
à
9
10
11
12
12
13
14
15
16
10
17
18
10
19
20
21
22
~~
23
24
25
20
26
27
28
20
29
30
31
22
32
33
34
25
35
36
37
38
50
39
40
<u>4</u> 1
40
42
43
44
15
+J
46
47
48
40
49
50
51
50
52
53
54
55
55
56
57
58
50
59
60

190	scatter the 662 nm light and degrade the instrument sensitivity for gas phase measurement.
191	The combined loss of NO_3 and N_2O_5 to the walls of the instrument and the filter located
192	upstream of this same device have been estimated ²²⁻²⁵ to be less than 20% and 4%,
193	respectively, for NO ₃ and N_2O_5 ; these losses are accounted for in calculating the
194	concentrations. The uncertainties in the absorption cross section of NO ₃ radical at 662 nm
195	and the ratio of the cavity length to the length over which NO_3 and N_2O_5 are present add to
196	the estimated uncertainties. Based on these factors, the overall (asymmetric) accuracy of
197	the NO ₃ and N_2O_5 measurements, respectively, are estimated 26 to be -8% to +11% and
198	from -9% to $+12\%$. Note that the precision of the measurements of NO ₃ and N ₂ O ₅ are
199	much better than the quoted absolute uncertainties under the concentration conditions used
200	in the present study (with initial mixing ratios of NO ₃ between 500 and 2,500 pptv and
201	initial mixing ratios of N ₂ O ₅ between 8,000 and 25,000 pptv).

202 2.1.4 Fourier Transform Spectrometer

A commercial Nicolet 5700 Magna FT-IR spectrometer was coupled to a white-type mirror system located away from the walls and close to the center of the chamber. The optical path length within the chamber was about 140 m. The instrument was operated at a resolution of 1 cm⁻¹. The spectra from the instrument were analyzed using the software provided by the vendor. All the details of the instrument and data analyses are given previously.¹⁴⁻¹⁵ The FTS was used to measure SF_6 (934 cm⁻¹ - 954 cm⁻¹), hydrocarbons,

12

and some other species during the course of this study; they are noted when appropriate.

210 2.2 Chemicals

The purities of chemicals used in the experiments as given by the manufacturer were: methyl methacrylate (MMA, > 99%, TCI), ethyl methacrylate (EMA, >99%, TCI), propyl methacrylate (PMA, >97%, Aldrich), isopropyl methacrylate (IPMA, >98%, TCI), butyl methacrylate (BMA, >99%, TCI), isobutyl methacrylate (IBMA, >98%, TCI), propene (>99%, Air Liquid), and propanal (>98%, Aldrich). The isotopic purity of methyl methacrylate-D8 (MMA-D8 from Apollo Scientific Limited) was quoted to be 99.50 Atom % D. The levels of stabilizers in the samples of esters are noted later. In this study, the NO₃ radicals were produced by the thermal decomposition of N₂O₅ injected into the chamber. Pure N₂O₅ was synthesized by mixing NO with O₃ in a slow flow and collecting

 N_2O_5 at dry ice temperature, followed by purification, as described by Davidson et al.²⁷

221 2.3 Kinetic study methods and results

As noted earlier, we measured the rate coefficients using two different methods: (a) a relative rate method by following the depletion of a VOC and a reference compound, and (b) an absolute method where the temporal profiles of NO_3 and N_2O_5 in an excess of VOC. For ease of presentation, these two experiments and the obtained results will be presented separately below.

227 2.3.1 Relative rate method

228	The experiments were conducted in the chamber (7300L) at atmospheric pressure
229	$(1000\pm5hpa)$ and at temperature of 298 $\pm2K$. The depletion of a reactant (each
230	methacrylate esters; hereinafter VOC) and a reference (propene, propanal and MMA) in
231	the presence and in the absence of NO_3 (and N_2O_5 in equilibrium with NO_3 and NO_2) were
232	monitored by PTR-ToF-MS. To account for dilution, as noted earlier, the losses of VOCs
233	in the absence of NO_3 were measured along with the depletion of SF_6 added
234	simultaneously with the VOCs to the chamber. This small decay was essentially first order
235	in the concentrations of VOC and SF_6 . The first order rate coefficient for the loss of each
236	reactant in the absence of NO_3 was essentially the same as that for the loss of SF_6 ; this
237	decay is attributed to dilution caused by the continued injection of dry air into the
238	chamber. The rate first order rate coefficient for the removal of SF_6 and the VOCs, k_d ,
239	was $(2.5\pm0.2)\times10^{-5}$ s ⁻¹ . This rate coefficient is essentially what we calculate from the
240	volume flow rates of pure air added to the known volume of the chamber to maintain a
241	constant pressure. The related Figure S2 is given in the supporting information.
242	Subsequent to these measurements, a sample of N_2O_5 was introduced into the
243	chamber where it dissociated to give NO ₃ . The rates of depletion of VOCs and reference
244	compound were monitored using the PTR-MS. The VOCs and reference compound are
245	competing for the same pool of NO ₃ radicals and are represented by the reactions:

 $\frac{\text{VOC+NO}_{3} \xrightarrow{k_{\text{voc}}} \text{Products}}{\text{Reference+NO}_{3} \xrightarrow{k_{r}} \text{Products}}$ (A) (R)

247 Under these conditions, their relative losses of the VOC and reference compound are given248 by:

249
$$\ln \frac{[\text{VOC}]_0}{[\text{VOC}]_t} - k_d t = \frac{k_{\text{VOC}}}{k_r} (\ln \frac{[\text{Reference}]_0}{[\text{Reference}]_t} - k_d t)$$
(I)

where $[VOC]_0$ and $[VOC]_t$ are the concentration of reactant at initial time t₀ and at time t, [Reference]₀ and [Reference] are the concentration of reactant at t_0 and t, k_{voc} and k_r were the rate coefficients for reaction (A) and (R), k_d is the first order rate constant for dilution in the chamber. A plot of $\ln([VOC]_0/[VOC]_t) - k_d t$ versus $\ln([Reference]_0/[Reference]_t) - k_d t$ would be a straight line with a zero intercept and a slope of k_{voc}/k_r . In our experiments, the rate constants of the reactions of the reference compounds with NO₃ radicals were taken to be $k_r(\text{propene}) = (9.5 \pm 5.5) \times 10^{-15} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-128}, k_r(\text{propanal}) = (6.3 \pm 2.6) \times 10^{-15}$ cm^{3} molecule⁻¹s⁻¹²⁸, kr (MMA) = (2.98±0.35)×10⁻¹⁵ cm³ molecule⁻¹s⁻¹ (weighted average of the absolute and relative methods from this work; see below). Note that the weighted average for MMA is essentially that measured via the absolute method. The initial concentration of each reactant used in this work is shown in Table 2. A complete summary of the initial concentrations and experimental conditions are given in the supporting information as Table S1. Figures 2-1 and 2-2 show the loss of the esters relative to propene and MMA,

respectively, according to Equation I. For measurement of each rate constant, several

265 mixtures of the reactant and standard were used and they are all included in the same plots. 266 Clearly, the plots show good linearity for all reactions. These plots were analyzed via 267 linear least squares analyses to obtain the slope of k_{voc}/k_r . The obtained values (average of

268 multiple measurements) of the rate constants are summarized in Table 2.

Figure 2-1 Plots of the losses of esters relative to those of propene, which was used as the reference.

271 The losses shown are for: MMA, red filled circles; EMA, black triangles, Y axis offset by 0.05;

272 PMA, blue filled circles, Y axis offset by 0.1; IPMA, blue triangles, Y axis offset by 0.25; BMA,

red triangles, Y axis offset by 0.15; IBMA, black filled circles, Y axis offset by 0.20. The linear

274 least squares fits are shown as lines.

290 methacrylate esters at $298\pm 2K$.

VOCs	[VOC] ₀	Ref.	No. of	$\frac{k_{voc}}{k_r} \pm 2\sigma_{(\frac{k_{voc}}{k_r})}$	$k_{voc}\!\!\pm\!\!2\sigma_{voc}$
	10 ¹²	Compound	experiments		10 ⁻¹⁵
	(molecule cm ⁻³)				$(cm^3 molecule^{-1}s^{-1})$
Methyl methacrylate	1.13 to 3.40	propene	6	0.37±0.04	(3.52±2.07)
(MMA)		propanal	2	0.58±0.06	(3.77±1.56)
				Average	$(3.6_5 \pm 1.3_0)$
				Weighted average	$(3.6_8 \pm 1.2_4)$
Ethyl methacrylate	1.28 to 2.56	propene	3	0.53±0.05	(5.04 <u>+</u> 2.95)
(EMA)		MMA	2	1.55±0.07	(4.62±0.58)
				Average	$(4.8_3 \pm 1.5_0)$
				Weighted average	(4.63±0.57)
Propyl methacrylate	1.10 to1.66	propene	3	0.56±0.04	(5.32±3.10)
(PMA)		MMA	3	1.70±0.16	(5.07±0.76)
				Average	$(5.2_0 \pm 1.6_0)$
				Weighted average	(5.08±0.74)
Isopropyl methacrylate	1.10 to1.65	propene	3	0.91±0.30	(8.65±5.76)
(IPMA)		MMA	3	2.71±0.61	(8.08±2.05)
				Average	$(8.3_7 \pm 3.0_6)$

2
3
4
5
6
7
0
8
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
39
40
11
12
+2 10
43
44
45
46
47
48
49
50
51
52
52
5/
54
55
56
57
58
59
60

				Weighted average	$(8.1_4 \pm 1.9_3)$
Butyl methacrylate	1.01 to 2.53	propene	3	0.70±0.08	(6.65 <u>±</u> 3.87)
(BMA)		MMA	3	1.84±0.12	(5.48±0.74)
				Average	$(6.0_7 \pm 1.9_7)$
				Weighted average	(5.52±0.72)
Isobutyl methacrylate	0.99 to 2.48	propene	3	0.75±0.02	(7.13±4.13)
(IBMA)		MMA	3	1.95±0.23	(5.81±0.96)
				Average	$(6.4_7 \pm 2.1_2)$
				Weighted average	(5.88±0.94)

291 The number of appropriate significant figures are shown for the averages. The number of significant

figures in the reported values are more than what is warranted by the errors, but are shown for

293 completeness. To maintain consistent number of significant figures, some numbers with larger errors are

shown with the last digit as a subscript.

295 2.3.2 Rate coefficients via monitoring temporal profiles of NO₃/N₂O₅ loss using

296 CRDS

297 The rate coefficients for the reactions of NO₃ radicals with methacrylate esters were

also measured by following the temporal profiles of NO_3 and N_2O_5 in an excess of esters.

299 During this process, NO_3 and N_2O_5 are nearly in equilibrium such that one could simply

301 observed profiles to the following set of reactions that occur in the chamber:

$N_2O_5 \xrightarrow{k_{dc}} NO_3 + NO_2$	(R1)
$NO_3 + NO_2 \xrightarrow{k_f} N_2O_5$	(R1')
$NO_3 \xrightarrow{k_{wall1}} loss$	(R2)
$N_2O_5 \xrightarrow{k_{wall 2}} loss$	(R3)
$VOC+NO_3 \xrightarrow{k_{voc}} loss$	(R4)

First, N₂O₅ was injected into the middle of the chamber. N₂O₅ decomposed

immediately in the chamber to give NO_3 and NO_2 and set up an equilibrium with remaining

 N_2O_5 . The temporal variation of NO₃ and N_2O_5 in the chamber were continuously

measured using CRDS. The concentrations of NO₃ and N_2O_5 decreased with time as N_2O_5

and NO₃ were lost in the chamber due to wall loss and reaction with impurities.

Figure 3 Measured temporal profiles of NO_3 and N_2O_5 mixing ratios in the chamber in the

absence (up to the vertical gray bar) and presence of MMA (after the gray bar). The gray bar

The Journal of Physical Chemistry

indicates the time at which VOCs were injected into the chamber and the time it took for complete mixing. $k_{wall1}=0.0065 \text{ s}^{-1}$, $k_{wall2}=0.00032 \text{ s}^{-1}$. Typical observed temporal profiles of NO₃ and N₂O₅ in such experiments after injection of N₂O₅ into the chamber are shown in Figure 3. The measured temporal profiles were fit using a box model that integrated the set of reactions shown above to derive the time dependence of NO_3 and N_2O_5 . The fitting was done by minimizing the sum of least squares for both NO₃ and N₂O₅ profiles, by changing the input parameters that included wall loss rates, the equilibrium constant, the rate coefficient for the reaction of NO_3 with VOC as well as the initial NO₂ concentration. First, the data in the absence of VOC was fit to the reaction scheme with VOC concentration set to zero. Using the known values of the rate coefficients for Reactions R1 and R1', the values of k_{wall1}, k_{wall2}, and the initial concentration of NO₂ were derived from the fit. The equilibrium constant was slightly varied to improve the fit, if necessary. The first-order wall loss rate constants of NO₃ and N_2O_5 , respectively, k_{wall1} (s⁻¹) and k_{wall2} (s⁻¹). Note that we did not have an accurate independent measure of NO₂ in the chamber since our NO₂ detector (which converted NO₂ to NO by passing it over a hot molybdenum catalyst) also detected N₂O₅. Occasionally, we needed to change the N₂O₅ dissociation rate constant by at most 10% to improve the fit, which reflected the uncertainty in the temperature in the chamber of about 1 K. The equilibrium constant, $k_{eq} = [N_2O_5]/[NO_3][NO_2] = k_f/k_{dc}$, and value of k_{dc} , k_{eq} and k_f at

333	After about 10 minutes, a sufficient length of time for NO_3 and N_2O_5 observations that
334	enabled an accurate calculation of the equilibrium constant, a known concentration of the
335	VOC was introduced into the chamber and its concentration was measured using PTR-MS
336	and/or FTIR instruments. The concentration of the ester was always much greater than
337	those of N_2O_5 or NO_3 in the chamber. The temporal profile of N_2O_5 and NO_3 measured
338	after 60 s of VOC injection were again fit to minimize the sum of least squares for NO_3 and
339	N_2O_5 decays in the above reaction scheme with only the rate coefficient for the reaction of
340	VOC with NO_3 being the variable As noted earlier, the time for complete mixing was 30 s.
341	The initial concentration of NO ₂ was taken to be equal to that calculated just prior to adding
342	the VOC assuming equilibrium between NO ₃ and N ₂ O ₅ , i.e.,

343
$$[NO_2]_0 = \frac{[N_2O_5]_0}{[NO_3]_0 k_{eq}}$$
 (II)

Figure 4 shows a fit of the observed temporal profiles of NO₃ and N₂O₅ and the fit of the
profiles to the above reaction scheme.

Figure 4: Observed NO₃ and N_2O_5 mixing ratios (circles and triangles) and their simulated temporal profiles (lines) after the injection of VOC into the chamber where NO₃ and N_2O_5 were

present at equilibrium. Profile (1) - loss of N₂O₅ without MMA; Profile (2) - loss of NO₃
without MMA; Profile (3) - loss of N₂O₅ with MMA; Profile (4) - loss of NO₃ with MMA.

351 The concentration of MMA was 3.06×10^{12} molecule cm⁻³. The fits yield a value of k_{voc} =

352 2.98×10^{-15} molecule⁻¹ cm³ s⁻¹.

353 Multiple experiments were carried out by varying VOC and initial N_2O_5

354 concentrations. In some cases, we included additional NO₂ in the chamber before the

addition of N_2O_5 (to shift the equilibrium). The uncertainty in obtained value of k(VOC)

due to fitting was very small, often much less than 3 %. However, the fits alone do not

- determine the uncertainty in the precision of our measured rate coefficient. They were
- 358 obtained the standard deviation of the mean of multiple measurements and including the

359 Student t value for the limited number of measurements. The results of our measurements

are given in Table 3.

361	
362	Table 3. Summary of the experimental conditions for and results from the absolute
363	method to measure the rate constants for reaction of NO ₃ with VOCs at $298\pm 2K$. The
364	k_{VOC} values shown are those derived from fitting the observed profiles of NO_3 and

 N_2O_5 to a least squares algorithm.

Compound		Initial mining activ		tio (nnhy)	k _{VOC}	k _{VOC}
Compound	1 (K)	Initial mixing ratio (ppbv)			measured ^a	incl. systematic errors ^b
		VOC	NO ₃	N_2O_5	10^{-15} (c	m^3 molecule ⁻¹ s ⁻¹)
Propene	296	156.6	0.54	10.16	9.15	
	296	70.0	0.45	9.77	9.97	
					$(9.5_6 \pm 1.3_6)$	$(9.5_6 \pm 1.8_0)$
MMA	295	121.9	0.68	11.05	2.90	
	296	124.3	0.63	9.79	2.98	
	298	363.7	0.78	11.46	2.89	
					(2.92±0.12)	(2.92±0.37)
EMA	298	126.1	0.81	10.85	4.56	
	300	130.1	0.59	6.79	5.09	
	298	333.3	1.13	16.58	4.69	
					(4.78±0.65)	(4.78±0.93)

The Journal of Physical Chemistry

PMA	297	113.5	0.79	11.15	5.14	
	300	279.7	1.11	10.13	5.77	
	296	113.6	0.83	8.33	5.59	
					(5.50±0.76)	$(5.5_0 \pm 1.0_0)$
IPMA	297	101.6	0.81	10.28	7.94	
	296	86.2	0.91	13.01	7.56	
	300	209.3	0.84	13.69	8.00	
					(7.83±0.56)	$(7.8_3 \pm 1.1_5)$
BMA	299	264.2	1.00	8.80	6.16	
	299	199.2	1.25	11.42	5.86	
	300	251.8	1.10	12.92	6.00	
					(6.00±0.35)	(6.00±0.89)
IBMA	296	142.3	0.77	10.90	6.52	
	297	154.5	1.09	13.00	6.46	
	297	162.6	0.99	9.44	6.82	
					(6.60±0.45)	(6.60±0.94)

^a Quoted error is at the 95% confidence level and is a measure of the precision of our measurements. It

includes Student t-distribution contribution due to the limited number of measurements. To maintain

consistent number of significant figures, some numbers with larger errors are shown with the last digit as

a subscript.

^b The quoted errors include estimated systematic errors as described in the text.

2.4 Error estimation

Relative rate measurements: One of the advantages of relative rate measurements is that uncertainties in absolute concentrations of either reactant do not lead to an error in the measured values since we depend on the relative concentrations changes as the reaction proceeds to derive the rate constant. The concentrations of the reactant, in our case esters, and the reference compound (propene, propanal, or MMA) were measured using the same PTR-ToF-MS system. The calibration plots of the concentration of VOC versus their signals were linear. The precision of the measured signal contributes to the precision of the measured rate constants. The slopes of the plots shown in Figures 2-1 and 2-2 yielded the precision of the measurement. The errors in the values of rate constant ratios (k_{voc}/k_r) are twice the standard deviation $(2\sigma_{kvoc/kr})$ in the least-squares fit of the measured losses to Equation I. In addition to the precision, the main contributor to the accuracy of the measured rate constant is the accuracy of the rate coefficients for the reference reactions. The rate coefficient for the reactions of NO₃ with propene and propanal have been evaluated and we assume the accuracy to be those assessed by the evaluation panels, $k_r(\text{propene})^{28} = (9.5+5.5) \times 10^{-15} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}, k_r(\text{propanal})^{28} = (6.3+2.6) \times 10^{-15} \text{ cm}^3$

 molecule⁻¹s⁻¹. (As noted later, we believe that the uncertainty for the reaction of NO₃ with
propene is less than that noted by the evaluation.) We combined the precision of our
measured values with the quoted uncertainties in the rate coefficient for the reference
reaction to estimate the overall accuracy of the measured rate coefficients.

392
$$\sigma_{\text{voc}} = k_{\text{voc}} \sqrt{\left[\frac{2\sigma_{(\frac{k_{\text{voc}}}{k_{r}})}}{\frac{k_{\text{voc}}}{k_{r}}}\right]^{2}} + \left[\frac{\sigma_{k_{r}}}{k_{r}}\right]^{2}$$
 (III)

Absolute rate constant measurements- The errors in determining the rate coefficients by monitoring the temporal profiles of NO₃ and N₂O₅ arise from the precision in the measurements of NO₃ and N₂O₅, the absolute values of N₂O₅ and NO₃ and the uncertainty in the concentration of the excess reagent, the esters in our study. Ordinarily, the absolute values of the NO₃ reactant would not be needed in an absolute method where NO₃ temporal profile is monitored in an excess of esters. However, in the present study, NO₃ is in equilibrium (or almost in equilibrium) with N₂O₅ and this situation requires absolute concentrations of the NO₃ and N_2O_5 . The systematic errors in measurements of NO₃ and N₂O₅ using the CRDS system employed here have been assessed to be -8/+11% for NO₃ and -9/+12% for N₂O₅, as noted earlier. The uncertainty in the fitting, as noted above, is better than 3%. Systematic errors in the measured concentration of the esters are estimated for each compound using the uncertainty of the slope in the calibration plots (<4%) and the uncertainty in measuring ester concentration for the calibration (5%); all at 95%

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
22	
3Z 22	
33 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
50	
59	
υU	

406	confidence level. We just added these two errors to get the estimated uncertainty in the
407	concentration of esters in the chamber since they could be correlated. Then, the overall
408	estimated error was calculated by adding in quadrature the fitting error, estimated
409	contribution of absolute concentrations of NO ₃ and N_2O_5 , the precision of the
410	measurements of k_{VOC} , and the estimated uncertainty in the concentration of the esters.
411	Table 3 lists the uncertainties in the measured values of the rate constants along with the
412	estimated systematic errors.
413	We measured the rate coefficient for the reaction of NO_3 with propene using the
414	absolute method. Our obtained results are in very good agreement with most of the
415	literature values. This adds further confidence in our measured values of the rate
416	coefficients using the absolute method. We note that most of the reported values for the
417	rate coefficient for the NO ₃ reaction with propene in the IUPAC assessment appears to
418	agree reasonably well, though there are a few outliers. We suggest that the error bars given
419	for the reaction of NO_3 with propene in the IUPAC is excessively conservative.
420	Another potential source of error in the rate coefficient measured using the absolute
421	method is presence of reactive impurities in the sample of the esters. The methacrylates
422	used in the study were the purest we could obtain from commercial vendors (see materials
423	section for purity levels). However, they contained some stabilizers, which could
424	potentially react more rapidly with NO ₃ than the esters. The stabilizers used in the
425	methacrylates were normally around 10-20 ppmv, the maximum was about 200 ppmv of 28

426	4-Methoxyphenol (MEHQ) in isopropyl methacrylate (IPMA). Stabilizers used with these
427	esters are aromatic compounds with a large side chain containing a saturated group. If
428	MEHQ reacted very rapidly with NO ₃ , we could indeed overestimate this rate coefficient.
429	Indeed, if the rate coefficient for the reaction of MEHQ with NO ₃ were 1 x 10^{-10} cm ³
430	molecule ⁻¹ s ⁻¹ as quoted for other methoxyphenols by Lauraguais et al. ³⁰ we should have
431	measured a value of roughly 2 x 10^{-14} cm ³ molecule ⁻¹ s ⁻¹ for IPMA. However, our measured
432	values using the direct and relative methods agree well (see Table 4). Therefore, we do not
433	believe that our reported values were greatly affected by the presence of MEHQ. In case of
434	the other esters, the presence of stabilizers at the quoted levels would contribute at most 20%
435	to the measured value using the direct method. Again, the agreement between the relative
436	and direct method suggests that the contributions of the stabilizer to the measured rate
437	coefficients were not large. We note that the PTR-ToF-MS spectra of each of the esters did
438	not show any measurable hydrocarbons other than the ester. Based on these observations,
439	we conclude that our measured absolute rate coefficients were not significantly influenced
440	by the presence of impurities.
441	Lastly, we note that the rate coefficients measured here reflect that for the reaction of

442 NO₃ with esters and there is no significant contribution from any possible reaction of N_2O_5

443 with esters. First, we varied the ratio of NO_3 to N_2O_5 by changing NO_2 and the measured

444 rate coefficients were insensitive to this ratio. Second, the rate coefficients measured using

the absolute method agrees with that from the relative method, where some of the reference

1	
2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
39	
40	
41	
42	
72 /2	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
60	

446 molecules are known to be non-reactive towards N_2O_5 . Again, in these experiments, the 447 ratios of NO_3 to N_2O_5 were very different and it also varied with the extent of reaction, with 448 no effect on the derived rate coefficients.

449

450 **3 Discussion**

451 **3.1 Comparison of rate coefficients obtained from two methods**

452	We used two different methods to measure the rate coefficients for the reactions of
453	NO ₃ with methacrylate esters; they are summarized in Table 4. The rate constants values
454	we measured using the two methods are in good agreement with each other, given the
455	estimated uncertainties in the rate constants. The largest difference is for the reaction of
456	NO_3 with MMA, where the rate coefficients from the two methods differ by about 25%.
457	We have used weighted average of the two methods, i.e., the absolute and the relate
458	rate methods, to derive the best possible values for the rate coefficients for the reactions
459	of NO ₃ with methacrylate esters studies here. They are shown in Table 4.

460

461 Table 4 Rate constants values obtained in two methods for the reactions of NO₃ with462 methacrylate esters.

Rate constants $k_{voc}(10^{-15}$	Ratio	k _{voc}

	molecule ⁻¹ cm ³ s ⁻¹)		(k_{rm}/k_{ab})	$(10^{-15} \text{ molecule}^{-1} \text{ cm}^3 \text{s}^{-1})$		
	Relative method	Absolute method		Unweighted	Weighted	
	(k _{rm}) (k _{ab})			average	average	
MMA(k ₁)	(3.68±1.24)	(2.92±0.37)	1.26	(3.30±0.65)	(2.98±0.35)	
EMA(k ₂)	(4.63±0.57)	(4.78±0.93)	0.97	(4.70±0.55)	(4.67±0.49)	
PMA(k ₃)	(5.08±0.74)	(5.50±1.00)	0.92	(5.29±0.62)	(5.23±0.60)	
IPMA(k ₄)	(8.14±1.93)	(7.83±1.15)	1.04	$(7.9_9 \pm 1.1_2)^a$	$(7.9_1 \pm 1.0_0)^{a}$	
BMA(k ₅)	(5.52±0.72)	(6.00±0.89)	0.92	(5.76±0.57)	(5.71±0.56)	
IBMA(k ₆)	(5.88±0.94) (6.60±0.94)		0.89	(6.24±0.66)	(6.24±0.66)	

a. To maintain consistent number of significant figures, some numbers with larger errors are shown with thelast digit as a subscript.

 Indeed, one could opt to use an unweighted average. Therefore, we have also listed them
in the table. We prefer the weighted average mostly to put more weight on the direct
method, especially since the quoted uncertainty in the rate coefficient for the reaction of
NO3 with propene, a common reference for relative rate studies, is unusually large. This
is discussed later.

3.2 Comparison with the kinetic results in literature

472	Several groups have measured the rate constants of NO ₃ radical reactions with MMA,
473	EMA and BMA using relative methods in small chambers (<150L) at room temperature
474	and atmospheric pressure. In their experiments, the initial mixing ratios of the
475	methacrylate esters were in a range of 5-20ppmv. A comparison of rate coefficients
476	determined in this study with the literature data is shown in Table 5. As can be seen in the
477	table, our values are in good agreement with previously reported values, given the reported
478	uncertainties, whenever such comparisons are possible.
479	Given the reasonably good agreement between various reported studies and a lack of
480	obvious reasons to prefer one study over the other, we suggest that an un-weighted average
481	of all the results be used as recommended values for the rate coefficient. Such average
482	values are also reported in the Table 5. Clearly, there are no previous reports for the rate
483	coefficients for the reactions of NO3 with PMA, IPMA, and IBMA. However, given the
484	similarities of those compounds with the other methacrylates studied here, it appears that
485	our rate coefficients are also accurate to about 20% and could be used with confidence.
486	
487	
488	Table 5 Summary of the rate coefficients of NO ₃ with MMA, EMA and BMA obtained
489	from literatures and this work.
	32

1
2
2
с ⊿
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
22
32
33
34
35
36
37
38
39
10
4U
41
42
43
44
45
46
<u>4</u> 7
יד 10
40
49
50
51
52
53
54
55
55
56
57
58
59

Reactant	Reference	k_{VOC} reported	Reference		
reactant	Chemical	10^{-15} cm ³ molecule ⁻¹ s ⁻¹			
MMA	A propene $(3.7_1 \pm 2.2_2)^a$ 1		10		
	propene	$(3.51\pm2.04)^a$	12		
	propene	$(3.6_1 \pm 2.1_0)^a$	13		
	propene	$(3.5_2 \pm 2.0_7)$	This work		
	methacrolein	$(3.5_1 \pm 1.0_8)$	13		
	1-butene	$(3.7_2 \pm 1.1_5)$	12		
	propanal	$(3.7_7 \pm 1.5_6)$	This work		
	AM^b	(2.92±0.37)	This work		
		(3.12±0.31)	Weighted average of all work		
		(3.53±0.60)	Unweighted average of all work		
EMA	propene	$(4.8_1 \pm 2.8_0)^a$	12		
	propene	$(5.7_0 \pm 3.3_1)^a$	13		
	propene	(5.04±2.95)	This work		
	1-butene	$(5.0_9 \pm 1.6_1)$	12		
	methacrolein	$(5.1_6 \pm 1.5_9)$	13		
	MMA	(4.62±0.58)	This work		
	AM ^b	(4.78±0.93)	This work		

-
2
3
4
5
6
0
7
8
9
10
10
11
12
13
14
15
10
10
17
18
19
20
20 24
21
22
23
24
25
20
26
27
28
29
20
30
31
32
33
34
35
00
36
37
38
39
40
40
41
42
43
44
15
40
46
47
48
49
50
51
52
53
54
5-
22
56
57
58
59
60
oU

		(4.76±0.44)	Weighted average of all work
		(5.03±0.83)	Unweighted average of all work
BMA	propene $(8.2_7 \pm 4.8_3)^a$ 13		13
	propene	(6.6 ₅ ±3.8 ₇)	This work
	1-butene	$(7.5_8 \pm 4.3_6)$	13
	MMA	(5.48±0.74)	This work
	AM ^b	(6.00±0.89)	This work
		(5.78±0.55)	Weighted average of all work
		(6.8 ₀ ±1.53)	Unweighted average of all work
PMA		(5.23 ± 0.60)	This work
IPMA		$(7.9_1 \pm 1.0_0)$	This work
IBMA		(6.24±0.66)	This work

490 ^a The values from the literatures were recalculated by using the rate constant of propene with NO₃ (9.5 491 ± 5.5) ×10⁻¹⁵ cm³ molecule⁻¹s⁻¹, which was used in our study. Note that these uncertainties are likely to 492 be overestimated because of the large uncertainty quoted by IUPAC. To maintain consistent number of 493 significant figures, some numbers with larger errors are shown with the last digit as a subscript.

494 ^b Measured from the temporal profiles of NO_3 and N_2O_5 , referred to as the absolute method.

495 3.3 Mechanism and Relationship between structure and reactivity of the 496 methacrylate esters

497	The rate coefficients for all the methacrylate measured here are roughly in the same
498	range, with the rate coefficient slightly increasing with extent of substitution going from
499	methyl to ethyl to propyl to butyl methacrylate. We observe an increase in the reactivity
500	with the chain length of the alkyl group. $k_{voc}(MMA) \leq k_{voc}(EMA) \leq k_{voc}(PMA) \leq k_{voc}(BMA)$.
501	Further, the isoalkyl methacrylates react a little faster than their normal analogs. This is
502	consistent with the electron donating inductive effect of the substituents (-C(O)OR),
503	consistent with an electrophilic addition mechanism. ³¹ Such variations are consistent with
504	NO ₃ reaction proceeding via electrophilic addition to the double bond in the methacrylate
505	group. These rate constants that have been measured for unsaturated esters, help
506	understand the structure activity relationship (SAR) and complete the parameterization of
507	this family of compounds. We have refrained from calculating SAR relations till data is
508	available for esters. Curiously, however, the isopropyl methacrylate reacts faster than the
509	normal analog while the isobutyl methacrylate reacts with almost the same rate
510	coefficient as the butyl methacrylate. It would be interesting to see if there is enhanced H
511	abstraction in IPMA reaction and leads to HNO ₃ as a product.
512	To further examine this mechanism for the reaction, we studied the reaction of NO_3
513	with deuterated MMA. The rate coefficients for the reactions of MMA and MMA-D8 with

NO₃ radicals are essentially identical, with $k_H/k_D = 0.98$, as shown in Figure 5. The isotopic purity of the MMA-D8 was high (>99%); therefore, this equality is not due to the deuteration being insufficient. The observed equality of the rate coefficients for the deuterated and non-deuterated MMA further strengthens the expectation that H atom abstraction is insignificant in the reaction of NO₃ with methacrylates.

 Figure 5: The rates of losses of MMA-D8 relative to those for propene while competing for the same pool of NO₃ radicals. The green line is a fit to the MMA-D8 and the red line is a fit to the MMA data. The inset shows a similar plot for the loss of MMA relative that for MMA-D8, with a slope of essentially unity showing the both deuterated and non-deuterated MMA react with NO₃ with the same rate coefficient, i.e., $k_1 \approx k_7$. Furthermore, in our experiments, we deduced NO₂ was not produced after NO₃ was removed. Figure 6 shows the observed NO₃ and N₂O₅ profiles in the presence of MMA. Simulation of these profiles where we include a yield of NO₂ of unity is shown as the

528	dashed line. Clearly, we cannot fit the data to a scheme where NO ₂ is produced from the
529	reaction with a large yield. If NO_2 were the product of the reaction, we would expect a
530	production of one NO_2 for each NO_3 lost, unless there is stoichiometric removal of NO_2
531	by a peroxy radical formed by the NO ₃ reaction with the methacrylate ester that reacts
532	very rapidly with NO ₂ to form a stable nitrate. Since, we cannot rule out the formation of
533	such a nitrate, we cannot unequivocally rule out the formation of NO_2 as a product of the
534	reaction. Future studies in a chamber that were constrained by an accurate measurements
535	of NO_2 and total NO_y would be useful in constraining the branching ratio toward NO_2 or
536	organic nitrate production, even if the former were small. Similarly, a simulation of the
537	all the subsequent reactions would be useful when the majority of the stable products are
538	identified and quantified.

541 Figure 6 Experimental and simulated results for NO₃ and N₂O₅ profiles from chamber experiment

 $(MMA+NO_3)$ when NO₂ was set as a product of unit yield in the modeled reaction scheme.

543Based on these observation we suggest that, the atmospheric oxidation mechanism

of NO₃ reactions with unsaturated carbonyl group compounds proceeds mostly via

545 electrophilic addition to the C=C double bond.

3.4 Atmospheric implication

547 Once emitted into the atmosphere, the studied methacrylate esters are removed 548 mainly through their reactions with reactive species such as OH, NO₃, O₃ and chlorine 549 atoms. The lifetimes for the removal of the esters were calculated using nominal 550 concentrations of the reactive radicals and ozone in the lower troposphere. Note that these 551 lifetimes are nominal values and are expected to be location and time dependent. The

552 lifetimes were calculated using the equation:

$$\tau = \frac{1}{k_{voc+x}[x]}$$
(IV)

where k_{voc+x} is the rate coefficient for the reaction of the oxidant with the methacrylate ester and [x] is the nominal representative atmospheric concentration of the oxidants. Tropospheric concentrations of OH, NO₃, O₃ and chlorine atoms that could be expected were used in the calculations to approximate the loss of esters in the troposphere. Here we take their concentrations to be: $[C1]=1\times10^4$ molecule cm^{-3 32}, $[OH]=1\times10^6$ molecule cm⁻³ ³³, $[NO_3] = 5 \times 10^8$ molecule cm^{-3 34}, $[O_3] = 1 \times 10^{12}$ molecule cm⁻³ (~40 ppbv). Note that NO₃ concentration in locations where esters are emitted (such as urban plumes) can be much larger ³⁵. However, the lifetimes would still be many days such that the esters would be dispersed. Therefore, the calculated atmospheric lifetimes of the methacrylate esters summarized in Table 6 would be reasonably representative of the removal processes for these esters.

The atmospheric lifetimes for methacrylate esters due to reaction with OH radicals are roughly a few hours, followed by that due to loss via reaction with ozone of ~ 40 hours. Clearly, the reaction of NO₃ would contribute only about 5% to the overall lifetime. However, in dark areas with large NOx emissions, the loss via reaction with NO₃ could be significant compared to that via reaction with OH. However, the abundances of NO₃ are closely related to those of O₃ since it is formed by the reaction of NO₂ with O₃.

572 when the NOx emissions are high.

573	Table 6. Summary of rate constants and estimated atmospheric lifetimes of methacrylate esters with respect to their reactions with
574	OH, NO ₃ , O ₃ and Cl at (298 ± 2) K and atmospheric pressure.
-	

	Rate constants (cm ³ molecule 's ')				Lifetime (hours)			
	k _{OH}	k _{NO3}	k _{O3}	k _{Cl}	$ au_{\mathrm{OH}}$	$ au_{NO3}$	$\tau_{O3}{}^{i}$	$\tau_{\rm Cl}$
MMA	(4.2)×10 ⁻¹¹ [b,c,d]	(2.98)×10 ⁻¹⁵ [a]	(7.51)×10 ⁻¹⁸ [d]	(2.17)×10 ⁻¹⁰ [f]	6.6	186	37	128
EMA	$(4.58) \times 10^{-11} [c]$	(4.67)×10 ⁻¹⁵ [a]	(7.68)×10 ⁻¹⁸ [e]	(2.71)×10 ⁻¹⁰ [f]	6.1	119	36	103
PMA		(5.23)×10 ⁻¹⁵ [a]				106	~40	
IPMA		(7.91)×10 ⁻¹⁵ [a]				70	~40	
BMA	(7.08)×10 ⁻¹¹ [c]	(5.71)×10 ⁻¹⁵ [a]		(3.72)×10 ⁻¹⁰ [f,g]	3.3	97	~40	75
IBMA		(6.24)×10 ⁻¹⁵ [a]				89	~40	

575 Assuming $[OH] = 1 \times 10^6$ molecule $cm^{-3} 3^3$, $[NO_3] = 5 \times 10^8$ molecule $cm^{-3} 3^4$, $[O_3] = 1 \times 10^{12}$ molecule cm^{-3} (~40 ppbv), and $[CI] = 1 \times 10^4$ molecule $cm^{-3} 3^2$.

The Journal of Physical Chemistry

1		
2 3		
4		
5 6	576	a This work.
7		
8 9	577	b,c,d are from references 3, 4, and 5: Value reported by ref. d is roughly a factor of 2 lower than that reported by ref. b and c. We used the average value from ref. b
10		
11 12	578	and c.
13		
14 15	579	e from reference 7, f from reference 36, and g from reference 9.
15 16		
17	580	i. When the rate coefficients for the reactions of esters with ozone were not available, we have assumed it to be roughly the same as that for MMA.
18 10		
20		
21		
22 23		
24		
25		
26 27		
28		
29		
30 31		
32		
33		
34 35		
36		
37		
38 39		
40		
41		
42 43		
44		42
45		
46 47		ACS Paragon Plus Environment
48		

581 Supporting Information.

582	Table S1-S2, a complete summary of the initial concentrations and experimental
583	conditions for the relative rate method and absolute rate methods; Figure S1, Calibration
584	of each reactants and references in PTR-ToF-MS; Figure S2, the first order decay rate of
585	SF_6 and MMA in the absence of NO ₃ ; Figure S3, experimental and simulated results for
586	NO ₃ and N ₂ O ₅ profiles from absolute rate method experiments.

588 Acknowledgments

595	References
594	
593	decades. It is our pleasure to be a part of her Festschrift.
592	for her exquisite science and for being a wonderful colleague and a friend over many
591	supported by Colorado State University. ARR and SSB are grateful to Prof. Veronica Vaida
590	program (supported by the Centre-Val de Loire regional council). ARR's work was
589	This work was supported by Labex Voltaire (ANR-10-LABX-100-01) and ARD PIVOTS

596 1. European Union. Risk Assessment. methyl methacrylate. Bundesanstalt für

597 Arbeitsschutz und Arbeitsmedizin. 2002.

- 2
2
3
4
5
6
7
1
8
9
10
11
11
12
13
14
15
10
16
17
18
10
10
20
21
22
23
24
24
25
26
27
20
20
29
30
31
32
32
33
34
35
36
27
31
38
39
40
/1
+1
42
43
44
45
40
40
47
48
49
50
50
51
52
53
51
54
55
56
57
58
50
59
60

Mellouki, A.; Le Bras, G.; Sidebottom, H., Kinetics and mechanisms of the oxidation
 of oxygenated organic compounds in the gas phase. *Chem. Rev.* 2003, *103* (12),
 5077-5096.
 Brown, S. S.; Stutz, J., Nighttime radical observations and chemistry. *Chem. Soc. Rev.* 2012, *41* (19), 6405-6447.

4. Teruel, M. A.; Lane, S. I.; Mellouki, A.; Solignac, G.; Le Bras, G., OH reaction rate
constants and UV absorption cross-sections of unsaturated esters. *Atmos. Environ.* 2006,

605 *40* (20), 3764-3772.

5. Blanco, M. B.; Taccone, R. A.; Lane, S. I.; Teruel, M. A., On the OH-initiated

607 degradation of methacrylates in the troposphere: Gas-phase kinetics and formation of

608 pyruvates. Chem. Phys. Lett. 2006, 429 (4-6), 389-394.

6. Grosjean, D.; Grosjean, E.; Williams, E. L., Rate constants for the gas-phase reaction
of ozone with unsatruated alcohols, esters, and carbonyls. *Int. J. Chem. Kinet.* 1993, *25* (9),
783-794.

612 7. Gai, Y.; Ge, M.; Wang, W., Rate constants for the gas phase of ozone with n-butyl

613 acrylate and ethyl methacrylate. *Chem. Phys. Lett.* **2009**, *473* (1-3), 57-60.

8. Blanco, M. B.; Bejan, I.; Barnes, I.; Wiesen, P.; Teruel, M. A., Temperature-dependent

rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate

and butyl methacrylate at atmospheric pressure. *Atmos. Environ.* **2009**, *43* (38), 5996-6002.

617 9. Blanco, M. B.; Bejan, I.; Barnes, I.; Wiesen, P.; Teruel, M. A., Temperature-dependent

1	
2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
31	
38	
39	
40	
41	
42	
43	
44	
45	
<u>46</u>	
40	
41	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

618	rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate
619	and butyl methacrylate at atmospheric pressure. Atmos. Environ. 2009, 43 (38),
620	5996-6002.
621	10. Canosa-Mas, C. E.; Carr, S.; King, M. D.; Shallcross, D. E.; Thompson, K. C.; Wayne,
622	R. P., A kinetic study of the reactions of NO ₃ with methyl vinyl ketone, methacrolein,
623	acrolein, methyl acrylate and methyl methacrylate. Phys. Chem. Chem. Phys. 1999, 1 (18),
624	4195-4202.
625	11. Canosa-Mas, C. E.; Flugge, M. L.; King, M. D.; Wayne, R. P., An experimental study
626	of the gas-phase reaction of the NO ₃ radical with alpha, beta-unsaturated carbonyl
627	compounds. Phys. Chem. Chem. Phys. 2005, 7 (4), 643-650.
628	12. Wang, K.; Ge, M.; Wang, W., Kinetics of the gas-phase reactions of NO ₃ radicals with
629	ethyl acrylate, n-butyl acrylate, methyl methacrylate and ethyl methacrylate. Atmos.
630	<i>Environ.</i> 2010, <i>44</i> (15), 1847-1850.
631	13. Sagrario Salgado, M.; Paz Gallego-Iniesta, M.; Pilar Martin, M.; Tapia, A.; Cabanas,
632	B., Night-time atmospheric chemistry of methacrylates. Environ. Sci. Pollut. Res. 2011, 18
633	(6), 940-948.
634	14. Bernard, F.; Eyglunent, G.; Daele, V.; Mellouki, A., Kinetics and Products of
635	Gas-Phase Reactions of Ozone with Methyl Methacrylate, Methyl Acrylate, and Ethyl
636	Acrylate. J. Phys. Chem. A 2010, 114 (32), 8376-8383.
637	15. Chen, H.; Ren, Y.; Cazaunau, M.; Dalele, V.; Hu, Y.; Chen, J.; Mellouki, A., Rate

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
30	
20	
30	
<u>40</u>	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54 57	
55	
30 57	
51 52	
50 50	
60	

638	coefficients for the reaction of ozone with 2-and 3-carene. Chem. Phys. Lett. 2015, 621,
639	71-77.
640	16. Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Maerk, L.; Seehauser, H.;
641	Schottkowsky, R.; Sulzer, P.; Maerk, T. D., A high resolution and high sensitivity
642	proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS). Int. J. Mass
643	spectrom. 2009, 286 (2-3), 122-128.
644	17. Mueller, M.; Mikoviny, T.; Jud, W.; D'Anna, B.; Wisthaler, A., A new software tool for
645	the analysis of high resolution PTR-ToF mass spectra. Chemometrics Intellig. Lab. Syst.
646	2013, <i>127</i> , 158-165.
647	18. Brown, S. S.; Stark, H.; Ravishankara, A. R., Cavity ring-down spectroscopy for
648	atmospheric trace gas detection: application to the nitrate radical (NO ₃). Applied Physics
649	B-Lasers and Optics 2002, 75 (2-3), 173-182.
650	19. Brown, S. S.; Stark, H.; Ciciora, S. J.; McLaughlin, R. J.; Ravishankara, A. R.,
651	Simultaneous in situ detection of atmospheric NO $_3$ and N $_2O_5$ via cavity ring-down
652	spectroscopy. Rev. Sci. Instrum. 2002, 73 (9), 3291-3301.
653	20. Brown, S. S.; Stark, H.; Ciciora, S. J.; Ravishankara, A. R., In-situ measurement of
654	atmospheric NO_3 and N_2O_5 via cavity ring-down spectroscopy. <i>Geophys. Res. Lett.</i> 2001,
655	28 (17), 3227-3230.
656	21. Brown, S. S., Absorption spectroscopy in high-finesse cavities for atmospheric studies.
657	Chem. Rev. 2003, 103 (12), 5219-5238.

22. Fuchs, H.; Dube, W. P.; Cicioira, S. J.; Brown, S. S., Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO₃, N₂O₅ and NO₂, via pulsed cavity ring-down spectroscopy. Anal. Chem. 2008, 80 (15), 6010-6017. 23. Dube, W. P.; Brown, S. S.; Osthoff, H. D.; Nunley, M. R.; Ciciora, S. J.; Paris, M. W.; McLaughlin, R. J.; Ravishankara, A. R., Aircraft instrument for simultaneous, in situ measurement of NO_3 and N_2O_5 via pulsed cavity ring-down spectroscopy. *Rev. Sci.* Instrum. 2006, 77 (3). 24. Fuchs, H.; Simpson, W. R.; Apodaca, R. L.; Brauers, T.; Cohen, R. C.; Crowley, J. N.; Dorn, H. P.; Dubé, W. P.; Fry, J. L.; Häseler, R.; Kajii, Y.; Kiendler-Scharr, A. et al., Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR. Atmos. Meas. Tech. 2012, 5, 2763-2777. 25. Dorn, H. P.; Apodaca, R. L.; Ball, S. M.; Brauers, T.; Brown, S. S.; Crowley, J. N.; Dubé, W. P.; Fuchs, H.; Häseler, R.; Heitmann, U. et al., Intercomparison of NO₃ radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmos. Meas. *Tech.* **2013**, *6*, 1111-1140. 26. Wagner, N. L.; Dube, W. P.; Washenfelder, R. A.; Young, C. J.; Pollack, I. B.; Ryerson, T. B.; Brown, S. S., Diode laser-based cavity ring-down instrument for NO₃, N₂O₅, NO, NO₂ and O₃ from aircraft. Atmos. Meas. Tech. 2011, 4 (6), 1227-1240. 27. Davidson, J. A.; Viggiano, A. A.; Howard, C. J.; Dotan, I.; Fehsenfeld, F. C.; Albritton,

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
39	
40	
41	
4∠ ⊿つ	
43 11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

678	D. L.; Ferguson, E. E., Rate constants fro reactions of O_2^+ , NO_2^+ , NO_2^+ , H_3O^+ , CO_3^- , NO_2^- ,
679	and halide ions with N ₂ O ₅ at 300K. J. Chem. Phys. 1978 , 68 (5), 2085-2087.
680	28. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R.
681	G.; Jenkin, M. E.; Rossi, M. J.; Troe, J.; Subcommittee, I., Evaluated kinetic and
682	photochemical data for atmospheric chemistry: Volume II – gas phase reactions of
683	organic species. Atmos. Chem. Phys. 2006, 6 (11), 3625-4055.
684	29. Burkholder, J. B.; Sander, S. P.; Abbatt, J.; Barker, J. R.; Huie, R. E.; Kolb, C. E.;
685	Kurylo, M. J.; Orkin, V. L.; Wilmouth, D. M.; and Wine, P. H., Chemical Kinetics and
686	Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18," JPL Publication
687	15-10, Jet Propulsion Laboratory, Pasadena, 2015 http://jpldataeval.jpl.nasa.gov.
688	30. Lauraguais, A.; El Zein, A.; Coeur, C.; Obeid, E.; Cassez, A.; Rayez, M. T.; Rayez, J.
689	C., Kinetic Study of the Gas-Phase Reactions of Nitrate Radicals with Methoxyphenol
690	Compounds: Experimental and Theoretical Approaches. J. Phys. Chem. A 2016, 120 (17),
691	2691-2699.
692	31. Atkinson, R., Gas-phase tropospheric chemistry of volatile organic compounds .1.
693	Alkanes and alkenes. J. Phys. Chem. Ref. Data 1997, 26 (2), 215-290.
694	32. Wingenter, O. W.; Kubo, M. K.; Blake, N. J.; Smith, T. W.; Blake, D. R.; Rowland, F.
695	S., Hydrocarbon and halocarbon measurements as photochemical and dynamical
696	indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during
697	Lagrangian flights. J. Geophys. Res 1996, 101 (D2), 4331-4340.

1	
2	
3	
1	
5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
2U 24	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
37 20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
04 57	
55	
56	
57	
58	
59	
60	

698	33. Spivakovsky, C. M.; Logan, J. A.; Montzka, S. A.; Balkanski, Y. J.; Foreman-Fowler,
699	M.; Jones, D. B. A.; Horowitz, L. W.; Fusco, A. C.; Brenninkmeijer, C. A. M.; Prather, M.
700	J.; Wofsy, S. C.; McElroy, M. B., Three-dimensional climatological distribution of
701	tropospheric OH: Update and evaluation. J. Geophys. Res 2000, 105 (D7), 8931-8980.
702	34. Atkinson, R., Kinetics and mechanisms of the gas-phase reactions of the NO ₃
703	radicals with organic compounds. J. Phys. Chem. Ref. Data 1991, 20 (3), 459-507.
704	35. Brown, S. S.; Dubé, W. P.; Peischl, J.; Ryerson, T. B.; Atlas, E.; Warneke, C.; de Gouw,
705	J. A.; te Lintel Hekkert, S.; Brock, C. A.; Flocke, F.; Trainer, M.; Parrish, D. D.; Feshenfeld,
706	F. C.; Ravishankara, A. R., Budgets for nocturnal VOC oxidation by nitrate radicals aloft
707	during the 2006 Texas Air Quality Study. J. Geophys. Res 2011, 116 (D24).
708	36. Martin Porrero, M. P.; Gallego-Iniesta Garcia, M. P.; Espinosa Ruiz, J. L.; Tapia Valle,
709	A.; Cabanas Galan, B.; Salgado Munoz, M. S., Gas phase reactions of unsaturated esters
710	with Cl atoms. Environ. Sci. Pollut. Res. Int. 2010, 17 (3), 539-546.
711	
712	
713	
714	

715 TOC Graphic

や

In situ FTIR

7300L

Temperature

probe

PTR-TOFMS

(VOCs)

CRDS

(NO₃ and N₂O₅)

