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S U M M A R Y
By relying on two numerical dynamo simulations for which such investigations are possible,
we test the validity and sensitivity of a statistical palaeomagnetic field modelling approach
known as the giant gaussian process (GGP) modelling approach. This approach is currently
used to analyse palaeomagnetic data at times of stable polarity and infer some information
about the way the main magnetic field (MF) of the Earth has been behaving in the past and
has possibly been influenced by core–mantle boundary (CMB) conditions. One simulation has
been run with homogeneous CMB conditions, the other with more realistic non-homogeneous
symmetry breaking CMB conditions. In both simulations, it is found that, as required by the
GGP approach, the field behaves as a short-term memory process. Some severe non-stationarity
is however found in the non-homogeneous case, leading to very significant departures of the
Gauss coefficients from a Gaussian distribution, in contradiction with the assumptions under-
lying the GGP approach. A similar but less severe non-stationarity is found in the case of the
homogeneous simulation, which happens to display a more Earth-like temporal behaviour than
the non-homogeneous case. This suggests that a GGP modelling approach could nevertheless
be applied to try and estimate the mean µ and covariance matrix γ(τ ) (first- and second-
order statistical moments) of the field produced by the geodynamo. A detailed study of both
simulations is carried out to assess the possibility of detecting statistical symmetry breaking
properties of the underlying dynamo process by inspection of estimates of µ and γ(τ ). As ex-
pected (because of the role of the rotation of the Earth in the dynamo process), those estimates
reveal spherical symmetry breaking properties. Equatorial symmetry breaking properties are
also detected in both simulations, showing that such symmetry breaking properties can occur
spontaneously under homogeneous CMB conditions. By contrast axial symmetry breaking is
detected only in the non-homogenous simulation, testifying for the constraints imposed by
the CMB conditions. The signature of this axial symmetry breaking is however found to be
much weaker than the signature of equatorial symmetry breaking. We note that this could be
the reason why only equatorial symmetry breaking properties (in the form of the well-known
axial quadrupole term in the time-averaged field) have unambiguously been found so far by
analysing the real data. However, this could also be because those analyses have all assumed to
simple a form for γ(τ ) when attempting to estimate µ. Suggestions are provided to make sure
future attempts of GGP modelling with real data are being carried out in a more consistent and
perhaps more efficient way.

Key words: dynamo theory, geomagnetism, geostatistics, palaeomagnetism, spherical har-
monics, statistical methods.

1 I N T RO D U C T I O N

The past decade has seen significant progress in our understanding
of the origin and behaviour of the magnetic field (MF) of the Earth.

Several fully consistent 3-D fluid dynamo numerical simulations
have been run with success, showing that a planet with a convecting
metallic core, such as the Earth, could indeed spontaneously pro-
duce a MF by fluid dynamo action within its core (Glatzmaier &
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Roberts 1995; Kuang & Bloxham 1997; Christensen et al. 1998).
Surprisingly, even though those simulations have been run in param-
eter regimes known to still be very remote from that of the Earth, the
fields produced happen to display a number of Earth-like features,
such as a dipole dominant structure and the occurrence of reversals
(for a recent review, see e.g. Dormy et al. 2000). Those encouraging
results obviously call for both improved numerical simulations and
more detailed comparisons of the simulated fields with the real main
MF produced in the core of the Earth.

Such comparisons are relatively straightforward to carry over the
historical period, for which spherical harmonic (SH) models of the
MF are available (see e.g. Hulot et al. 2002). However, a different
approach is required to compare the output of numerical simulations
with the numerous, but sparse in time and location, data contained in
the palaeomagnetic databases available for recent geological epochs.
One approach is particularly well suited, the giant gaussian process
(GGP) approach introduced by Constable & Parker (1988). This
statistical approach relies on a single formalism that can be used to
statistically analyse just as well the historical (Constable & Parker
1988; Hulot & Le Mouël 1994), the archeomagnetic (Hongre et al.
1998) and the palaeomagnetic MF (Constable & Parker 1988 and
many studies since, see e.g. Kono et al. 2000a, Khokhlov et al. 2001
and references therein). As we shall see, it also is of straightforward
use for analogous analysis of the field produced from numerical
simulations.

The GGP approach however relies on a set of assumptions re-
quired for the approach to be valid. Observations show that the geo-
magnetic field experienced many significant changes on timescales
of tens to a few thousand years, about a mainly axial dipole field.
By contrast, this mean field only very occasionally (on timescales of
several hundred thousand years) and suddenly (within a few thou-
sand years) changed its polarity in the past, at times of so-called
reversals (see e.g. Merrill et al. 1996). Although it would probably
be advisable to try and develop a statistical formalism capable of
also describing such events, the GGP approach deliberately restricts
its scope to studying the field produced by the geodynamo at times
of stable polarity, defined as the times when the field fluctuates about
a non-zero mean field, with a strong stable axial dipole component.
There are at least two reasons for this. One is that we do not yet
know enough about reversals to propose a statistical formalism that
could also account for them in a fully consistent way. The other is
that the GGP approach precisely makes it possible to compare the
statistical behaviour of the field before and after reversals. This can
usefully shed some light about the exact nature of these events.

Additional simplifying assumptions have otherwise systemati-
cally been introduced to ease the data analysis. Those assumptions
have been reviewed in a companion paper (Hulot & Bouligand
2005, – this issue, hereafter Paper I,) and shown to often amount to
symmetry constraints imposed on the GGP models. However, it is
not obvious that the MF of the Earth should satisfy those constraints.
In fact and as further noted in Paper I, it would be advisable not to
a priori enforce any such constraint. A posteriori analysis of the
symmetries involved in a GGP model accounting for the field could
indeed also offer a useful guide to characterize the regime under
which the geodynamo has been operating in the past.

In the present paper, we take advantage of numerical simula-
tions from the Glatzmaier & Roberts (1995, 1996, 1997; Glatzmaier
et al. 1999) dynamo to test the fundamental assumptions underly-
ing the GGP approach, address the symmetry issues raised in Pa-
per I and discuss possible simplifying assumptions. Although quite
a few detailed analyses of the field produced by those simulations
(Glatzmaier et al. 1999; Coe et al. 2000; McMillan et al. 2001) or by

other analogous simulations (Bloxham 2000a,b; Kono et al. 2000b;
Kono & Roberts 2002; Olson & Christensen 2002; Christensen &
Olson 2003) have already been published, only a few (McMillan
et al. 2001, and to a lesser extent Kono et al. 2000b and Kono &
Roberts 2002) attempted some tests in connection with the GGP
approach. None however, fully addressed the relevance of the GGP
approach to characterize the field produced by a (numerical) dy-
namo. This is the main purpose of the present study.

2 G E N E R A L B A C KG RO U N D

Let us first briefly introduce the background information we will
need (for more details, see Paper I). In a GGP description of a field
B(r, t) at a time of stable polarity, it is assumed that, at any given
time t and location r outside the core,

B(r, t) = −∇V (r, t), (1)

where:

V (r, t) = a
∞∑

n=1

(
a

r

)n+1 n∑
m=0

[
gm

n (t)Y mc
n (θ, ϕ) + hm

n (t)Y ms
n (θ, ϕ)

]
;

(2)

a is an arbitrary reference radius; (r , θ , ϕ) are the spherical coor-
dinates; Y m(c,s)

n (θ , ϕ) are the real SH functions of degree n and m,
Schmidt normalized; and the [ gm

n (t), hm
n (t)] are the so-called Gauss

coefficients that define a vector x(t), assumed to be a single real-
ization of a multidimensional stationary random Gaussian process,
with

a statistical mean (or mean model) E{x(t)} = µ, (3)

a covariance matrix E{[x(t) − µ][x(t ′) − µ]T } = γ(t ′ − t), (4)

where E{} is the statistical expectation, µ is a vector of compo-
nents [µ(gm

n ), µ(hm
n )] and γ(t′ − t) is a matrix of elements γ (xm

n ,
x ′m′

n′ , t ′ − t), with x and x′ being either g or h.
In addition, it is assumed that the covariance matrix γ(τ ) de-

creases fast enough towards zero when τ becomes large (i.e. that
the process is short-term memory), to ensure that the process is
ergodic for both its mean and its covariance, i.e. to ensure that

lim
T →∞

x̄T = µ and lim
T →∞

K̄T (τ ) = γ(τ ),

where we have introduced the following time averages:

x̄T = 1

T

∫ T

0
x(t) dt, (5)

K̄T (τ ) = 1

T

∫ T

0
[x(t) − x̄T ][x(t + τ ) − x̄T ]T dt. (6)

Necessary and sufficient conditions can then be derived for a
GGP to be either spherically, axially (about the rotation axis of the
Earth), or equatorially symmetric in a statistical sense (see Paper I
for proofs):

Conditions for spherical statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0, (7a)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if xm
n �= x ′m′

n′ and γ
(
xm

n , xm
n , τ

) = γn(τ );

(7b)
Conditions for axial statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0 if m �= 0, (8a)

γ
(
gm

n , gm
n′ , τ

) = γ
(
hm

n , hm
n′ , τ

)
if m �= 0, (8b)
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γ
(
gm

n , hm
n′ , τ

) = −γ
(
hm

n , gm
n′ , τ

)
, (8c)

γ
(

xm
n , x ′m′

n′ , τ
)

= 0 if m �= m ′; (8d)

Conditions for ES equatorial statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0 if n − m is odd, (9a)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if n − m and n′ − m ′ are of

different parities; (9b)

Conditions for EA equatorial statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0 if n − m is even, (10a)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if n − m and n′ − m ′ are of

different parities.
(10b)

As shown in Paper I, a GGP process satisfying eq. (7) would be
invariant in any change of frame of reference and thus statisti-
cally insensitive to any specific frame of reference. One satisfying
eq. (8) would be invariant in any rotation of the frame reference
about the rotation axis of the Earth and thus insensitive to any spe-
cific longitude. One satisfying eq. (9) would be invariant after re-
flecting in the equatorial plane and changing the field polarity, and
one satisfying eq. (10) would be invariant after reflecting in the equa-
torial plane. Either way, such a GGP would see both hemispheres
in a statistically equivalent way. Thus, a field satisfying either eq.
(9) or eq. (10) can be defined as being equatorially symmetric. In-
troducing the terminology often used in palaeomagnetism (Merrill
et al. 1996) of dipole family (n − m odd) versus quadrupole family
(n − m even), this amounts to say that a GGP will have an equatorial
symmetry if and only if µ belongs exclusively to either the dipole
or the quadrupole family and γ(τ ) does not couple the two families
(for more details, see Paper I).

The general question we now wish to address is the extent to which
one may assume that a fluid dynamo of the type thought to be re-
sponsible for the main MF of the Earth produces a field that, at times
of stable polarity: (i) reasonably complies with a GGP behaviour;
(ii) displays meaningful and thus useful statistical symmetry prop-
erties that we can identify; and (iii) can be described with the help
of reasonably simple µ and γ(τ ).

3 C A S E S T U DY O F A H O M O G E N E O U S
N U M E R I C A L S I M U L AT I O N

To address those questions, we first consider the so-called homoge-
neous model g described in some detail in Glatzmaier et al. (1999)
and Coe et al. (2000). This simulation has been generated by the
dynamo model of Glatzmaier & Roberts (1997) that solves the non-
linear magnetohydrodynamic (MHD) equations for the 3-D, time-
dependent flow, MF and thermodynamic variables in a rotating,
convecting, fluid sphere. Its main characteristic, as far as we are
concerned here, is that the convection is thermally driven by homo-
geneous, i.e. spherically symmetric, thermal boundary conditions.
This very high level of symmetry is what makes model g an inter-
esting simulation to investigate first.

The simulation directly produced this field in the form of a time
varying geomagnetic model x(t). Thus, estimates based on eqs (5)
and (6) can directly be used to carry on tests. In practice however, we
are slightly limited by the length of the simulation, and by the fact

that values of x(t) were saved only up to degree and order 21, and only
every approximately 47.5 yr. (Gauss coefficients were indeed saved
only every 1000 numerical time steps during the simulation. Because
each numerical time step was approximately 17 days, this means
that we dealt with snapshots of x(t) every 47.5 yr; see Glatzmaier
et al. 1999, for more details.) Fortunately, those limitations do not
seriously affect our capacity to draw conclusions. Note also that time
in the model is scaled consistently with both the rotation period of
the Earth (1 day) and the dipole magnetic diffusion time (20 000
yr). However, this model (like all current models of the geodynamo)
should not directly be compared to the actual geodynamo, because
the viscous diffusion time of the model is much shorter than the
magnetic diffusion time of the Earth.

The simulation has been run over approximately 550 000 yr, but
the Gauss coefficients were saved only for a little more than the last
350 000 yr. This amounts to approximately 7500 snapshots (which
we will refer to as steps for the purpose of the statistical analysis
described below, even though each such step actually represents
1000 time steps in the numerical simulation of Glatzmaier et al.
1999). The field produced went through two reversals, which have
been studied in detail by Glatzmaier et al. (1999), Coe et al. (2000)
and McMillan et al. (2001). Here, we mainly focus on the period of
stable polarity between the two reversals. All tests described below
therefore deal with the field behaviour between step 2030 and 5020,
over a period of T 0 ≈ 142 000 yr (step 1 corresponding to the initial
step of the last 350 000 yr of the run). In what follows and in order
to simplify notations, all time averages x̄T0 and K̄T0 (τ ) (as defined
by eqs 5 and 6 for the entire period T = T 0) will be denoted x̄ and
K̄(τ ).

3.1 Short-term memory

Leaving the issue of stationarity for a later section, we first checked
that the field produced by model g is indeed compatible with a
covariance matrix γ(τ ) decreasing fast to zero when τ becomes
large. For each Gauss coefficient xm

n (t), we computed estimates
K̄ (xm

n , xm
n , τ )/K̄ (xm

n , xm
n , 0) of the autocovariance function of xm

n (t)
normalized to its value at τ = 0. Fig. 1 shows the result of such a
computation for all xm

n (t) with degree n = 2. It indeed reveals that
K̄ (xm

n , xm
n , τ ) always decreases fast towards zero when τ increases.

Similar pictures were obtained for all Gauss coefficients.
In fact, it turns out that all estimates K̄ (xm

n , xm
n , τ ) take a form very

similar to the Gaussian shape Hongre et al. (1998) had anticipated
for γ (xm

n , xm
n , τ ):

γn(τ ) = σ 2
n exp

[
− τ 2

2τ 2
n

]
, (11)

except for the fact that the typical correlation times τ n involved are
not only a function of the degree n, but also of the order m. The only
parameter they are not sensitive to is the x character (g or h).

To illustrate this point further, for each Gauss coefficient xm
n (t),

we defined and estimated a typical correlation time τm
n as the value

of τ such that K̄ (xm
n , xm

n , τ )/K̄ (xm
n , xm

n , 0) = exp(−1/2). Table 1
lists those estimates for the lowest degrees and Fig. 2 gives a vi-
sual account of all values. Again, we see that the τm

n strongly de-
pend on both n and m, but are very nearly the same for gm

n (t) and
hm

n (t) [the differences to be seen are of only a fraction of the time
between saved snapshots (47.5 yr) and can therefore be attributed
to the limited temporal resolution of the data we analyse]. This, we
note, is not compatible with eq. (7b) and may therefore be viewed as
a temporal manifestation of some spherical symmetry breaking. By
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Figure 1. Model g: estimates K̄ (xm
n , xm

n , τ )/K̄ (xm
n , xm

n , 0) of the autocovariance functions normalized to their value at τ = 0, for all Gauss coefficients with
degree n = 2. The curves with black dots are for the x = g coefficients and those with grey crosses for the x = h coefficients. The time-shift τ is expressed in
terms of steps between saved snapshots (lower scale, 1 step = 47.5 yr) and years (upper scale).

Table 1. Model g: estimates of the typical correlation times
τm

n for the Gauss coefficients with low degrees.

n m g h
steps(yr) steps(yr)

1 0 100.4(4772)
1 1 5.2(249) 4.7(222)
2 0 7.4(354)
2 1 6.3(297) 6.9(327)
2 2 2.9(137) 2.9(137)
3 0 15.8(752)
3 1 3.6(171) 3.3(156)
3 2 3.8(179) 3.8(181)
3 3 2.5(117) 2.4(112)
4 0 4.4(210)
4 1 3.8(181) 3.9(186)
4 2 2.7(129) 2.5(121)
4 3 2.8(132) 2.7(128)
4 4 1.7(82) 1.8(87)

contrast, those results are consistent with the axial symmetry con-
ditions (eq. 8b, with n = n′). (Note that timescales cannot bring any
information with respect to the third, equatorial, symmetry as eq.
9b/10b involves no requirements on timescales.) Thus, not only is
the temporal behaviour of the model g field compatible with a short-
term memory process, it also reflects relevant symmetry properties.

3.2 Time-averaged field

We next checked that the field produced by model g is also compat-
ible with a mean field µ displaying meaningful symmetry proper-

ties. We computed time-averaged estimates x̄ of µ with the help of
eq. (5) (Table 2). Of course, none of the ḡm

n and h̄m
n we get is exactly

zero, because T 0 is not infinite and estimates can only be known to
within some statistical bounds. To decide which of those estimates
can be considered as significantly different from zero, we relied on
the results of Table 1. For each Gauss coefficient xm

n (t), rather than
using the continuous integral (5), we computed an average from
samples taken every �t = 3τm

n . Those samples may then be con-
sidered independent from each other (Hongre et al. 1998), which
makes it easy to decide whether the resulting average significantly
differs from zero or not, with a standard Student’s t-test (e.g. van
der Waerden 1969; Press et al. 1992).

For g0
1(t), which has the largest τm

n (τ 0
1 ≈ 4800 yr, corresponding

to approximately 100 time steps), we chose �t = 302 steps and an
estimate of µ(g0

1) was therefore derived from only 10 independent
values. The value inferred is nevertheless significantly different from
zero at the 10−5 per cent level. For all other Gauss coefficients, a
Student’s t-test at a 1 per cent level was carried out. This leads to the
conclusion that estimates of all µ(g0

n) significantly differ from zero,
except that of µ(g0

21), which is close to being zero. By contrast, none
of the estimates for the 462 non-axial terms appears to significantly
differ from zero. This result is consistent with the 1 per cent level
of the test over such a population (about four non-zero values being
then possibly expected; in fact, the lowest probability we found for
a mean non-axial term to be compatible with a zero expected value
is of 2.28 per cent, again a reasonable value over such a population).
We next reproduced the same test for coefficients up to degree and
order 8, more accessible if we were to rely on models derived from
observations, at the lower 5 per cent level of significance. Two of
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Figure 2. Model g: logarithm representation of the estimates of the typical correlation time log10(τm
n ) for the g and h coefficients, where τm

n is scaled with
respect to the time between saved snapshots. Hence log10(τm

n ) = 0 amounts to τm
n = 47.5 yr. Note the central isolated column corresponding to the τ 0

n only
defined for g0

n coefficients. Note also the very strong similarity between the τm
n for gm

n and hm
n when m �= 0.

the 72 estimates for the corresponding non-zonal coefficients were
found to be significant (although up to three of those could have
been expected; the lowest probability found was then 3.71 per cent).

It thus appears that the time-averaged estimate x̄ of µ testifies not
only for spherical symmetry breaking (eq. 7a is not satisfied) while
complying with axial symmetry (eq. 8a is satisfied), but also for
some equatorial symmetry breaking. This estimate indeed reveals
a mixture of odd (dipole family) and even (quadrupole family) de-
gree zonal fields. Note, however, that it also reveals a mean field
quite strongly dominated by the dipole family, especially at the core
surface (Table 2).

3.3 Covariances

Consider next the diagonal terms γ (xm
n , xm

n , 0) of the covariance ma-
trix at time τ = 0 (defining the variances of the xm

n ). Time-averaged
estimates K̄ (xm

n , xm
n , 0) of those can be computed with the help of

eqs (5) and (6) (Fig. 3). These estimates are again consistent with
some spherical symmetry breaking, as they do not only depend on
the degree n, but also on the order m (which conflicts with eq. 7b).
They also appear to be consistent with the prediction γ (gm

n , gm
n , 0) =

γ (hm
n , hm

n , 0) (recall eq. 8b) that axial symmetry be satisfied. Finally,
we note that for each degree n, coefficients belonging to the dipole
family (n − m odd) again systematically dominate. They clearly dis-
play larger variances than those belonging to the quadrupole family
(n − m even).

Now, what about cross-covariances? Do estimates of those terms
reveal the same symmetry properties? Fig. 4 provides a first answer.

It shows estimates K̄ (xm
n , x ′m′

n′ , τ )/
√

K̄ (xm
n , xm

n , 0)K̄ (x ′m′
n′ , x ′m′

n′ , 0)

of γ (xm
n , x ′m′

n′ , τ )/
√

γ (xm
n , xm

n , 0)γ (x ′m′
n′ , x ′m′

n′ , 0), for xm
n =

g2
2 and various values of x ′m′

n′ (the normalization by√
γ (xm

n , xm
n , 0)γ (x ′m′

n′ , x ′m′
n′ , 0) being introduced to illustrate

the relative importance of the various terms). Those estimates sug-
gest that γ (xm

n , x ′m′
n′ , τ ) can be non-zero if xm

n �= x ′m′
n′ , in contradiction

with eq. (7b). This again strongly argues in favour of spherical

Table 2. Model g: time-averaged estimates ḡm
n and h̄m

n of µ(gm
n ) and µ(hm

n )
(at the surface of the Earth and down-continued to the core–mantle boundary,
CMB) during the period of reverse polarity.

At the surface of the Earth At the CMB

n m g(nT) h(nT) g(nT) h(nT)

1 0 13 700.029 55 83 709.909 32
1 1 −16.846 94 −7.289 36 −102.938 16 −44.539 41
2 0 −229.104 36 −2559.217 41
2 1 24.308 93 −18.503 17 271.543 66 −206.690 19
2 2 −17.531 07 17.318 42 −195.831 37 193.455 95
3 0 −372.170 02 −7600.351 31
3 1 −9.295 33 −6.462 80 −189.826 61 −131.981 42
3 2 −6.698 83 −1.073 79 −136.801 52 −21.928 55
3 3 −2.552 11 15.621 77 −52.118 54 319.023 34
4 0 30.554 19 1140.726 33
4 1 −0.448 67 9.828 58 −16.750 99 366.945 40
4 2 2.101 79 1.963 82 78.469 37 73.318 18
4 3 −4.766 06 −8.317 76 −177.938 55 −310.539 88
4 4 −1.164 23 4.140 66 −43.466 11 154.589 74
5 0 31.954 74 2181.044 38
6 0 −3.476 56 −433.807 94
7 0 3.042 79 694.125 05
8 0 4.346 78 1812.807 92
9 0 −2.949 96 −2249.150 45
10 0 −0.186 80 −260.371 83
11 0 −0.059 86 −152.540 02
12 0 0.049 27 229.520 23
13 0 −0.121 48 −1034.662 02
14 0 −0.009 26 −144.239 63
15 0 −0.010 23 −291.290 67
16 0 −0.000 83 −43.096 80
17 0 −0.001 91 −181.483 03
18 0 −0.000 02 −3.152 69
19 0 −0.000 30 −94.570 20
20 0 −0.000 01 −4.217 14
21 0 0.000 00 0.607 55

C© 2005 RAS, GJI, 161, 603–626



608 C. Bouligand et al.

0 2 4 6 8 10 12 14 16 18 20 22

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

order

va
ria

nc
e 

(n
T

2 )
degree 

1 
2 

3 
4 

5 
6 

7 
8 

9 

11 

10 

12 

13 

14 

15 

16 
17 

18 

19 

20 

21 

Figure 3. Model g: estimates K̄ (xm
n , xm

n , 0) of the variances. The black dots represent the values for the x = g coefficients and the grey crosses the values for
the x = h coefficients. Coefficients (x = g or h) sharing the same degree are linked for clarity. Note that K̄ (xm

n , xm
n , 0) is a function of both n and m but not of

x. In particular, estimates of variances with (n − m) odd (dipole family) are always larger than those with (n − m) even (quadrupole family).

symmetry breaking. However, those estimates also suggest that this
only occurs when m = m ′ (i.e. for m = m ′ = 2, in the present
instance) in agreement with eq. (8d). As a matter of fact, Fig. 4
further suggests that not only eqs (8b) and (8d), but also eq. (8c)
(i.e. all axial symmetry requirements) are satisfied. This is tested
here for (n, m) = (2, 2), for which estimates suggest that γ (g2

2, h2
2,

−τ ) = −γ (g2
2, h2

2, τ ) in agreement with the more general constraint:

γ
(
gm

n , hm
n , −τ

) = −γ
(
gm

n , hm
n , τ

)
, (12)

equivalent to γ (gm
n , hm

n , τ ) = −γ (hm
n , gm

n , τ ) required by eq. (8c).
Finally, Fig. 4 would suggest that the equatorial symmetry condi-
tions (9b)/(10b) also are satisfied. Given that eqs (8b–d) are already
satisfied, this would indeed only require that γ (xm

n , x ′m
n′ , τ ) = 0, if n

and n′ are of different parities, and in particular that γ (g2
2, g2

3, τ ) =
γ (g2

2, h2
3, τ ) = 0, which is what estimates in Fig. 4 indeed suggest

is satisfied.
In fact, having visually inspected all cross-covariances in a simi-

lar way, we have been led to the conclusion that all estimates were
compatible with axial and most equatorial symmetry conditions
(8b–d) and (9b)/(10b) but often not compatible with those con-
ditions (7b) not already included in eqs (8b–d) and (9b)/(10b). We
could not afford to back this conclusion by systematic statistical
tests (to check the level of significance of non-exactly-zero esti-
mates when a zero value was actually expected). However, we did a
number of additional calculations for the special case when τ = 0

(i.e. for the estimates K̄ (xm
n , x ′m′

n′ , 0)/
√

K̄ (xm
n , xm

n , 0)K̄ (x ′m′
n′ , x ′m′

n′ , 0)

of γ (xm
n , x ′m′

n′ , 0)/
√

γ (xm
n , xm

n , 0)γ (x ′m′
n′ , x ′m′

n′ , 0), as γ (xm
n , x ′m′

n′ , 0)

is the cross-covariance value most relevant in the palaeomagnetic
context.

Fig. 5(a) gives a visual account of those estimates, when consid-
ering gm

n (t) and gm′
n′ (t) up to degree and order N = 15. Based on

eqs (7) and (8), symmetry breaking of the spherical symmetry with-
out symmetry breaking of axial symmetry should manifest itself by

displaying a large number of significant non-zero values among the
m = m ′ estimated cross-covariances, but only a non-significant num-
ber of such values among the m �= m ′ estimated cross-covariances.
This is what Fig. 5(a) suggests. Furthermore, it clearly appears
that significant non-zero estimates of γ (xm

n , x ′m
n′ , 0) are mainly seen

when n and n′ are of the same parity (especially when |n − n′| =
2). Given that eq. (8) is satisfied, this would again suggest that eq.
(9b)/(10b) is almost satisfied and that the fluctuating part of the field
indeed tends to also satisfy the equatorial symmetry.

To be more quantitative, we finally relied on a Spearman
rank-order correlation test (van der Waerden 1969; Press et al.
1992). Testing the significance of the departure of the esti-

mates K̄ (xm
n , x ′m′

n′ , 0)/
√

K̄ (xm
n , xm

n , 0)K̄ (x ′m′
n′ , x ′m′

n′ , 0) from an ex-

pected zero value indeed amounts to test the significance of a possi-
ble correlation (or anticorrelation) between the two time-series xm

n (t)
and x ′m′

n′ (t) when no time-shift is introduced. This can quantitatively
be tested with a Spearman test, provided we sample xm

n (t) and x′m′
n′ (t)

every �t ≥ 3τm
n to avoid biases introduced by self-correlation mem-

ory issues. We sampled every �t = 20 steps (snapshots), which is
adequate for all cases, except for g0

1(t) and g0
3(t) (recall Table 1).

However, this is not a major issue (for those coefficients, separate
tests have also been carried out with adequate values of �t and they
led to answers in agreement with those provided here). The results
of this Spearman test (also shown on Fig. 5a) confirm most of the
previous qualitative results. Among the 119 cross-correlations iden-
tified as being significant at the 0.1 per cent level, 103 correspond
to cases with m = m ′ (among which 84 for m = m ′ �= 0) and only
16 to cases with m �= m ′. This leads to a proportion of 103/665 =
15.5 per cent (84/560 = 15 per cent for m = m ′ �= 0), way above the
0.1 per cent threshold in the m = m ′ case, which strongly confirms
the spherical symmetry breaking. However, it only leads to a pro-
portion of 16/8380 = 0.19 per cent, very close to the 0.1 per cent
threshold, in the m �= m ′ case, showing that, by contrast, the axial
symmetry is hardly broken.
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Figure 4. Model g: estimates K̄ (xm
n , x ′m′

n′ , τ )/
√

K̄ (xm
n , xm

n , 0)K̄ (x ′m′
n′ , x ′m′

n′ , 0) for xm
n = g2

2 and all x ′m′
n′ with degree n′ ≤ 4. The curves with black dots are for

x ′ = g coefficients and those with grey crosses for x ′ = h coefficients. The time-shift τ is expressed in terms of steps between saved snapshots (lower scale, 1
step = 47.5 yr) and years (upper scale). Significant values are only found for n′ = 2, m′ = 2 and n′ = 4, m′ = 2.
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Figure 5. Matrices of the estimates K̄ (xm
n , x ′m′

n′ , 0)/
√

K̄ (xm
n , xm

n , 0)K̄ (x ′m′
n′ , x ′m′

n′ , 0). Results for model g are presented in (a) when x = g, x ′ = g, (c) when

x = h, x ′ = g and (d) when x = h, x ′ = h. Results for model h when x = g, x ′ = g, are otherwise also shown in (b) for comparison with (a). On each axis,
the coefficients are ordered with degree and order increasing as follows: g0

1 g1
1 g0

2 g1
2 g2

2 g0
3. . . and h1

1 h1
2 h2

2 h1
3 h2

3 h3
3. . . The matrices (a), (b) and (d) being

symmetrical by construction, the actual estimates of the cross-correlations are only shown in the upper triangle (see the coloured scale for the value of the
estimates) and the result of the Spearman rank-order correlation test on those values at the 0.1 per cent level are shown in the lower triangle. This test is a
Student t-test carried on the Spearman rank-order correlation computed with Gauss coefficients sampled every �t = 20 steps. For model g, the correlation is
thus for instance calculated with 150 points and follows a Student’s law with 148 degrees of freedom. A white square means that the correlation is not significant
whereas a coloured square means that the correlation is significant, in green when m �= m′, in red when m = m′ and n − n′ is even, in blue when m = m′
and n − n′ is odd. For the (c) matrix, which is not intrinsically symmetric, only the results of the Spearman test are shown. Note that for model g significant
correlations mainly occur on m = m′, n − n′ even branches (in red for the Spearman test) and especially on the main branch with |n − n′| = 2. Note also the
blurring of (b) compared with (a) and the larger number of occurrences of m = m′, n − n′ odd correlations (in blue for the Spearman test), especially on the
|n − n′| = 1 branch.

Very similar results are found when considering correlations
between gm

n (t) and hm′
n′ (t), and between hm

n (t) and hm′
n′ (t) (Figs 5c

and d). The proportions of significant Spearman cross-correlations
then turn out to be of respectively 95/1240 = 7.7 per cent and
76/560 = 13.6 per cent, again way above the 0.1 per cent thresh-
old in the m = m ′ case, and of 24/14 960 = 0.16 per cent and
12/6580 = 0.18 per cent, very close to the 0.1 per cent threshold
in the m �= m ′ case. In fact, two additional axial symmetry require-
ments applying to γ (xm

n , x ′m′
n′ , 0) when m = m ′ can then also be

checked. First, that γ (gm
n , gm

n′ , 0) = γ (hm
n , hm

n′ , 0) for m �= 0 (as
a consequence of eq. 8b). Very similar values are indeed found

for the estimates K̄ (gm
n , gm′

n′ , 0)/
√

K̄ (gm
n , gm

n , 0)K̄ (gm′
n′ , gm′

n′ , 0) and

K̄ (hm
n , hm′

n′ , 0)/
√

K̄ (hm
n , hm

n , 0)K̄ (hm′
n′ , hm′

n′ , 0) when m = m ′ �= 0,

contrary to the case for m �= m ′ (as one would have expected
from small quantities differing from zero only because of statis-
tical noise). Secondly, because of eq. (8c), that γ (gm

n , hm
n′ , 0) =

−γ (hm
n , gm

n′ , 0) and γ (gm
n , hm

n , 0) = 0. Those predictions have also
been checked.

Finally, the fact that large non-zero estimates K̄ (xm
n , x ′m

n′ , 0) are
rarely seen when n and n′ are of opposite parity can also be quanti-
fied. It turns out that approximately 3.0 per cent of all the |n − n′|
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Figure 6. Model g: moving window time averages x̂m
n (t) (as defined by eq. 13) of the zonal Gauss coefficients [with (a) odd and (b) even degree]. The length

of the window is Tmw = 101 points (4750 yr). The first step of this figure corresponds to a window at the beginning of the period of reverse polarity (i.e. centred
about step 2130 in the text).

odd cases up to degree 15 (Figs 5a, c and d) display a significant
correlation at the 0.1 per cent level. This interesting result shows
that |n − n′| odd correlations are indeed rare, but nevertheless occur
more often than possible by sheer chance, testifying for some slight
but significant equatorial symmetry breaking.

From all this we conclude that, just as for x̄ with respect to µ, the
time-averaged estimate K̄(τ ) of the covariance matrix γ(τ ) clearly
testifies for spherical symmetry breaking while complying with axial
symmetry requirements. Evidence for equatorial symmetry break-
ing is also found, but in a much weaker form than for µ. Finally and
beyond any symmetry issue, it is important to note that significant
non-zero estimates of γ (xm

n , x ′m
n′ , 0) are only found when |n − n′|

remains small.

3.4 Non-stationarity

Let us now address the stationarity issue. For each Gauss coeffi-
cient xm

n (t), we first computed moving window time averages of
the coefficient itself, corrected for the estimated mean x̄m

n over the
whole period and renormalized by its estimated standard deviation√

K̄ (xm
n , xm

n , 0):

x̂m
n (t) = 1

Tmw

∫ Tmw/2

−Tmw/2

[
xm

n (t + τ ) − x̄m
n

]
√

K̄
(
xm

n , xm
n , 0

) dτ. (13)

In practice, we chose Tmw ≈ 4750 yr (such that the average in
eq. 13 is computed over 101 point values).

Were the Gauss coefficients xm
n (t) to behave as expected, one

would expect each x̂m
n (t) to behave like a time-dependent estimate

of the mean of a series produced by a stationary random Gaussian
process, with the same memory, a unit variance and a zero mean. We
checked and found this to reasonably be the case for the non-zonal
coefficients. However, the situation was found to be different for the
zonal coefficients g0

n(t). Fig. 6 clearly shows that, in addition to the
expected short-term fluctuations, all ĝ0

n(t) show slower, larger than
expected fluctuations. In addition, it appears that all ĝ0

n(t) with n odd
(from the dipole family) on one hand and with n even (quadrupole
family) on the other hand strongly tend to correlate with each other.

To complement those tests we next computed

σ̂
(
xm

n , t
) =




1

Tmw

∫ Tmw/2

−Tmw/2


 xm

n (t + τ) − x̄m
n√

K̄
(
xm

n , xm
n , 0

) − x̂m
n (t + τ)




2

dτ




1/2

,

(14)
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Figure 7. Model g: moving window normalized estimate σ̂ (xm
n , t) of the standard deviation (as defined by eq. 14). The black curves are for the g coefficients

and the grey curves for the h coefficients. The length of the moving window and the timescale are the same as in Fig. 6.

which may be viewed as a time-dependent normalized estimate of
the standard deviation of xm

n (t) over the same moving window. Fig. 7
shows the σ̂ (xm

n , t) computed in this way up to degree and order 4 and
for a few additional coefficients with higher degrees. Those again
reveal strong long-term fluctuations that, as we tested, cannot be ex-
plained within the context of the stationary assumption. In fact, it fur-
ther turns out that, again within each dipole/quadrupole family, those
fluctuations tend to correlate with each other. We checked the extent
of these correlations by using a Spearman approach identical to the
one we used to investigate cross-covariances and constructed matri-
ces analogous to those shown in Fig. 5. This led to the confirmation of
the previous impression. It also led to the conclusion that by contrast
virtually no correlations are to be found between σ̂ (xm

n , t) with n − m
of opposite parity (i.e. not belonging to the same dipole/quadrupole
family).

In fact, it further turns out that all the σ̂ (xm
n , t) from one family

tend to also correlate with the ĝ0
n(t) from the same family. This

finally led us to compute stacks σ̂d (t) and σ̂q (t) of the σ̂ (xm
n , t) for

respectively the dipole (n − m odd) and quadrupole (n − m even)
families, and to compare those to the following quantities:

Gd (t) = 1

Tmw ḡ0
1

∫ Tmw/2

−Tmw/2
g0

1(t + τ ) dτ

and

Gq (t) =
∑

n even

1

Tmw ḡ0
n

∫ Tmw/2

−Tmw/2
g0

n(t + τ ) dτ,
(15)

which may be viewed as, respectively, the function that slowly mod-
ulates the mean dipole family field about its overall average value
[g0

1(t) being the dominant dipole family coefficient], and the func-
tion that slowly and independently modulates the mean quadrupole
family field (we take a stack because in the quadrupole family no
clear coefficient dominates at the core–mantle boundary, CMB).
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Figure 8. Model g: (upper figure) comparison of Gd(t) (as defined by eq. 15; thick curve) with the stack σ̂d (t) of the σ̂ (xm
n , t) with n − m odd (thin curve).

(Lower figure) comparison of the stack Gq(t) (as defined by eq. 15; thick curve) with the stack σ̂q (t) of the σ̂ (xm
n , t) with n − m even (thin curve). The length

of the moving window and the timescales are the same as in Fig. 6.

Fig. 8 shows that σ̂d (t) and σ̂q (t) are very similar to Gd(t) and Gq(t),
respectively.

All those results show that, at times of stable polarity, the model
g field cannot be viewed as the result of a stationary process. How-
ever, it could empirically be viewed as the result of two independent
stationary processes modulated by two independent slowly varying
functions Fd(t) and Fq(t). One process would describe the dipole
family field, with slowly varying mean Fd(t)µd and covariance
matrix Fd(t)γ d(τ ). The other would describe the quadrupole fam-
ily field, with slowly varying mean Fq(t)µq and covariance matrix
Fq(t)γ q(τ ). Both σ̂d (t) and Gd(t) would then provide estimates of
Fd(t) while both σ̂q (t) and Gq(t) would provide estimates of Fq(t).

3.5 Near-Gaussian behaviour

The non-stationarity of the model g field is the first serious departure
we have found so far from the properties required for the GGP ap-
proach to be valid. It could turn out to be a major problem. However,
we note that the timescale involved in this non-stationarity (of order
several hundred steps, i.e. of a couple of tens of thousands of years;
Figs 6 and 7) is still relatively short with respect to the duration
of the period of stable polarity (142 000 yr). Also, we know that
palaeomagnetic samples often cannot be dated to within a couple
of tens of thousands of years. In practice, GGP investigations of the
properties of the field would thus likely ignore this chronology and
simply consider, as a whole, all of the data belonging to a period of
stable polarity. In that case, the GGP approach could still possibly
prove useful, if the overall distribution of the values taken by each
xm

n (t) over the period of stable polarity could be shown to remain
consistent with a Gaussian distribution of mean µm

n , and variance
γ (xm

n , xm
n , 0).

This is partly supported by Fig. 9, which shows examples of cu-
mulative distribution functions (CDFs) obtained by picking values
every �t = 3τm

n (to ensure independence), removing the estimated

mean x̄m
n and renormalizing by the estimated standard deviation√

K̄ (xm
n , xm

n , 0). Those CDFs are then to be compared with the CDFs
of a zero mean unit variance Gaussian distribution, constructed with
the same number of samples. Clearly the CDFs do a reasonable job,
especially those corresponding to low degrees. However, some de-
viations are found for high degree coefficients, which tend to dis-
play too many large values and not enough small values. To assess
whether those departures could be linked to the non-stationary be-
haviour previously identified, we finally also plotted on Fig. 9 the
analogous CDFs for the xm

n (t) after renormalization by either σ̂d (t)
(for the dipole family field) or σ̂q (t) (for the quadrupole family field).
An encouraging improvement is indeed found.

4 C A S E S T U DY O F A
N O N - H O M O G E N E O U S N U M E R I C A L
S I M U L AT I O N

Let us now turn to the second simulation of interest, the so-called
tomographic model h, also described in some detail in Glatzmaier
et al. (1999) and Coe et al. (2000). Just like model g, this simu-
lation has been generated by the dynamo model of Glatzmaier &
Roberts (1997). Both simulations have the same basic characteris-
tics (in particular, they are both thermally driven and share the same
dimensional characteristics) except for one minor and one major
difference. The minor difference is that the run for model h has only
been sampled half as often (every 2000 time steps, so that snapshots,
to which we will again refer to as steps in the statistical analysis that
follows, are now separated by approximately 95 yr) and not always
in a regular way, which forced us to rely on some interpolations.
The major difference is of a geophysical nature. Whereas the ther-
mal boundary conditions had been imposed in a uniform way at
the CMB in model g, those conditions are now being imposed in a
non-uniform way in model h (Fig. 10a). The pattern chosen is one
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Figure 9. Model g: cumulative distribution functions (CDFs) for a number of Gauss coefficients. A logarithmic scale is used for the vertical scale (y) and the
CDF is folded back about the y = 0.5 horizontal axis for values above 0.5. This representation makes it possible to better see the behaviour of the distribution
away from the (central) most likely values. On each figure, the red curve represents the shape of a theoretical gaussian CDF with zero mean and unit variance.
The green curve is a CDF produced from values drawn from such a unit gaussian random distribution, when the number of values is the one involved in the

construction of the CDF for the Gauss coefficient of interest, shown in blue [after removal of x̄m
n and renormalization by

√
K̄ (xm

n , xm
n , 0)]. Also shown in

black, the CDF when the same data are first renormalized by either the stack σ̂d (t) (if the coefficient belongs to the dipole family) or σ̂q (t) (if it belongs to the
quadrupole family). Note that the CDF is near, but clearly not exactly Gaussian (here mainly for the g10

10 coefficient) and that renormalizing by the stacks brings
an improvement.
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Figure 10. Model h: (a) heat-flux pattern imposed at the core–mantle boundary (CMB; colour scale from −28 to +28 mW m−2; for more details, see Coe
et al. 2000); (b) radial component of the time-averaged field at the CMB calculated during the period of normal polarity (step 1 to 1650) (colour scale from
−80 000 to +80 000 nT).

reflecting the modern heat-flux pattern, assuming the geographi-
cal variations seen in the seismic tomography for the lowermost
mantle of the Earth are mainly a result of thermal effects. In this
respect, it may be viewed as a tentatively realistic, heat-flux pattern.
Of particular interest is the fact that this pattern strongly breaks the
axial symmetry. It also, but to a lesser extent, breaks the equatorial
symmetry. It thus forces a complex geometry on the dynamo. As
discussed in Paper I, this should lead to some comparable symme-
try breaking in the statistical behaviour of the field. What we would
therefore like to test is whether the same type of statistical analysis

as the one carried out on model g would be capable of detecting this.
More generally, we would like to see how much change such more
realistic, boundary conditions could introduce in the general statisti-
cal behaviour of the field. For that purpose, we basically reproduced
all the tests we had done on model g. This was done on the longest
period of stable (normal) polarity, between step 1 and step 1650 of
the model h run (i.e. over T 0 ≈ 157 000 yr, step 1 corresponding
to the initial step of the reliable part of the run), which otherwise
displayed two reversals (see Glatzmaier et al. 1999). This led to the
following results.
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Table 3. Model h: estimates of the typical correlation times
τm

n for the Gauss coefficients with low degrees.

n m g h
steps(yr) steps(yr)

1 0 43.2(4109)
1 1 2.0(191) 1.8(174)
2 0 13.3(1264)
2 1 1.6(156) 1.9(180)
2 2 1.5(138) 1.3(128)
3 0 9.5(899)
3 1 1.5(147) 1.6(153)
3 2 1.5(142) 1.7(158)
3 3 1.1(103) 1.1(104)
4 0 2.1(202)
4 1 1.5(146) 1.5(143)
4 2 1.4(128) 1.3(124)
4 3 1.4(129) 1.2(111)
4 4 0.9(84) 1.0(94)

4.1 Short-term memory

We first produced figures analogous to Fig. 1, which confirmed that
the model h field also displayed short-term memories. This then
made it possible to again compute typical correlation times. Table 3
lists those values for the lowest degrees and Fig. 11 gives a visual
account of all values. Comparing Table 3 with the analogous Table 1
shows that the timescales involved in both models are essentially of
the same order of magnitude. The only very significant change is
seen in the correlation time of g0

2(t), which increased from 354 yr
(model g) to 1264 yr (model h). Otherwise and as expected, we again
see a dependence of the correlation time with both the degree n and
order m, testifying for the spherical symmetry breaking.

More of a surprise is the fact that no obvious indication of axial
symmetry breaking [different correlation times for gm

n (t) and hm
n (t),

recall eq. 8] is found for low degrees (Table 3, to be compared to
Table 1). In fact, only weak indication can be found in the compari-
son of Fig. 11(left) with Fig. 11(right), which reveals slightly more
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Figure 11. Model h: logarithm representation of the estimates of the typical correlation time log10(τm
n ) for the g and h coefficients. The representation is the

same as in Fig. 2 but now the step between saved snapshots is 95 yr. Note the stronger dissimilarities between estimates for the g and h coefficients, compared
with model g (Fig. 2).

differences between the gm
n (t) and hm

n (t) than does the comparison
of Fig. 2(left) with Fig. 2(right).

4.2 Time-averaged field

We next computed the time-averaged estimate x̄ ofµwith the help of
eq. (5) (Table 4). This led to values significantly different from those
obtained with model g in many respects. First, we note that estimates
ḡ0

n of zonal coefficients are globally weaker. This is true for ḡ0
1

(which is more than twice weaker), but also for all other coefficients.
Secondly and more importantly, we note that by contrast all non-
zonal estimates ḡm

n and h̄m
n appear to be much larger, to the extent

that some of them now take values almost comparable to the estimate
ḡ0

n of the zonal term sharing the same degree. To decide which of
all those estimates can be considered as significantly different from
zero, we relied on the same procedure as for model g.

For g0
1(t), which has the largest τm

n (τ 0
1 ≈ 4100 yr, corresponding

to approximately 43 steps), we chose �t = 130 steps and an estimate
of µ(g0

1) was therefore computed from only 13 independent values.
The value inferred is then significantly different from zero at the
10−3 level. For all other Gauss coefficients, a Student’s t-test at a
1 per cent level was otherwise again carried out. This led to the
result that only about half of the estimates of the zonal terms µ(g0

n)
could actually be considered as significant (those with n = 1, 5,
7, 9, 10, 12, 13, 15, 16, 17, 19, 20). By contrast eight of the 462
estimates of the non-axial terms now appear to significantly differ
from zero [µ(g2

2), µ(g2
3), µ(h2

11), µ(h5
11), µ(g5

14), µ(g5
15), µ(g5

16) and
µ(g4

17)]. This brings two conclusions. First, that the time-averaged
estimate x̄ ofµ now shows signs of axial symmetry breaking (though
quite marginally so, because four non-zero values could have been
expected at the 1 per cent level). Secondly, that this estimate still
shows signs of equatorial symmetry breaking, but in a different way
than in model g. Co-existence of dipole and quadrupole family fields
no longer only occurs in the zonal terms, but is also found in the
non-zonal terms, to which the two families contribute more equally.

A similar conclusion is derived from the test at the 5 per cent level
up to degree and order 8, which we also reproduced. In addition to
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Table 4. Model h: time-averaged estimates ḡm
n and h̄m

n of µ(gm
n ) and

µ(hm
n ) (at the surface of the Earth and down-continued to the core–mantle

boundary, CMB) during the period of normal polarity.

At the surface of the Earth At the CMB

n m g(nT) h(nT) g(nT) h(nT)

1 0 −5423.421 58 −33 138.186 12
1 1 −141.716 70 −90.481 62 −865.917 24 −552.860 70
2 0 242.555 54 2709.474 18
2 1 32.883 59 49.665 79 367.327 20 554.793 22
2 2 −108.406 89 −48.147 62 −1210.962 55 −537.834 51
3 0 84.295 95 1721.468 23
3 1 −8.950 96 −3.483 83 −182.793 94 −71.145 72
3 2 −32.690 93 24.635 94 −667.604 98 503.108 28
3 3 −2.933 16 −17.511 01 −59.900 25 −357.604 90
4 0 8.920 05 333.026 07
4 1 −0.156 86 0.778 95 −5.856 44 29.081 58
4 2 0.704 30 6.038 83 26.294 60 225.456 89
4 3 −3.578 29 0.012 11 −133.593 83 0.452 24
4 4 0.782 88 1.918 17 29.228 60 71.614 03
5 0 −38.601 98 −2634.746 41
6 0 3.775 55 471.115 60
7 0 4.839 24 1103.933 34
8 0 −0.617 04 −257.335 50
9 0 0.863 91 658.671 94
10 0 0.047 93 66.814 46
11 0 −0.021 09 −53.752 87
12 0 −0.027 48 −128.031 44
13 0 0.024 71 210.447 50
14 0 −0.002 43 −37.906 71
15 0 −0.001 29 −36.824 75
16 0 −0.000 57 −29.730 00
17 0 0.000 19 18.212 87
18 0 −0.000 03 −5.179 65
19 0 0.000 02 7.758 12
20 0 0.000 01 3.583 10
21 0 0.000 00 3.474 54
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Figure 12. Model h: estimates K̄ (xm
n , xm

n , 0) of the variances. Same representation as in Fig. 3. Note that compared with Fig. 3 values for g and h no longer
overlap and that the dipole family (n − m odd) no longer dominates.

µ(g2
2) and µ(g2

3), estimates revealed two new significant non-zonal
coefficients: µ(h2

3) and µ(h2
7) (four in all, whereas three non-zero val-

ues could have been found by chance). This result is again marginal
but underlines one additional remarkable property: a dominance of
the order 2 in the significant estimates ofµ, especially at low degree.
Such an order 2 signature is present in the boundary conditions driv-
ing model h (Fig. 10a), the pattern of which more generally bears
some relation to the pattern of the time-averaged field at the CMB
(Fig. 10b).

It thus appears that, as expected, the time-averaged estimate x̄
of µ not only reveals spherical symmetry breaking, but also some
signs of the axial and equatorial symmetry breaking imposed by
the CMB conditions. However, it clearly appears that only a careful
inspection of the time-averaged field produced by a dynamo driven
by inhomogeneous boundary conditions could potentially detect the
symmetry breaking introduced by those conditions.

4.3 Covariances

Consider next the estimates K̄ (xm
n , xm

n , 0) of the diagonal terms
γ (xm

n , xm
n , 0) of the covariance matrix at time τ = 0, computed

with the help of eqs (5) and (6) (Fig. 12, to be compared to Fig. 3).
Like for model g, those estimates testify for the spherical symme-
try breaking, as they do not only depend on the degree n, but also
on the order m (which conflicts with eq. 7b). However, they now
also provide indications of some axial symmetry breaking, as they
now suggest that γ (gm

n , gm
n , 0) often differs from γ (hm

n , hm
n , 0) (in

disagreement with eq. 8b). Thus, indications for both expected sym-
metry breakings are found. However, we note that those only occur
in a weak way. Also, we note that, contrary to the case of model
g, no major difference is to be found between the two dipole and
quadrupole families, which now happen to contribute equally to the
fluctuating part of the field.
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Like for model g, we next computed estimates K̄ (xm
n , x ′m′

n′ , τ )/√
K̄ (xm

n , xm
n , 0)K̄ (x ′m′

n′ , x ′m′
n′ , 0) of the normalized cross-covariance

functions for xm
n = g2

2 and various values of x ′m′
n′ (analogous to those

shown in Fig. 4). A clear signature for spherical symmetry breaking
could again be seen in the estimate of the cross-covariance functions
of g2

2 with h2
2 and x2

4 (just like for model g, not shown). However,
again, only weak evidence for additional axial and equatorial sym-
metry breaking could be found.

In search of additional, perhaps stronger, signatures of axial and
equatorial symmetry breaking, we next turned to the systematic anal-

ysis of the estimates K̄ (xm
n , x ′m′

n′ , 0)/
√

K̄ (xm
n , xm

n , 0)K̄ (x ′m′
n′ , x ′m′

n′ , 0)

of the normalized cross-covariance functions at time τ = 0. We
produced figures analogous to those shown for model g in Fig. 5.
Fig. 5(b) shows the result of this when considering gm

n (t) and gm′
n′ (t)

up to degree and order N = 15 (analogous to Fig. 5a). This figure
differs from Fig. 5(a) in an interesting way. Whereas nice bands cor-
responding to m = m ′ and mainly |n − n′| even K̄ (xm

n , x ′m′
n′ , 0) esti-

mates could clearly be identified against a relatively weak (greenish)
background in Fig. 5(a), those bands are now not as easy to identify
in Fig. 5(b) and the general background is noisier (colourful). This
blurring of Fig. 5(a) into Fig. 5(b) is the type of signature we ex-
pected because of the axial symmetry breaking. Also, there clearly
is much more of a signal in the m = m ′, |n − n′| = 1, band, sug-
gesting a stronger equatorial symmetry breaking than in model g
(contradiction with eq. 9b/10b).

To quantify this, we again relied on the Spearman statistics at the
0.1 per cent level (i.e. counting the number of significant values iden-
tified in the bottom right of Fig. 5b). Slightly fewer (93 compared to
119, for model g) cross-correlations are now being identified as sig-
nificant at this level. Among those, 75 (103 for model g) correspond
to cases with m = m ′ and 18 (compared to 16) to cases with m �= m ′.
In the m = m ′ case, this then leads to a proportion of 11.3 per cent
(15.5 per cent for model g) way above the 0.1 per cent threshold,
which clearly shows that, as expected, model h also strongly breaks
the spherical symmetry. For the m �= m ′ case, which tests the axial
symmetry breaking, the proportion found in model h now only raises
to 0.21 per cent (from 0.19 per cent in model g) still very close to the
0.1 per cent threshold. This result is surprising. It would suggest that
fluctuations in model h no more strongly break the axial symmetry
than in model g, somewhat contradicting the impression given by the
comparison of Figs 5(b) and (a). However, there is a reason for this:
as axial symmetry breaking can now manifests itself through a very
large number of no-longer forbidden coefficients in γ(τ = 0), those
become difficult to identify individually in the estimate K̄(τ = 0).
In particular, the simple statistical tool used here fails to test the full
matrix K̄(τ = 0) for organized patterns such as those clearly seen
in Fig. 5(b). By contrast, equatorial symmetry breaking can more
easily be detected. It only requires detecting additional branches in
the matrix K̄(τ = 0). Indeed, model h displays even more equatorial
symmetry breaking than model g. (5.8 per cent of the m = m ′, |n −
n′| odd cases up to degree 15 are found to be significant in Fig. 5(b),
compared with 3.6 per cent in Fig. 5(a). As a matter of fact, of all m
= m ′ significant terms we found, 13 per cent were found to be for
|n − n′| odd in model g, 28 per cent in model h.) Note finally that
independently of any symmetry considerations and as was already
the case of model g, significant correlations only occur when |n −
n′| remains small.

From those considerations, we conclude that a careful inspection
of a time-averaged estimate of the covariance matrix can also poten-
tially detect the symmetry breaking introduced by inhomogeneous

boundary conditions driving a dynamo, but not trivially so. In fact,
what is best detected is an enhanced amount of coupling between
the two dipole/quadrupole family components of the field, testify-
ing for more intense equatorial symmetry breaking in the fluctuating
component of the field than in model g. By contrast, detection of
axial symmetry breaking, though possible in principle (recall the
differences between Figs 5a and b), unfortunately remains elusive.

4.4 Non-stationarity

Like for model g, we next investigated the stationarity of the model
h field, by computing x̂m

n (t) (from eq. 13), and σ̂ (xm
n , t) (from

eq. 14). Fig. 13 shows that the non-zonal x̂m
n (t) now display a se-

vere non-stationary behaviour. There clearly are periods when all
x̂m

n (t) take relatively weak values (such as between step 1000 and
step 1500 in Fig. 13) and other periods when, by contrast, they all
take large values. In particular, the x̂m

n (t) corresponding to coeffi-
cients significantly contributing to the time-averaged field [Fig. 13
displays three of those ĝ2

2(t), ĝ2
3(t) and ĥ2

3(t)] appear to contribute to
the time-averaged field mainly through relatively short episodes of
large values. This contrasts with the behaviour of the zonal terms,
those of which contributing to the time-averaged field consistently
do so throughout the whole period of interest. This suggests the way
model h produces its non-zonal time-averaged field is very different
from the way it and also model g produces its zonal time-averaged
field. As a matter of fact, all ĝ0

n(t) in model h (Fig. 14) behave in
quite the same way as in model g (Fig. 6), except for one significant
difference. Whereas in model g the ĝ0

n(t) strongly tend to correlate
with each other within the same dipole/quadrupole family, those
correlations, though not systematic, now obviously reach across the
two families.

Plotting σ̂ (xm
n , t) (Fig. 15, analogous to Fig. 7) leads to a similar

conclusion. As was already observed for model g, strong correla-
tions are found between the various σ̂ (xm

n , t). However, here again,
those correlations reach across the two dipole/quadrupole families.
In fact, all the σ̂ (xm

n , t) obey almost exactly the same very strong
modulation. Unfortunately however, this common modulation of all
σ̂ (xm

n , t) does not appear to be simply related to the way the x̂m
n (t),

especially the non-zonal ones, behave.
We did not attempt to further investigate the nature of this strong

and complex non-stationarity, which clearly is in severe contradic-
tion with the GGP assumption.

4.5 Non-Gaussian behaviour

What we did, though, is to finally investigate the extent to which
this non-stationarity could also affect the CDFs of the Gauss coef-
ficients. Fig. 16 shows examples of such CDFs for the same Gauss
coefficients as those used in Fig. 9 for model g. As can be seen,
those CDFs are now dramatically far from being Gaussian. This is
again in severe contradiction with the GGP assumption. However,
it is important to point out that this is mainly a result of the non-
stationary behaviour of model h. To show this, we took advantage of
the correlation we already noted among the σ̂ (xm

n , t) and produced a
stack of those, which we used to renormalize each of the xm

n (t). The
CDFs of those renormalized Gauss coefficients are also shown in
Fig. 16. They now display much more of a Gaussian behaviour.

5 D I S C U S S I O N

Having thoroughly investigated the statistical behaviour of models g
and h, we can now draw a number of conclusions. Certainly the most
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Figure 13. Model h: moving window time averages x̂m
n (t) (as defined by eq. 13) of non-zonal Gauss coefficients. The length of the window is Tmw = 51

points (4750 yr). The black curves are for the g coefficients and the grey curves for the h coefficients. The first step of this figure corresponds to a window at
the beginning of the period of normal polarity (i.e. centred about step 51 in the text).

important one is the fact that a field produced by a dynamo is indeed
amenable to some statistical analysis. The basic assumptions needed
for this are satisfied. The field behaves as a short-term memory
process at times of stable polarity and periods of stable polarity
last much longer than the correlation times of the process. Those
properties are needed to define the first- and second-order statistical
moments of the field (i.e. the mean µ eq. 3 and the covariance
matrix γ(τ ) eq. 4) in a consistent way, and to derive estimates of
those from temporal averages (through eq. 5 and eq. 6). This is

very encouraging, as it strongly suggests that similar quantities may
indeed be defined and estimated for the field produced by the real
geodynamo.

A second important conclusion to be drawn is that a careful in-
spection of estimates of both µ and γ(τ ) can bring some useful geo-
physical information about the state of the geodynamo, in particular
in terms of its symmetry properties. In fact, all symmetry proper-
ties one could anticipate on theoretical grounds (Paper I) have been
found.
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Figure 14. Model h: moving window time averages x̂m
n (t) (as defined by eq. 13) of the zonal Gauss coefficients. The length of the moving window and the

timescales are the same as in Fig. 13.

Consider model g. This model has been run with homogeneous
(i.e. spherically symmetric) CMB conditions. However, because of
its rotation, the highest symmetry of the whole system is only the
axial symmetry about the rotation axis. As noted in Paper I, this
means that the field and thus both µ and γ(τ ) should break the
spherical symmetry. Additional symmetry breakings could also oc-
cur, but only as a result of a spontaneous symmetry breaking by
the dynamo solution. They would not be mandatory. In fact, as also
noted in Paper I, it is highly unlikely that the axial symmetry could

spontaneously be broken because of the ease with which a dynamo
solution could shift about the rotation axis under axisymmetric CMB
conditions. No similar continuous shift could possibly act against an
equatorial symmetry breaking. Thus, it was anticipated that model
g would break the spherical symmetry, satisfy the axial symme-
try and possibly break the equatorial symmetry. This is what we
found. Spherical symmetry breaking is clearly seen in estimates of
both µ and γ(τ ); axial symmetry is remarkably satisfied by esti-
mates of both µ and γ(τ ); and evidence for spontaneous equatorial
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symmetry breaking was also found in estimates ofµ and (in a subtler
way) of γ(τ ).

In fact, this spontaneous equatorial symmetry breaking is worth
further emphasizing. It is responsible for the co-existence, with the
dominant axial dipole mean field, of a quadrupole family zonal mean
field and, in particular, of a term µ(g0

2) estimated to be approximately

2 per cent the magnitude of the estimate of µ(g0
1). From this, we in-

fer that the only unquestionably robust non-dipole feature found so
far in the palaeomagnetic mean field, an axial quadrupole field (of
about 3–4 per cent the magnitude of the axial dipole field, Merrill &
McFadden 2003), cannot alone be taken as evidence of equatorial
symmetry breaking in the CMB conditions. In fact and as pointed
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Figure 16. Model h: cumulative distribution functions (CDFs) for a number of Gauss coefficients. Same coefficients and same representation as in Fig. 9,
except for the black curves, which now correspond to CDFs after renormalization by a global stack of all the σ̂ (xm

n , t). Note the much more serious departure
of the CDF from the Gaussian case and the very significant improvement brought by renormalizing by the stack (i.e. correcting for the non-stationarity).
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out in Paper I, checking whether this axial quadrupole term could
be related to such CMB equatorial symmetry breaking would re-
quire further testing if it systematically reverses its sign together
with the axial dipole at times of reversals, or not. The test would
need to be carried out on both the palaeomagnetic data (palaeomag-
netic time-averaged field models would suggest that this is the case,
but the case remains to be better made) and the data produced by
numerical models with equatorial symmetric CMB conditions, such
as model g (the series we currently have are too short to carry out
a significant test). If it turns out that the geodynamo can only go
through full field reversals [involving a simultaneous sign change
of µ(g0

2) and µ(g0
1)], while symmetric CMB conditions dynamo

can also go through quadrupole family field reversals [involving a
sign change of µ(g0

2) but not of µ(g0
1)] and/or dipole family field

reversals [involving a sign change of µ(g0
1) but not of µ(g0

2)], as
one can anticipate based on symmetry considerations, then only, a
claim could be made that the axial quadrupole component found in
the palaeomagnetic mean field is related to some asymmetry in the
CMB conditions (see Paper I for more details).

Consider now model h, run with inhomogeneous CMB condi-
tions breaking the spherical, axial and, to a lesser extent, equatorial
symmetries. Those conditions were expected to force model h, and
thus estimates of both µ and γ(τ ), to testify for similar symmetry
breaking properties. Again, this is what we found. In particular, it
was found that model h breaks the axial symmetry breaking proper-
ties in a way that distinguishes it from model g and testifies for the
inhomogeneous CMB conditions imposed on the dynamo.

However, those symmetry breaking properties were only found
in the form of weak and subtle signatures in the time-averaged
estimates of µ and γ(τ ), some of which turned out to be par-
ticularly elusive. Evidencing them required careful statistical as-
sessments. As a matter of fact, earlier analysis of the very same
numerical simulation by McMillan et al. (2001) failed to identify
this signature and reached the opposite conclusion that non-zonal
field statistics would not necessarily reflect heat flow conditions at
the CMB. In the estimate x̄ of µ indeed, only a fairly weak non-
zonal field could be detected and proven significant. However, this
was made possible because correlation times were also derived and
taken into account in the statistical assessment. As a result of this,
even though most estimates of non-zonal terms turned out to be
smaller than zonal terms (Table 4), their shorter correlation times
(Table 3) made it possible to prove that at least some of them were
meaningful.

Clearly, those results also suggest that if similar significant non-
zonal components were to be found in the time-averaged palaeo-
magnetic field as a result of non-homogeneous CMB conditions,
those would likely be weak. Detecting them would again require
some careful statistical analysis. In this respect, the fact that the
detection of significant non-zonal terms in the actual time-averaged
palaeomagnetic field is still a matter of debate (a claim made by
e.g. Gubbins & Kelly 1993 and Johnson & Constable 1997, but
challenged by e.g. McElhinny et al. 1996, Carlut & Courtillot 1998
and Merrill & McFadden 2003) is hardly a surprise. However, those
results also show that future investigation of better-constrained time-
averaged field models could possibly lead to some inference of the
geometrical characteristics of the heat flux at the CMB. This, we
should finally point out, would nevertheless require that additional
progress in numerical dynamo modelling also be made. First, to bet-
ter understand the connection between the heat-flux pattern and the
pattern of the resulting time-averaged field (beyond the crude con-
nection established in the case of model h). A recent study by Olson
& Christensen (2002) suggests this should eventually be possible.

Secondly, to make sure that simulations are run with parameters
closer to those of the real Earth. An indication that this is needed
can be found in the fact that the time-averaged field computed from
the recent tomographic model of Christensen & Olson (2003, their
fig. 4d), which relies on different parameters than model h but uses
similar tomographic boundary conditions, does show substantial
differences with that of model h (Fig. 10b).

Another significant outcome of this study is the demonstration
that one should not a priori assume too simple a diagonal form
for γ(τ ) in GGP models of dynamo fields. Indeed, in both models
g and h, the time-averaged estimate K̄(τ ) of this matrix has been
shown to contain many significant non-diagonal terms testifying
for spherical, equatorial and axial symmetry breaking properties. In
order to make the best of a statistical analysis of the palaeomagnetic
data, one should thus acknowledge that: (i) the autocovariances (or
variances) γ (xm

n , xm
n , τ ) may also depend on x, n and m; and (ii)

the cross-covariances γ (xm
n , x ′m′

n′ , τ ) can be non-zero, even at time
τ = 0 relevant to palaeomagnetism. Only point (i) above has yet
been partially recognized by some authors (e.g. Kono & Tanaka
1995; Constable & Johnson 1999; Kono et al. 2000a; see Paper I
for a full review) and point (ii) has been raised only once by Hulot
& Gallet (1996). Taking both points into account would clearly be
desirable. However, it would have one drawback: requesting that the
palaeomagnetic data be inverted for a covariance matrix defined by
many more parameters than if it were purely diagonal. Fortunately,
this inconvenience can be kept to a minimum, thanks to the fact, we
also found, that estimates K̄ (xm

n , x ′m′
n′ , τ ) of the γ (xm

n , x ′m′
n′ , τ ) tend

to take significant values only when |n − n′| remains small. This is
because the τm

n decrease as n increases (Tables 1 and 3; Figs 2 and 11)
and because two Gauss coefficients with very different correlation
times can hardly correlate with each other. This property can then
be used to decide which γ (xm

n , x ′m′
n′ , τ ) may a priori be set to zero

in the matrix, if we happen to be able to estimate the τm
n . Hulot

& Le Mouël (1994; see also Harrison & Huang 1990) and Hongre
et al. (1998) showed that historical and archeomagnetic data could
provide enough information for this to be possible. Also, it turns
out that the timescales involved are in fact quite similar to those
found here for models g and h (see also Christensen & Olson 2003).
Thus, taking the relevant non-diagonal γ(τ ) terms into account by
applying the rule

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if τm
n 	 τ ′m′

n′ or τm
n 
 τ ′m′

n′ (16)

would then guarantee that γ(τ ) does not involve that many more
parameters than if it were purely diagonal. Such an approach would
then make it possible to also rely on estimates of the covariance
matrixγ(τ ) and not only of the mean fieldµ to further investigate the
symmetry breaking properties of the palaeomagnetic field. In fact, if
further size reduction of γ(τ ) would really need to be implemented,
then the best option would probably be to further assume eq. (8d)
[i.e. γ (xm

n , x ′m′
n′ , τ ) = 0 if m �= m ′], which would acknowledge the

fact we found that detection of axial symmetry breaking in estimates
of those terms anyway proves elusive.

Our results also revealed much more embarrassing characteristics
of the fields produced by models g and h: some non-stationarity that
can affect the MF produced by a dynamo and distort the distribution
of the Gauss coefficients to the point it no longer is Gaussian. Those
results are consistent with those of McMillan et al. (2001) who relied
on a very different way of analysing the data. Taking those issues
into account in the context of a GGP approach is not a simple matter.
As illustrated by our results, the nature of this non-stationarity can
indeed significantly differ from one case to another.
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As pointed out by Coe et al. (2000) in an earlier study of the same
simulations, it however turns out that artificial intensity records pre-
dicted from the model g field at the surface of the Earth compare
quite well with the actual relative intensity records of deep-sea sedi-
ment cores, such as the one published by Valet & Meynadier (1993).
Those cores indeed reveal significant intensity fluctuations on the
10 000 yr timescale, much more comparable to the modulations
identified in model g (Fig. 8) than to those found in model h (Coe
et al. 2000 also pointed out that similar predictions from model h did
not compare well). [Incidentally, model g is also the one model pro-
ducing a dominantly dipole family field (recall Table 2 and Fig. 3),
a feature known to help produce a trend in the virtual geomagnetic
pole (VGP) scatter curve similar to that observed for the past 5 Myr
(Kono & Tanaka 1995; Hulot & Gallet 1996; Tauxe & Kent 2004),
although in the present instance, the trend produced does not appear
to be strong enough to explain the data (Glatzmaier et al. 1999).] We
saw that the main cause of the departure from a Gaussian distribution
was non-stationarity and that the not-so-severe non-stationarity seen
in model g did not seriously affect the distribution of the Gauss co-
efficients. Those remained near-gaussian. The comparable amount
of non-stationarity seen in both model g and the sediment cores thus
suggests that a GGP approach could also safely be used to analyse
at least the recent palaeomagnetic data.

Finally, it is worth commenting the intriguing difference found
between models g and h, namely, the existence of two independent
long-term modulations in model g as opposed to a single more com-
plex modulation in model h. This difference somewhat mirrors the
one found in the estimate K̄(τ ) of the correlation matrixγ(τ ), reveal-
ing less correlations between the dipole and quadrupole families in
model g than in model h. We noted that this meant that the fluctuating
component of the model g field is statistically more symmetric with
respect to the equator than that of model h. Unfortunately, no analo-
gous statistical reasoning can be used to interpret the differences in
the non-stationary modulations of models g and h. However, a very
useful complementary deterministic approach can be invoked. It is
indeed well known from kinematic dynamo theory that, if a dynamo
flow is symmetric with respect to the equator, the two dipole and
quadrupole family fields it generates become separable (i.e. are gov-
erned by two separate equations, Gubbins & Zhang 1993). Those
fields may then behave independently, in very much the way they do
in the case of model g [from the point of view of both the relative lack
of correlation between the two families in K̄(τ ) and the existence of
independent modulations]. Indeed, we checked that, on average, the
dynamo flow is more symmetric with respect to the equator in model
g than in model h, though even in the case of model g, the flow is
not found to be exactly symmetric. However, this observation also
is not a surprise. A not-exactly-symmetric flow is indeed required
to explain the weak but significant correlations found between the
two families in model g[K̄(τ ) is almost, but not exactly, compat-
ible with eq. 9b/10b]. Furthermore, because model g is the result
of a fully dynamic and not simply kinematic simulation, Lorentz
forces associated with the field produced by the dynamo are bound
to influence the flow. As a consequence, the flow may not remain
symmetric with respect to the equator if the field produced is a mix-
ture of the dipole and quadrupole family components (e.g. Gubbins
& Zhang 1993). In the case of model g however, both the mean and
fluctuating components of the field are dominated by terms from the
dipole family and only a weak quadrupole family component is to
be found (Table 2; Fig. 3). This is how both the non-symmetric flow
and the coupling between the two family fields can remain weak,
allowing model g to enjoy a dual modulation and weak correlations
between the two families. By contrast, model h displays families of

comparable magnitude (except of course for ḡ0
1), especially in K̄(τ )

(Table 4; Fig. 14), and enjoys both a single modulation and stronger
correlations. In short, although from a purely statistical point of view,
equatorial symmetry only requires that the mean field µ belongs to
either the dipole or quadrupole family, while the fluctuating field
can be a mixture of both families (provided they display no cross-
correlations, i.e. conform to eq. 9b/10b), dynamical considerations
show that as soon as both families contribute similarly, especially
to the fluctuating field, coupling between the two families will arise
and so will correlations in γ(τ ).

6 C O N C L U S I O N

In the present study, we addressed the pertinence of a GGP ap-
proach to characterize the statistical behaviour of fields produced
by numerical simulations of dynamos. Those dynamos belong to
the same general class of dynamos as the geodynamo producing the
MF of the Earth. It may thus be argued that the conclusions reached
here also likely pertain to the possibility of using a GGP approach to
analyse the palaeomagnetic data and characterize the past behaviour
of the geodynamo.

To be valid, the GGP approach requires that the Gauss coefficients
define a vector x(t) behaving as the result of a multidimensional
stationary Gaussian process with a short-term memory. Both models
we investigated were found to enjoy a short-term memory. Some
non-stationary behaviour was unfortunately found in both cases,
causing some non-Gaussian behaviour, all the stronger that the non-
stationarity was important. However, non-stationarity did not appear
to be too serious of a problem if, as in model g, it remains within
reasonable bounds, and occurs on timescales long compared to the
memory of the process and short compared to the duration of a period
of stable polarity. This seems to be the case for the real geodynamo,
suggesting that a GGP approach can indeed be used to analyse the
recent palaeomagnetic data.

However, estimating the mean field µ and the covariance matrix
γ(τ ) along the lines pioneered by Constable & Parker (1988) is not
as simple a matter as one could wish, especially when one deals with
(non-linear) directional data, in which case, as noted by Khokhlov
et al. (2001), both µ and γ(τ ) need to be estimated simultaneously.
Because of that difficulty, all GGP modelling attempts made so
far have relied on some additional assumptions with respect to the
form γ(τ ) may take. In particular, γ(τ ) has always been assumed
diagonal.

However, significant off-diagonal terms in the estimate K̄(τ ) of
γ(τ ) (cross-covariances) have been found in both models g and h,
and are to be found for all rotating dynamos, as all of them break
the spherical symmetry. Even under the most symmetric condi-
tions (axial and equatorial), cross-covariances are found between
Gauss coefficients sharing the same order and belonging to the
same dipole/quadrupole family. Additional cross-covariances reach-
ing across the two dipole/quadrupole families are otherwise found
if equatorial symmetry is lost and even more cross-covariances may
be found if, in addition, axial symmetry is lost as in model h. Sim-
ilar off-diagonal terms in γ(τ ) must therefore exist in the case of
the geodynamo. To make it possible to detect important symmetry
breaking properties not only in µ but also in γ(τ ), only the simple
rule (16) based on timescales may safely be used to a priori decide
which cross-covariances should be discarded.

As a matter of fact, the one symmetry breaking that appeared to
be the easiest to detect, is equatorial symmetry breaking. However,
it is found in both model h and the homogeneous model g. This
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shows that, unfortunately, evidence of equatorial symmetry break-
ing possibly found in µ and γ(τ ) [and in particular a µ(g0

2) such as
the one needed to explain the palaeomagnetic data], cannot as such
be taken as evidence of equatorial symmetry breaking in the CMB
conditions imposed on the dynamo. That is, unless, as pointed out
in Paper I, the double case can be made that, every time the field
reverses, both its dipole and quadrupole family components reverse
simultaneously, while in the case of dynamos with equatorial sym-
metric CMB conditions, each family could reverse independently.
Of course, we noted that stronger signatures for equatorial symme-
try breaking are found in model h than in model g, suggesting that
symmetry breaking CMB conditions could enhance the equatorial
symmetry breaking properties of the field produced. However, we
also noted that this enhancement is likely related to the fact that,
contrary to that of model g, the fluctuating field of model h is not
dominated by the dipole family. For dynamical reasons, this is bound
to lead to stronger interactions between the two families. However,
it is not unlikely that another dynamo regime running under equato-
rial symmetric CMB conditions could also be found, spontaneously
breaking the equatorial symmetry like model g, and involving just
as much quadrupole family and dipole family fluctuating fields as
model h. This would then introduce more interactions between the
two families, just as in model h.

Only axial symmetry breaking properties inµ andγ(τ ) can in fact
unambiguously testify for the influence of inhomogeneous CMB
conditions. Such properties were found for model h (and not for
model g). This shows that a similar influence could potentially be
detected in the case of the real Earth. In γ(τ ), this would involve
detecting either non-zero cross-covariances contradicting eq. (8d),
or violations of equalities between autocovariances (8b) or non-zero
cross-covariances (8c). However, violations of eq. (8d) proves elu-
sive to detect. From a practical point of view, ignoring the possibility
of such violations, i.e. assuming eq. (8d) holds [which conveniently
reduces the number of terms involved inγ(τ )], and just checking for
violations of eq. (8b-c), would probably be the most efficient way of
investigating γ(τ ) for possible influence of inhomogeneous CMB
conditions. Inµ, the signature to be looked for is simpler (non-zonal
terms), more easily detected and likely to at least partly reflect the
inhomogoneous CMB conditions responsible for it (see also, Olson
& Christensen 2002). However, it turns out that non-zonal terms in
estimates of µ remain quite weak. This, we noted, could be the rea-
son why detection of non-zonal terms in the mean field derived from
palaeomagnetic data still remains controversial. Our results suggest
that additional data combined with a more appropriate treatment and
analysis of the covariance matrix γ(τ ) could help settle the issue.
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