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S U M M A R Y
In the present paper, we address symmetry issues in the context of the so-called giant gaussian
process (GGP) modelling approach, currently used to statistically analyse the present and past
magnetic field of the Earth at times of stable polarity. We first recall the principle of GGP mod-
elling, and for the first time derive the complete and exact constraints a GGP model should
satisfy if it is to satisfy statistical spherical, axisymmetrical or equatorially symmetric prop-
erties. We note that as often correctly claimed by the authors, many simplifying assumptions
used so far to ease the GGP modelling amount to make symmetry assumptions, but not always
exactly so, because previous studies did not recognize that symmetry assumptions do not sys-
tematically require a lack of cross-correlations between Gauss coefficients. We further note
that GGP models obtained so far for the field over the past 5 Myr clearly reveal some spherical
symmetry breaking properties in both the mean and the fluctuating field (as defined by the
covariance matrix of the model) and some equatorial symmetry breaking properties in the
mean field. Non-zonal terms found in the mean field of some models and mismatches between
variances defining the fluctuating field (in models however not defined in a consistent way)
would further suggest that axial symmetry also is broken. The meaning of this is discussed.
Spherical symmetry breaking trivially testifies for the influence of the rotation of the Earth on
the geodynamo (a long-recognized fact). Axial symmetry breaking, if confirmed, could hardly
be attributed to anything else but some influence of the core–mantle boundary (CMB) condi-
tions on the geodynamo (also a well-known fact). By contrast, equatorial symmetry breaking
(in particular the persistence of an axial mean quadrupole) may not trivially be considered as
evidence of some influence of CMB conditions. To establish this, one would need to better
investigate whether or not this axial quadrupole has systematically reversed its polarity with
the axial dipole in the past and whether dynamo simulations run under equatorial symmetric
CMB conditions display additional transitions (mirror transitions, which we describe) only
allowed in such instances. This remains to be fully investigated.

Key words: dynamo theory, geomagnetism, geostatistics, palaeomagnetism, spherical
harmonics, statistical methods.

1 I N T RO D U C T I O N

Thanks to the availability of many historical observations of the
magnetic field of the Earth over the past few centuries and of many
more high-precision satellite measurements of the near Earth’s mag-
netic field in the past few decades, excellent spherical harmonic
(SH) models of the main field (MF) produced in the core of the
Earth have been constructed in the recent years (e.g. Jackson et al.
2000; Langlais et al. 2003), making it possible to infer some as-
pects of the current dynamical behaviour of both the field itself
and of the liquid core (see e.g. Hulot et al. 2002). However, the

historical period only covers a very short period of time. To infer
and understand the nature of the MF before that, we are forced to
rely on indirect measurements available through human artefacts,
lava flows and sediments that have been magnetized in the ancient
field. Those magnetized samples can also be used to construct time
varying SH models of the ancient field. However, this requires that
enough samples are available at a given epoch and that they can be
synchronized to well within the timescales over which the MF is
likely to evolve. Because of those limitations, only the largest scales
of the field over the past few millennia have yet successfully been
modelled in this way (Hongre et al. 1998; Korte & Constable 2003).

C© 2005 RAS 591



592 G. Hulot and C. Bouligand

A different approach is therefore required to access the infor-
mation contained in the palaeomagnetic databases that are oth-
erwise available for recent geological epochs (past 5 Myr). Two
databases are of particular interest, the so-called palaeosecular vari-
ation (PSV) database (Quidelleur et al. 1994; Johnson & Con-
stable 1996; McElhinny & McFadden 1997) and palaeointensity
database (Tanaka et al. 1995). Both of them consist of data recov-
ered from volcanic samples that have acquired their magnetization
within much less time than needed for the MF to evolve signifi-
cantly. Each sample in those databases can then be considered as
an instantaneous spot value of the direction (for the PSV database)
or of the full vector (for the palaeointensity database) of the an-
cient field, at a given known location, but at a relatively poorly
known time. This time is nevertheless known with enough accuracy
to identify the period of fixed polarity during which the sample ac-
quired its magnetization. All samples corresponding to such a given
period can therefore be expected to contain some statistical informa-
tion about the local and global MF behaviour during that period of
time.

Many different approaches have been used in the past to carry
such analysis and derive so-called time-averaged field (TAF) and
PSV models of the palaeomagnetic field (for a review, see e.g.
Merrill et al. 1996). One approach in particular has proved success-
ful in the recent years. The giant gaussian process (GGP) approach
first introduced by Constable & Parker (1988) in a relatively restric-
tive form, next generalized by Kono & Tanaka (1995), and by Hulot
& Le Mouël (1994) and Khokhlov et al. (2001) to also account
for possible temporal and spatial correlations. This approach is par-
ticularly attractive as its formalism can be used to simultaneously
analyse the historical (Constable & Parker 1988; Hulot & Le Mouël
1994), the archeomagnetic (Hongre et al. 1998) and the palaeomag-
netic MF (Constable & Parker 1988 and many studies since, see e.g.
Kono et al. 2000, Khokhlov et al. 2001 and references therein). None
of the approaches proposed so far, including the more recent ap-
proach proposed by Love & Constable (2003), has so many powerful
properties.

Like all previous approaches, the GGP approach however relies
on a set of statistical assumptions, the most fundamental of which
are required for the approach to be valid. Additional simplifying
assumptions have also been introduced to ease the data analysis
and reduce the number of free parameters needed to characterize
the field behaviour. Although all those additional assumptions seem
natural, they imply some restrictions on the way the field is a priori
assumed to behave. It is the purpose of the present paper and of
a companion paper (Bouligand et al. 2005, – this issue, hereafter
referred to as Paper II) to investigate the meaning and validity of
all those assumptions. This is done in two steps. First, by relying
on symmetry considerations (present paper). We introduce the GGP
approach and review the simplifying assumptions used so far. We
next give the first derivation of the complete set of constraints a
GGP model should satisfy if it is to satisfy spherical, axisymmetric
or equatorial symmetric properties. This reveals that most of the
assumptions used so far amount to make symmetry assumptions,
albeit not always in a fully consistent way. We discuss the meaning
of this and explain how symmetry properties could be used to bet-
ter characterize the regime under which the geodynamo has been
operating in the past, and possibly identify some influence of non-
symmetrical core–mantle boundary (CMB) conditions. In a second
step (Paper II), the issue is addressed from a more general point of
view, by taking advantage of results from numerical simulations for
which, contrary to the real-Earth case, all assumptions involved in
GGP modelling can be tested.

2 G E N E R A L I Z E D G I A N T G AU S S I A N
P RO C E S S E S

At any given time t and location r outside the core, the MF is assumed
to be curl-free, and is therefore written in the form

B(r, t) = −∇V (r, t), (1)

where:

V (r, t) = a
∞∑

n=1

(
a

r

)n+1 n∑
m=0

[
gm

n (t)Y mc
n (θ, ϕ) + hm

n (t)Y ms
n (θ, ϕ)

]
(2)

and a is an arbitrary reference radius, taken to be the planetary
(Earth) radius where the field is usually observed; (r , θ , ϕ) are the
spherical coordinates, Y m(c,s)

n (θ , ϕ) the real SH functions of degree
n and m, Schmidt quasi-normalized (this normalization is defined in
more details in Appendix A) and the [gm

n (t), hm
n (t)] are the so-called

Gauss coefficients, which define a vector x(t) in a multidimensional
model space.

Following and describing the evolution of the field in terms of
a generalized GGP then amounts to assume that at times of stable
polarity, x(t) can be described in terms of a single realization of a
multidimensional stationary random Gaussian process in this model
space. The field and its associated GGP model are then characterized
by (like any multidimensional stationary random Gaussian process,
see e.g. Gardner 1990):

a statistical mean (or mean model) E{x(t)} = µ, (3)

a covariance matrix E{[x(t) − µ][x(t ′) − µ]T } = γ(t ′ − t), (4)

where E{} is the statistical expectation,µ is a vector of components
[µ (gm

n ), µ (hm
n )] defining a mean model in the model space, and γ(t ′

− t) is a matrix of elements γ (xm
n , x ′m′

n′ , t ′ − t), with x and x′ being
either g or h.

A very useful property of such a stationary Gaussian process
is that, provided its covariance matrix γ(τ ) decreases fast enough
towards zero when τ becomes large, it is ergodic for both its mean
and its covariance (Gardner 1990). In other words,

lim
T →∞

x̄T = µ and lim
T →∞

K̄T (τ ) = γ(τ ),

where we have introduced

x̄T = 1

T

∫ T

0
x(t) dt, (5)

K̄T (τ ) = 1

T

∫ T

0
[x(t) − x̄T ][x(t + τ ) − x̄T ]T dt. (6)

Thus, if we further assume that the field only has a short-term
memory, which we will indeed assume for reasons outlined later
on, both eqs (5) and (6) can be used to estimate µ and γ(τ ) from
temporal averages x̄T and K̄T (τ ) over the trajectory of x(t) in the
model space.

In the GGP formalism and because of eq. (5), µ may then be
viewed as the TAF to be expected. In the same way and because of
eq. (6), γ(τ ) may be viewed as defining the statistical properties of
the fluctuating field about µ, hence of the PSV.

3 L O C A L E X P R E S S I O N O F G G P S

When considering palaeomagnetic data, relying on eqs (5) and (6)
to infer µ and γ(τ ) is not possible because we do not have a direct
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access to the Gauss coefficients [and thus to x(t)]. We only have
measurements of some field components at a single location ri at a
time ti. Those provide some information about x(t) but only through
eqs (1) and (2). However, the statistics produced by a GGP model
for the field at any such location can also be predicted, and therefore
used to recover some information about µ and γ(τ ).

This is straightforward for full vector measurements of the local
field B(r, t). The way a geomagnetic field model x(t) predicts B(r, t)
through eqs (1) and (2) can indeed always formally be written as

B(r, t) = P(r)x(t), (7)

where P(r) is a matrix. Because of this linear relationship, if the
MF is assumed to be the result of a generalized GGP, B(r, t) is
predicted to behave as a realization of a 3-D stationary Gaussian
process, the characteristics of which are directly related to those of
the generalized GGP model through

E{B(r, t)} = µB(r) = P(r)µ, (8)

E
{
[B(r, t) − µB(r)][B(r, t ′) − µB(r)]T

}
= γB(r, t ′ − t) = P(r)γ(t ′ − t)P(r)T . (9)

Because of the short-term memory assumption, it also follows that
this 3-D stationary Gaussian process is ergodic. Thus, in principle,
temporal averages (of the type in eqs 5 and 6) can also be used to
locally infer the values of µB (r) and γB (r, τ ). Those can then be
used to try and invert eqs (8) and (9) for µ and γ(t ′ − t).

Very often, however, the palaeomagnetic data to be used are not
B(r, t), but only its direction. This can make the problem trickier,
because those quantities are not linearly related to x(t). However,
it turns out that the statistics predicted for such directional data by
a given generalized GGP can also exactly be computed (Khokhlov
et al. 2001).

Thus, in principle, a procedure can always be devised to try and
seek which, if any, generalized GGP can account for any given set
of data. However, because (i) not so much data are available, (ii) the
number of parameters needed to characterize a generalized GGP
[i.e. needed to define µ and γ(t ′ − t)] is potentially very large, and
(iii) it is not easy to invert the data for µ and γ(t ′ − t), simplifying
assumptions have always been introduced in all GGP models.

4 A S S U M P T I O N S A N D R E S U LT S F RO M
P U B L I S H E D G G P M O D E L S

In their analysis of the historical and archeomagnetic data, Hulot &
Le Mouël (1994) and Hongre et al. (1998) assumed that µ reduces
to an axial dipole, that all Gauss coefficients behave independently
from one another and that all those sharing the same degree n also
share the same autocovariance function, i.e. that the covariance ma-
trix takes the diagonal form

γ
(

xm
n , x ′m′

n′ , τ
)

= 0 if xm
n �= x ′m′

n′ and γ
(
xm

n , xm
n , τ

) = γn(τ ),

(10)

where

γn(τ ) = σ 2
n exp

[
− τ 2

2τ 2
n

]
(11)

and τ n can then be viewed as the typical correlation time, associated
to all Gauss coefficients of degree n and characterizing how fast
γ n(τ ) [and thus γ(τ )] decreases to zero when τ increases. These
assumptions made it possible to combine temporal with statistical
averages, estimate the σ n and infer values for the τ n of the order of

a few centuries (for the lowest degrees) down to a few decades (for
degree 13).

Those results and assumptions were consistent with the original
assumptions Constable & Parker (1988) had introduced even earlier
to analyse the PSV database of the past 5 Myr. They had assumed
that each sample would correspond to statistically independent real-
izations of a GGP, thatµ reduces to an axial dipole with a small axial
quadrupole (which changes signs together with the axial dipole at
times of reversals, an important assumption as we shall later see)
and that the covariance matrix takes the diagonal form (10), but with

γn(τ ) = σ 2
n δ(τ ) (12)

in place of eq. (11), where δ(τ ) is the Dirac function and σ 2
n is

assumed to be of the form σ 2
n = σ 2

n (CP) = σ 2n[(n + 1)(2n + 1)]−1

for n ≥ 2, defining a flat spatial spectrum for the non-dipole field at
the CMB.

Subsequent studies however revealed that the PSV data required a
more complex GGP model. Kono & Tanaka (1995) were for instance
led to assume that the covariance matrix can take the more general
form

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if xm
n �= x ′m′

n′ and γ
(
xm

n , xm
n , τ

) = σ m2

n δ(τ ),

(13)

which amounts to assume that γ(τ ) is still forced to be diagonal,
with negligible memory, but that it can now be a function of both
degree n and order m. Kono & Tanaka (1995) indeed pointed out
that the data could be explained by enhancing order 1 covariances
and in particular σ 1

2, a suggestion soon confirmed by Quidelleur &
Courtillot (1996).

As another interesting possibility and following an earlier sug-
gestion of McFadden et al. (1988) that the dipole family component
of the field [defined by all Gauss coefficients with (n − m) odd]
could behave independently from its quadrupole family component
[Gauss coefficients with (n − m) even], Kono & Tanaka (1995) also
envisioned the possibility that the data could be explained by a GGP
model satisfying eq. (13), but with (σ m

n )2 = dσ 2
n (CP) if (n − m) is

odd and (σ m
n )2 = (1 − d)σ 2

n (CP) if (n − m) is even, where d is thus
a parameter defining the relative contributions of each family. Hulot
& Gallet (1996) considered this proposal in some detail and showed
that this would require a value of d ≈ 0.9 [independently of the
exact value chosen for µ (g0

1)]. Most recently, Tauxe & Kent (2004)
indeed confirmed that a model based on those assumptions (with d
= 0.93) could be considered. However, Hulot & Gallet (1996) noted
that this would imply that on average over the past 5 Myr, more than
90 per cent of the energy of the non-dipole field would have been
concentrated in its dipole family component, in stark contrast with
the present-day situation, which sees a historical field with equal
energy in both families.

Bearing this drawback in mind and having further shown that
it is definitely not possible to explain the PSV with a covariance
matrix of the form of eqs (10) and (12), whatever the value of σ n ,
Hulot & Gallet (1996) next suggested that a covariance matrix of an
even more general form than eq. (13), involving cross-covariance
terms, and different values for γ (gm

n , gm
n , τ ) and γ (hm

n , hm
n , τ ), also

be considered. Constable & Johnson (1999) positively tested this
last possibility against the PSV data.

The study of Hulot & Gallet (1996) also underlined the need to
simultaneously address the determination of µ and γ(τ ) when deal-
ing with PSV data. This need was not considered significant in the
early studies, because it was felt that the data did not call for a more
complex mean field than the axial (dipole plus small quadrupole)
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field assumed by Constable & Parker (1988). However, a series of in-
vestigations initiated by Gubbins & Kelly (1993), soon followed by
others (see e.g. Johnson & Constable 1997, and references therein)
suggested that non-zonal terms could be present in the TAFµ. Those
conclusions have been questioned (McElhinny et al. 1996; Carlut &
Courtillot 1998). Also, the method used to infer µ in those studies
has some drawbacks. It relies on means of the local field direction
and assumes that those mean directions are only a function of µ
[and not of γ(τ )], which is incorrect (Khokhlov et al. 2001; see
also the perturbation study of Hatakeyama & Kono 2001). In any
case, all those results clearly show that neither γ(τ ) nor µ should
a priori be considered too simple and that both quantities should
be inverted simultaneously when dealing with PSV data. This is
not an easy task (see e.g. Hatakeyama & Kono 2002, for a recent
attempt).

The task is a little easier, at least in principle, if one deals with
palaeointensity data of the type assembled by Tanaka et al. (1995),
also covering the past few Myr. This database is made of full vector
field measurements, and an approach based on eqs (8) and (9) can be
used to independently invert the data for bothµ andγ(τ ). Kono et al.
(2000) recently attempted such a computation. For that purpose, they
assumed a covariance matrix of yet an even more general form:

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if xm
n �= x ′m′

n′ and γ
(
xm

n , xm
n , τ

) = σ
(
xm

n

)2
δ(τ ).

(14)

Interestingly, their computation led to both a mean field and a co-
variance matrix significantly different from those found in the pre-
vious PSV data analysis. In particular, significant differences were
found between some σ (gm

n ) and σ (hm
n ) sharing the same degree n

and order m, a property that is not compatible with a matrix of the
form (13).

5 S Y M M E T RY C O N D I T I O N S

As often noted in the early papers, but never discussed or proven
in detail, it turns out that most of the previous assumptions and
results regarding the forms µ and γ(τ ) may or should take can
be interpreted in terms of symmetry conditions. Gubbins & Zhang
(1993) already discussed the symmetry properties of the convective
dynamo equations in a deterministic context. Here, however, we
address the issue (and give complete proofs) in the more specific
statistical context of GGP models and focus on the magnetic field
one can observe.

First, consider a generalized GGP predicting the same statistical
properties for the field at any location at the surface of the Earth,
i.e. spherically symmetric. It can be shown (Appendix B) that the
necessary and sufficient conditions for this to be the case is that, in
any one frame �, µ and γ(τ ) satisfy:

Conditions for spherical statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0, (15a)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if xm
n �= x ′m′

n′ and γ
(
xm

n , xm
n , τ

) = γn(τ ).

(15b)

A field compatible with a GGP process satisfying eq. (15) would
then be a field insensitive to any specific frame of reference.

Next consider a generalized GGP predicting exactly the same sta-
tistical properties at any two locations sharing the same colatitude
at the surface of the Earth, i.e. axially symmetric about the geo-
graphical axis. It can be shown (Appendix A) that the necessary and

sufficient conditions for this to be the case are now that, in any one
frame � with the z-axis being south–north, µ and γ(τ ) satisfy:

Conditions for axial statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0 if m �= 0, (16a)

γ
(
gm

n , gm
n′ , τ

) = γ
(
hm

n , hm
n′ , τ

)
if m �= 0, (16b)

γ
(
gm

n , hm
n′ , τ

) = −γ
(
hm

n , gm
n′ , τ

)
, (16c)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if m �= m ′. (16d)

A field compatible with a GGP process satisfying eq. (16) would
then be a field insensitive to any specific longitude.

Finally, consider the symmetry about the equatorial plane. The
situation is slightly subtler, because individual SH functions are
always either equatorial symmetric (ES, using the terminology of
Gubbins & Zhang 1993), or equatorial antisymmetric (EA). That is,
all V = Y m(c,s)

n (θ , ϕ) with (n − m) even satisfy (with B = − ∇V )

ES symmetry

V (r, θ, ϕ) = V (r, π − θ, ϕ) and

[Br , Bθ , Bϕ](r, θ, ϕ) = [Br , −Bθ , Bϕ](r, π − θ, ϕ); (17)

whereas, all V = Y m(c,s)
n (θ , ϕ) with (n − m) odd satisfy

EA symmetry

V (r, θ, ϕ) = −V (r, π − θ, ϕ) and

[Br , Bθ , Bϕ](r, θ, ϕ) = [−Br , Bθ , −Bϕ](r, π − θ, ϕ). (18)

Thus two types of equatorial symmetry ought to be considered. A
GGP will be said to be ES symmetric if it remains invariant after
reflecting in the equatorial plane and changing the polarity, and EA

symmetric if it does so after just reflecting in the equatorial plane.
[Note that the magnetic field B = −∇V being a pseudo-vector,
its potential V is a pseudo-scalar. Upon physical reflection in the
equatorial plane, a sign change therefore occurs: V (r , θ , ϕ) becomes
−V (r , π − θ , ϕ) and not V (r , π − θ , ϕ), as would be the case if
V had been a proper scalar, (see e.g. Gubbins & Zhang 1993).] It
can then easily be checked that a GGP will be said to be ES or EA

symmetric if and only if, in any one frame � with the z-axis being
south–north, µ and γ(τ ) satisfy:

Conditions for ES equatorial statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0 if n − m is odd, (19a)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if n − m and

n′ − m ′ are of different parities, (19b)

or

Conditions for EA equatorial statistical symmetry

µ
(
gm

n

) = µ
(
hm

n

) = 0 if n − m is even, (20a)

γ
(
xm

n , x ′m′
n′ , τ

) = 0 if n − m and

n′ − m ′ are of different parities. (20b)

Finally, we will state that a GGP has equatorial symmetry if it has
either ES or EA symmetries.

Then, all fields compatible with a GGP with an equatorial symme-
try (i.e. satisfying 19 or 20) and only those, would be fields incapable
of statistically distinguishing the Northern from the Southern Hemi-
sphere. This can easily be checked, bearing in mind the important
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additional property that the global polarity of the field cannot itself
be taken as a preference for either hemisphere. This is because of
the well-known property of rotating fluid dynamos, which states
that if such a dynamo can produce a field B(r, t), then the very same
dynamo (defined by exactly the same boundary conditions and non-
magnetic time-varying quantities, such as temperature field, velocity
field, etc.) can also produce the exact opposite field −B(r, t) (see
e.g. Gubbins & Zhang 1993).

In terms of the alternative terminology we recalled earlier (and
more often used in palaeomagnetism, see e.g. Merrill et al. 1996) of
dipole family (n − m odd) versus quadrupole family (n − m even),
we thus conclude that a GGP will have equatorial symmetry if and
only if (i) its mean field exclusively belongs to either the dipole or
the quadrupole family, and (ii) the dipole family and quadrupole
family components of the fluctuating field behave independently.

6 S Y M M E T R I E S I N G G P M O D E L S

Reconsider now the assumptions and results reviewed in Section 4,
in terms of symmetry properties. The case of the mean fieldµ is triv-
ial. All models involve non-zero mean fields and break the spherical
symmetry (contradiction with eq. 15a). Early models only involve
zonal mean fields and satisfy the axial symmetry about the rota-
tion axis of the Earth (compatibility with eq. 16a). However, those
zonal fields all involve at least a quadrupole axial contribution (with
ES symmetry) in addition to the axial dipole (with EA symmetry),
which prevents the whole mean field from having any of the two
symmetries. They therefore break the equatorial symmetry. Finally,
some of the most recent mean models seem to require non-zonal
terms. This would involve axial symmetry breaking (contradiction
with eq. 16a).

Consider now the less trivial case of the covariance matrix γ(τ ).
The first set of assumptions introduced, eq. (10), exactly corresponds
to eq. (15b). Thus, the early GGP models simply assumed that
the way the MF fluctuates would not be sensitive to any specific
frame of reference and would comply with spherical symmetry. The
fact that the PSV data conflict with eq. (10) whatever the functions
γ n (τ ), as shown by Hulot & Gallet (1996), can then be interpreted
as the proof that this is not the case, that the fluctuations of the
field also break the spherical symmetry and that GGP models must
account for that fact.

Consider then eq. (13) introduced by Kono & Tanaka (1995).
These assumptions leave the possibility for the covariance matrix to
break the spherical symmetry, because one may have γ (xm

n , xm
n , τ )

�= γ (x ′m′
n , x ′m′

n , τ ) if m �= m ′, which conflicts with eq. (15b). On the
other hand, it is easy to check that eq. (13) is compatible with both
the axial and the equatorial symmetry conditions (16b–d) and (19b)
or (20b). However, the reverse statement is not true and conditions
(13) are therefore more restrictive than needed if it indeed turns out
that the fluctuating field can break the spherical, but not necessarily
the axial and/or equatorial symmetries.

Next consider the proposal of Kono et al. (2000) that eq. (14)
rather than eq. (13) be used. If, as they tentatively suggest, some
differences are to be found between the σ (gm

n ) and σ (hm
n ) sharing the

same degree n and order m, then eq. (16b) would be violated and the
axial symmetry no longer satisfied. However, eq. (14) only relaxes
the constraint (16b), whereas axial symmetry breaking would also
imply simultaneously relaxing eqs (16c) and (16d). This would then
require that non-zero cross-covariances also be considered in γ(τ ),
as originally proposed by Hulot & Gallet (1996).

Finally, it should be noted that although eq. (14) breaks the axial
symmetry it assumes an equatorial symmetry (compatibility with

eqs 19b or 20b). This we note is somewhat at odds with the fact that
the mean field is found to break the equatorial symmetry (as testified
by the need to introduce a zonal quadrupole in µ). To possibly
account for a similar equatorial symmetry breaking in the fluctuating
part of the field, non-zero cross-covariance would again need to be
considered in γ(τ ) (at least between coefficients not belonging to
the same family).

From all those studies, it thus appears that clear indications are
found for spherical, equatorial and perhaps axial symmetry breaking
in bothµ andγ(τ ). However, inadequate assumptions with respect to
the form γ(τ ) may take have often been made. It would be advisable
to only rely on assumptions with clear symmetry meaning, such as
eqs (15), (16), (19) and (20).

7 G E O P H Y S I C A L I M P L I C AT I O N

Relying on assumptions with clear symmetry meaning would make
it possible to better identify the symmetries the field is indeed willing
to brake, which would in turn provide us with some useful informa-
tion about the way the geodynamo works and is possibly influenced
by non-homogeneous boundary conditions. It is well known that the
response of a physical system has symmetry that is either the same as
or lower than that of the system itself (e.g. Gubbins & Zhang 1993).
In the present case, the system is the rotating core with boundary
conditions imposed on the corotating CMB. Because of the rotation,
this system does not have a spherical symmetry and spherical sym-
metry breaking has to occur. The fact that in all recent GGP models,
not only µ but also γ(τ ) breaks this symmetry (and thus senses the
rotation axis of the Earth) shows that this is indeed the case and that
symmetry breaking can be detected in GGP models.

Axial and equatorial symmetry breaking results can bring ad-
ditional information but require a more careful interpretation. Two
possibilities are to be considered. One is that the CMB conditions are
in fact symmetric and that symmetry breaking occurs only because
the dynamo spontaneously takes advantage of the possibility it has
to produce a field with lower symmetry than that of the system. The
other is that CMB conditions are not homogeneous, significantly
break the symmetries and therefore force the dynamo to produce a
field breaking the symmetries in the same way. Which interpretation
one should go for is not so obvious. However, useful suggestions
can be made.

First, we note that spontaneous axial symmetry breaking under
axisymmetrical CMB conditions is unlikely to occur. In such condi-
tions, it indeed seems difficult for the system to keep a field (and all
its characteristics) statistically fixed in longitude, given the possi-
bility there is to rotate the whole system through infinitesimal steps
about the rotation axis of the Earth. Results derived from numerical
simulation clearly support this point of view (see Paper II). If con-
firmed (but see McElhinny et al. 1996; Carlut & Courtillot 1998),
axial symmetry breaking, such as the one tentatively found in the
mean field by several authors (Gubbins & Kelly 1993; Johnson &
Constable 1997), would thus almost certainly testify for axial sym-
metry breaking in the CMB conditions.

By contrast to the previous case, we note that even if CMB con-
ditions are symmetric about the equator, no such continuous way
of exchanging the Northern and Southern Hemispheres can exist,
making it less obvious for a dynamo solution displaying a statistical
preference for one hemisphere to shift to the analogous state show-
ing a preference for the opposite hemisphere. This situation would
be analogous to the one encountered with the global polarity of the
field, which can remain stable over long periods of time (or even for-
ever, for some parameter regimes) even under homogeneous CMB
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conditions, despite the fact already pointed out that a dynamo has
no reason to prefer one polarity to another. Thus, a dynamo could
easily remain locked in an equatorial symmetry breaking state, even
if the CMB conditions are symmetric about the equator. In this re-
spect, equatorial symmetry breaking by the field, such as the one
implied by the need to introduce an axial quadrupole mean field
µ(g0

2) in all recent GGP models, cannot as such be taken as ev-
idence of equatorial symmetry breaking by the CMB conditions.
Again, results derived from numerical simulation would support
this point of view (see Paper II).

However, more can be said. Consider an equatorial symmetry
breaking state, state I, as sketched on Fig. 1(a). In such a state,
it is important to point out that not only the magnetic field, but
also all convection-related fields (temperature, flows, etc.) would
have to break the equatorial symmetry (Gubbins & Zhang 1993).
If that state was to arise as a result of a spontaneous locking of the
geodynamo under equatorial symmetric CMB conditions, any of
the three following states would be fully equivalent to it: state II,
which would correspond to state I after a polarity transition changing
B(r, t) into −B(r, t) (and leaving the convection pattern unchanged;
Fig. 1b); state III, corresponding to state I after reflection in the
equatorial plane (i.e. a mirror transition, which would then leave
CMB conditions invariant, but would change both the magnetic
and convection patterns; Fig. 1c); and state IV, corresponding to
state I after both transitions (Fig. 1d). By contrast, if state I was to
arise because of equatorial symmetry breaking CMB conditions, no
mirror transition would be possible and only state II would be fully
equivalent to state I.

Characterizing state I by [µI, γ I(τ )], this means that under equa-
torial symmetric CMB conditions, any of the three following tran-
sitions {to either state II, III, or IV characterized by [µII, γ II(τ )],
[µIII, γ III(τ )] and [µIV , γ IV (τ )]}, could potentially be observed:

(i) I→II transition, µII = −µI and γ II(τ ) = γ I(τ ) involving a
full field reversal, but no change in the convective pattern;

(ii) I→III transition,

µIII

(
xm

n

) = −(−1)(n−m)µI

(
xm

n

)
and

γIII

(
xm

n , x ′m′
n′ , τ

) = (−1)(n−m)+(n′−m′)γI

(
xm

n , x ′m′
n′ , τ

)
involving a quadrupole family field reversal (but leaving the dipole
family field unchanged; recall that the magnetic field and potential
are pseudo-vector and pseudo-scalar) and a mirror reversal of the
convective pattern; or

(iii) I→IV transition,

µI V

(
xm

n

) = (−1)(n−m)µI

(
xm

n

)
and

γI V

(
xm

n , x ′m′
n′ , τ

) = (−1)(n−m)+(n′−m′)γI

(
xm

n , x ′m′
n′ , τ

)
involving a dipole family field reversal (but leaving the quadrupole
family field unchanged) and a mirror reversal of the convective
pattern;

and that observing a lack of I→III or I→IV transitions, while many
I→II transitions occur, would testify for the fact that the dynamo
shows a very strong stability with respect to mirror reversals of the
convective pattern (the one feature in common in I→III and I→IV
transitions). This could then only occur either because of a strong
spontaneous stability of the convective pattern (stronger than that
of the magnetic polarity), or because the CMB conditions indeed
significantly break the equatorial symmetry.

Both I→II and I→IV transitions would correspond to a sign
change of µ(g0

1), i.e. to what is usually taken as the definition of a
field reversal. However, only I→II transitions would also involve a
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Figure 1. An equatorial symmetry breaking state I displays dissymmetry
not only in its magnetic state but also in its convection state (a). If core–mantle
boundary (CMB) conditions are symmetric with respect to the equator, from
the point of view of the system, this state is equivalent to any of the three
following states: (b) state II, obtained from state I by simply going through
a polarity transition changing B(r, t) into − B(r, t) (but leaving the convec-
tion pattern unchanged); (c) state III, obtained from state I by reflection in
the equatorial plane, (a mirror transition, changing both the magnetic and
convection patterns); and (d) state IV, corresponding to state I after both
transitions. Going from state I to state II, would involve a full field rever-
sal, but no change in the convective pattern; going from state I to state III
would involve a quadrupole family field reversal and a mirror reversal of
the convective pattern; going from state I to state IV would finally involve
a dipole field reversal and a mirror reversal of the convective pattern. If the
CMB conditions are not symmetric with respect to the equator, no mirror
transition is possible and the system can only go from state I to state II.

simultaneous sign change of µ(g0
n) with n even (quadrupole family

component) and of µ(g0
2) in particular. I→III transitions would be

harder to look for. Those transitions would not involve a sign change
of the mean axial dipole µ(g0

1) and would thus be difficult to iden-
tify in the palaeomagnetic record. However, those I→III transitions
could occur during so-called excursions, when the dynamo moves
away from an initial state with a given µ(g0

1) and finally settles back
to another state with the same µ(g0

1). Searching for a possible sign
change in µ(g0

2) not only at times of reversals but also at times of
excursions could therefore also prove interesting.
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Separate analysis of the data for normal and reverse polarity shows
that a simultaneous sign change of µ(g0

1) and µ(g0
2) occurred dur-

ing the last reversal (Bruhnes–Matuyama). This reversal must have
been a I→II transition. Combined analysis of all recent (0–5 Myr)
normal data on one hand and of all reverse data on another hand
also lead to average fields that would argue in favour of reversals
being systematically of that type (McElhinny et al. 1996; Johnson
& Constable 1997; Carlut & Courtillot 1998; Hatakeyama & Kono
2002). If that is indeed the case, we note that this would then also
mean that some coupling between the dipole and quadrupole fam-
ily components of the field necessarily took place, in particular at
times of reversal, as first envisioned by Merrill & McFadden (1988).
However, such combined analysis could be biased by the fact that
more than half of the data actually belongs to those two last chrons
(Quidelleur et al. 1994; Johnson & Constable 1996). As a matter of
fact, Schneider & Kent (1988) noted early on that some variations
could occur in the value the ratio µ(g0

2)/µ(g0
1) takes, depending on

the chron considered. Schneider & Kent (1988) interpreted this as
a sign that some standing non-dipole field could be present at times
of reversals. However, it is tempting to argue that this could also be
interpreted as an indication that some quadrupole family field rever-
sals could have taken place during those chrons. This interpretation
would also be consistent with the claim made a little later by the
same authors (Schneider & Kent 1990) that, by contrast, the zonal
octupole mean field component they found in their data analysis
has a constant µ(g0

3)/µ(g0
1) ratio. However, because all those results

have since been dismissed (see e.g. McElhinny et al. 1996), they
would clearly need to be double-checked by, for example, building
models for individual chrons (and before and after excursions), and
testing whether I→III and I→IV transitions could have possibly
occurred. Until being possibly proven otherwise, it however seems
reasonable to argue that the current data rather suggest a lack of
any other transition than I→II, hence a lack of mirror transitions in
favour of a strong stability of the convection pattern.

This finally prompts the issue of such stability possibly being a
spontaneous feature of a dynamo under equatorial symmetric CMB
conditions. This issue could soon be settled with the help of numer-
ical simulation of dynamos run under such CMB conditions. When
long runs displaying many successive reversals will be made avail-
able, it will become possible to search for mirror transitions (and
I→III and I→IV transitions). If it turns out that such transitions can
occur in those simulations, then only, the suggested palaeomagnetic
evidence for a µ(g0

2) reversing sign with µ(g0
1) at times of reversals

could be taken as serious evidence of equatorial symmetry breaking
in the CMB.

8 C O N C L U S I O N

Several conclusions can be drawn from the present study. First, that
in attempts to find GGP models best describing the field over the
past 5 Myr, most of the simplifying assumptions chosen so far turn
out to correspond to strong symmetry assumptions. Secondly, that
the failure of some of the early models to account for the data and
the consequent need to introduce some complexity in those models
can readily be explained in terms of symmetry breaking properties
of the field. Thirdly, that such symmetry breaking properties can
bring important information about the way the dynamo works and
is possibly influenced by the CMB conditions.

We also noted that equatorial symmetry breaking states can ex-
ist even if CMB conditions display equatorial symmetry and that
such states can potentially go through both polarity and mirror
transitions, possibly leading to either a full field, a dipole family

field, or a quadrupole family field reversal. Thus, to prove that an
equator symmetry breaking state (such as the one that seems to
have characterized the recent palaeomagnetic field) is evidence for
symmetry breaking CMB conditions, two conditions need to be
satisfied: (i) that no mirror transition (hence neither dipole family
field nor quadrupole family field reversals) be observed in the data
and (ii) that by contrast such mirror transitions be observed in nu-
merical simulations with equatorial symmetric CMB conditions. A
careful comparison of the statistical behaviour of the field before
and after both reversals and excursions could prove very useful to
check (i). Future long runs from dynamo simulations could help
address (ii).

Only evidence of axial symmetry breaking field properties could
otherwise establish the reality of some influence of inhomogeneous
CMB conditions on the geodynamo. Evidence for such symme-
try breaking properties has also been tentatively found in the recent
palaeomagnetic field, but only in the mean fieldµ so far. The present
study further suggests that additional evidence could possibly be
found in studying the covariance matrix γ(τ ). This would however
require that a priori simplifying assumptions of the type (10), (13) or
(14), be abandoned and that the form γ(τ ) is spontaneously willing
to take in such instances be investigated. This is possible thanks to
numerical simulation. In fact, those simulations can more generally
be used to (i) assess the global validity of the generalized GGP ap-
proach, (ii) define the best simplifications one may use in γ(τ ), (iii)
investigate the symmetry breaking issues we raised in the present
paper, all this under well-controlled conditions. This is being done in
Paper II, devoted to the analysis of numerical simulations from the
Glatzmaier & Roberts (1995, 1996, 1997; Glatzmaier et al. 1999)
dynamo.

A C K N O W L E D G M E N T S

We thank Cathy Constable and an anonymous reviewer for their con-
structive comments, which substantially helped improve the original
manuscript. This research was completed while GH held a National
Research Council Research Associateship Award at NASA Goddard
Space Flight Center. Institut de Physique du Globe de Paris Con-
tribution no. 2039 and Institut National des Sciences de l’Univers -
Centre National de la Recherche Scientifique Contribution no. 377.

R E F E R E N C E S

Bouligand, C., Hulot, G., Khokhlov, A. & Glatzmaier, G.A., 2005. Sta-
tistical palaeomagnetic field modelling and dynamo numerical simula-
tion, Geophys. J. Int., doi:10.1111/j.1365-246X.2005.02613 (this issue,
Paper II).

Carlut, J. & Courtillot, V., 1998. How complex is the time-averaged geomag-
netic field over the past 5 Myr?, Geophys. J. Int., 134, 527–544.

Constable, C.G. & Johnson, C.L., 1999. Anisotropic paleosecular varia-
tion models: implications for geomagnetic field observables, Phys. Earth
planet. Int., 115, 35–51.

Constable, C.G. & Parker, R.L., 1988. Statistics of the geomagnetic secular
variation for the past 5 m.y., J. geophys. Res., 93, 11 569–11 581.

Gardner, W.A., 1990. Introduction to Random Processes : With Applications
to Signal and Systems, McGraw-Hill, New York.

Glatzmaier, G.A. & Roberts, P.H., 1995. A three-dimensional convective
dynamo solution with rotating and finitely conducting inner core and
mantle, Phys. Earth planet. Int., 91, 63–75.

Glatzmaier, G.A. & Roberts, P.H., 1996. An anelastic evolutionary geody-
namo simulation driven by compositional and thermal convection, Physica
D, 97, 81–94.

Glatzmaier, G.A. & Roberts, P.H., 1997. Simulating the geodynamo, Con-
temp. Phys., 38, 269–288.

C© 2005 RAS, GJI, 161, 591–602



598 G. Hulot and C. Bouligand

Glatzmaier, G.A., Coe, R.S., Hongre, L. & Roberts, P.H., 1999. The role of
the Earth’s mantle in controlling the frequency of geomagnetic reversals,
Nature, 401, 885–890.

Gubbins, D. & Kelly, P., 1993. Persistent patterns in the geomagnetic field
over the past 2.5 Myr, Nature, 365, 829–832.

Gubbins, D. & Zhang, K., 1993. Symmetry properties of the dynamo equa-
tions for palaeomagnetism and geomagnetism, Phys. Earth planet. Int.,
75, 225–241.

Hatakeyama, T. & Kono, M., 2001. Shift of the mean magnetic field values;
effect of scatter due to secular variation and errors, Earth Planets Space,
53, 31–44.

Hatakeyama, T. & Kono, M., 2002. Geomagnetic field model for the last
5 My; time-averaged field and secular variation, Paleosecular variation
and reversals of the Earth’s magnetic field, Phys. Earth planet. Int., 133,
181–215.

Hongre, L., Hulot, G. & Khokhlov, A., 1998. An analysis of the geomagnetic
field over the past 2000 years, Phys. Earth planet. Int., 106, 311–335.

Hulot, G. & Gallet, Y., 1996. On the interpretation of virtual geomagnetic
pole (VGP) scatter curves, Phys. Earth planet. Int., 95, 37–53.
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A P P E N D I X A : D E R I VAT I O N O F T H E C O N D I T I O N S F O R A X I A L S TAT I S T I C A L
S Y M M E T RY

Let us first recall the definition of the Schmidt quasi-normalized SH functions used to define V (r, t) with the help of eq. (2) (see e.g. Langel
1987):

Y mc
n (θ, ϕ) = Pm

n (cos θ ) cos mϕ; Y ms
n (θ, ϕ) = Pm

n (cos θ ) sin mϕ; (A1)

where n ≥ 1 and 0 ≤ m ≤ n, and the associate Legendre functions Pm
n (u) are then defined by

Pm
n (u) =

[
2(n − m)!

(n + m)!

]1/2

(1 − u2)m/2 dm Pn(u)

dum
for m > 0, (A2)

P0
n (u) = Pn(u) = 1

2nn!

dn

dun
(u2 − 1)n, (A3)

where Pn (u) is the Legendre polynomial of degree n.
Let us next introduce the following useful alternative complex representation of the magnetic potential V (r, t):

V (r, t) = a
∞∑

n=1

(
a

r

)n+1 n∑
m=−n

bm
n (t)Y m

n (θ, ϕ), (A4)
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where the complex SH function Y m
n (θ , ϕ) is now defined by

Y m
n (θ, ϕ) = Pm

n (cos θ )eimϕ for − n ≤ m ≤ n (A5)

and the definition of Pm
n (cos θ ) is extended to negative values of m with the help of

P−m
n (u) = (−1)m Pm

n (u) for − n ≤ m ≤ n. (A6)

Because the potential V (r, t) is a real function, it can easily be checked that the complex Gauss coefficients bm
n (t) must satisfy

bm∗
n = (−1)mb−m

n , (A7)

where the star refers to the complex conjugate.
Identifying eqs (A4) and (2) then leads to the identities

bm
n = [

gm
n − ihm

n

] (
1 + δm,0

2

)
for 0 ≤ m ≤ n (A8)

(using eq. A7 makes it possible to derive a similar identity in the case m < 0) and

g0
n = b0

n and

{
gm

n = bm
n + (−1)mb−m

n

hm
n = i

[
bm

n − (−1)mb−m
n

] for 0 < m ≤ n. (A9)

If we then consider a rotation of ϕ0 of the frame of reference about the initial Oz axis, it is quite straightforward to check that, in the new
frame of reference, the real [gm

n (ϕ0), hm
n (ϕ0)] and complex [bm

n (ϕ0)] Gauss coefficients are related to the Gauss coefficients in the original
frame of reference (gm

n , hm
n , bm

n ) through:

bm
n (ϕ0) = bm

n eimϕ0 , (A10)

{
gm

n (ϕ0) = gm
n cos mϕ0 + hm

n sin mϕ0

hm
n (ϕ0) = −gm

n sin mϕ0 + hm
n cos mϕ0.

(A11)

Now let us assume the magnetic field can be defined as being the result of a generalized GGP, so that the real Gauss coefficients [gm
n (t),

hm
n (t)] define a vector x(t), which can be described in terms of a realization of a multidimensional stationary random Gaussian process. This

process is then defined by eqs (3) and (4). Alternatively, the same process can also be defined by the more convenient (but equivalent) complex
quantities:

E
{
bm

n (t)
} = βm

n and E
{[

bm
n (t) − βm

n

] [
bm′

n′ (t ′) − βm′
n′

]∗}
, (A12)

where we have introduced the notation βm
n rather than µ(bm

n ) to ease notations in what follows.
After a change of frame of reference by rotation of ϕ0 about Oz, those quantities become

E
{
bm

n (ϕ0, t)
} = βm

n (ϕ0) and E
{[

bm
n (ϕ0, t) − βm

n (ϕ0)
][

bm′
n′ (ϕ0, t ′) − βm′

n′ (ϕ0)
]∗}

. (A13)

For the process to be axially symmetric about the geographical axis and predict exactly the same statistical properties at any two locations
sharing the same colatitude at the surface of the Earth, the necessary and sufficient conditions to be satisfied are then that:

βm
n (ϕ0) = βm

n , (A14a)

E
{[

bm
n (ϕ0, t) − βm

n (ϕ0)
] [

bm′
n′ (ϕ0, t ′) − βm′

n′ (ϕ0)
]∗} = E

{[
bm

n (t) − βm
n

] [
bm′

n′ (t ′) − βm′
n′

]∗}
, (A14b)

whatever the value of ϕ0.
From eq. (A10) it is quite obvious that eq. (A14a) implies that

βm
n = 0 if m �= 0, (A15a)

which is equivalent to eq. (16a) because of eqs (A7), (A8) and (A9).
Again, because of eq. (A10), it is straightforward to check that eq. (A14b) with eqs (A14a) and (A15a) then implies

E
{[

bm
n (t) − βm

n

]
[bm′

n′ (t ′) − βm′
n′ ]∗

} = 0 if m �= m ′. (A15b)

In the case m ≥ 0, m ′ ≥ 0, making use of eq. (A8) in eq. (A15b) then leads to:

if m �= m ′,

{
E

{[
gm

n (t) − µ(gm
n )

][
gm′

n′ (t ′) − µ(gm′
n′ )

]} = −E
{[

hm
n (t) − µ

(
hm

n

)][
hm′

n′ (t ′) − µ
(
hm′

n′
)]}

, (A16a)

E
{[

gm
n (t) − µ

(
gm

n

)][
hm′

n′ (t ′) − µ
(
hm′

n′
)]} = E

{[
hm

n (t) − µ
(
hm′

n′
)][

gm′
n′ (t ′) − µ

(
gm′

n′
)]}

. (A16b)

Next, setting m ′ → −m ′ in eq. (A15b) and using eq. (A7) leads to

E
{[

bm
n (t) − βm

n

] [
bm′

n′ (t ′) − βm′
n′

]} = 0 if m �= −m ′. (A15c)
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Again in the case m ≥ 0, m ′ ≥ 0, making use of eq. (A8) in eq. (A15c) finally leads to:

if (m, m ′) �= (0, 0),{
E

{[
gm

n (t) − µ
(
gm

n

)] [
gm′

n′ (t ′) − µ
(
gm′

n′
)]} = E

{[
hm

n (t) − µ
(
hm

n

)][
hm′

n′ (t ′) − µ
(
hm′

n′
)]}

(A17a)

E
{[

gm
n (t) − µ(gm

n )
][

hm′
n′ (t ′) − µ

(
hm′

n′
)]} = −E

{[
hm

n (t) − µ
(
hm′

n′
)][

gm′
n′ (t ′) − µ

(
gm′

n′
)]}

. (A17b)

Combining eq. (A16) with eq. (A17) and recalling eq. (4) then leads to eqs (16b), (16c), (16d) with τ = (t ′ − t).
Conversely, it is quite straightforward to check that eqs (16b), (16c), (16d) imply eq. (A15b) and thus eq. (A14b) (the case m = m ′ being

trivial). Thus, eq. (16) is the necessary and sufficient conditions to be satisfied in anyone frame � with z-axis being south–north for the process
to predict exactly the same statistical properties at any two locations sharing the same colatitude at the surface of the Earth.

A P P E N D I X B : D E R I VAT I O N O F T H E C O N D I T I O N S F O R S P H E R I C A L S TAT I S T I C A L
S Y M M E T RY

Let us first consider the way Gauss coefficients are transformed after a rotation of θ 0 of the frame of reference about its Oy axis. The angular
coordinates (θ , ϕ) [respectively (θ ′, ϕ′)] of a point in the initial (respectively final) frame of reference, satisfy:


sin θ sin ϕ = sin θ ′ sin ϕ′

cos θ = cos θ ′ cos θ0 − sin θ ′ cos ϕ′ sin θ0

sin θ cos ϕ = cos θ ′ sin θ0 + sin θ ′ cos ϕ′ cos θ0

. (B1)

In such a case, the following theorem of addition for the complex SH functions applies:

amY m
n (θ, ϕ) =

n∑
k=−n

ak Pn
mk(cos θ0)Y k

n (θ ′, ϕ′), (B2)

where the Y m
n (θ , ϕ) are defined by eqs (A5), (A2), am is defined by

am = (i)m

√
1 + δm,0

2
(B3)

and the Pn
mk (u) functions are defined by

Pn
mk(u) = (−1)n−k(i)k−m

2n

√
(n + m)!

(n − k)!(n + k)!(n − m)!
× (1 + u)−( m+k

2 )(1 − u)
k−m

2
dn−m

dun−m
[(1 − u)n−k(1 + u)n+k]. (B4)

[We derived eq. (B2) with the help of Vilenkin (1969). It follows from eq. (3) of III-4-2 in Vilenkin (1969), given that eq. (B1) amounts to
eqs (6) and (6)′ of III-4-1 in Vilenkin (1969). Eq. (B4) is the same definition of Pn

mk (u) as eq. (3) of III-3-4 in Vilenkin (1969).] The am

factors defined by eq. (B3) arise because of our definition (A5) of the Y m
n (θ , ϕ), which relies on the definition (A2) of the Pm

n (u), normalized
differently than the associate Legendre functions in Vilenkin (1969).

Relying on eq. (B2), it is then straightforward to check that the complex Gauss coefficients bm
n (θ 0) in the new frame of reference are related

to those bm
n (in the original frame of reference) through

bk
n(θ0) =

n∑
m=−n

bm
n

ak

am
Pn

mk(cos θ0). (B5)

As in Appendix A, let us now assume that the magnetic field can be defined as being the result of a generalized GGP, defined by a
multidimensional stationary random Gaussian process x(t), satisfying eqs (3) and (4), equivalent to eq. (A12).

Let us further assume that the process is spherically symmetric and predicts the same statistical properties at any location at the surface
of the Earth. In particular, this implies that the process is axially symmetric about the geographical axis. We may thus already conclude that
eqs (A15)–(A17) and their consequences eq. (16) all apply again in the present case.

However, now we request more. In particular, we further request the statistics to remain invariant after any rotation of θ 0 about the Oy axis
of the original frame of reference. Introducing

E
{
bm

n (θ0, t)
} = βm

n (θ0), (B6)

this then implies that, whatever θ 0:

βm
n (θ0) = βm

n , (B7a)

E
{[

bm
n (θ0, t) − βm

n (θ0)
] [

bm′
n′ (θ0, t ′) − βm′

n′ (θ0)
]∗} = E

{[
bm

n (t) − βm
n

] [
bm′

n′ (t ′) − βm′
n′

]∗}
. (B7b)

As far as the βm
n are considered, because we already know that eq. (A15a) must be satisfied, we only need to deal with the special case

m = 0. From eqs (B5) and (A15a), we infer

β0
n (θ0) = β0

n Pn
00(cos θ0) = β0

n Pn(cos θ0). (B8)
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However, we know that Pn (cos θ 0) is not unity for all θ 0. Hence, eq. (B8) with eq. (B7a) imply β0
n = 0, so that, given eq. (A15a),

βm
n = 0 ∀(n, m), (B9)

which is equivalent to eq. (15a) because of eqs (A7), (A8) and (A9).
Now consider the consequences of eq. (B7b). We already know that eq. (A15b) applies and it thus only remains to consider the case m =

m ′. Eqs (B5) and (B9) imply

E
{
bk

n(θ0, t)bk∗
n′ (θ0, t ′)

} =
n∑

m=−n

∣∣∣∣ ak

am

∣∣∣∣
2

Pn
mk(cos θ0)Pn′∗

mk (cos θ0)E
{
bm

n (t)bm∗
n′ (t ′)

}
. (B10)

Integrating eq. (B10) over θ 0, taking advantage of the orthogonality property (see eq. 7 of III-6-2 in Vilenkin 1969),∫ 1

−1
Pn

mk(u)Pn′∗
mk (u) du = 2

2n + 1
δnn′ (B11)

and given eq. (B7b) with eq. (B9), we infer

E
{
bk

n(t)bk∗
n′ (t ′)

} = 1

2

n∑
m=−n

∣∣∣∣ ak

am

∣∣∣∣
2 2

2n + 1
δnn′ E

{
bm

n (t)bm∗
n′ (t ′)

}
. (B12)

If n �= n′, this leads to

E
{
bk

n(t)bk∗
n′ (t ′)

} = 0 if n �= n′. (B13)

If n = n′, eq. (B12) implies

1

|ak |2 E
{
bk

n(t)bk∗
n (t ′)

} = 1

2n + 1

n∑
m=−n

1

|am |2 E
{
bm

n (t)bm∗
n (t ′)

}
. (B14)

Because the right-hand side of eq. (B14) is independent of k, we may conclude that eq. (B14) (with eq. B3) implies

E
{
bm

n (t)bm∗
n (t ′)

} = 1 + δm,0

2
F(n, t, t ′), (B15)

where F(n, t, t′) is a function of n, t, t′. (Note that eq. B15 then implies eq. B14.) It can easily be checked with the help of eqs (B14) and (A7)
that F(n, t , t ′) = F∗ (n, t , t ′), showing that F(n, t, t′) is a real function. All in all, we may thus conclude that in addition to eq. (B9) (equivalent
to eq. 15a), we also have (because of eqs A15, B13 and B15)

E
{
bm

n (t)bm′∗
n′ (t ′)

} = δn,n′δm,m′
1 + δm,0

2
F(n, t, t ′). (B16)

Relying on eqs (A8) and (A9), it is then quite straightforward to check that eq. (B16) is equivalent to eq. (15b). Thus, spherical symmetry
implies eqs (B9) and (B16), equivalent to eq. (15).

Finally, it is important to check that eq. (15) (or eqs B9 and B16) are also sufficient conditions for spherical symmetry. This requires to
check that once eqs (B9) and (B16) are satisfied in a given frame of reference (say the standard latitude/longitude frame), the process would
be defined by exactly the same mean µ and covariance matrix γ(t′ − t) in any other frame of reference, hence after any type of rotation of the
axis.

To prove this, we first check that eqs (B9) and (B16) imply eq. (B7), i.e. invariance of the process under any rotation about the Oy axis.
Given eq. (B5), the case for eq. (B7a) is trivial. Proving eq. (B7b) is less trivial. Knowing that eq. (B7a) is satisfied, we need to calculate
(taking eqs B9 and B5 into account)

E
{
bk

n(θ0, t)bk′∗
n′ (θ0, t ′)

} =
n∑

m=−n

n′∑
m′=−n′

E
{
bm

n (t)bm′∗
n′ (t ′)

} ak

am

a∗
k′

a∗
m′

Pn
mk(cos θ0)Pn′∗

m′k′ (cos θ0). (B17)

Given eq. (B16) and taking advantage of the two following properties,

Pn
mk(u) = Pn

km(u) (B18)

and
n∑

m=−n

Pn
km(u)Pn

k′m(u) = δkk′ (B19)

(eqs B18 and B19 are respectively eq. 5 of III-3-6 and eq. 11′ of III-4-1 in Vilenkin 1969), together with eq. (B3), it can be checked that
eq. (B17) implies

E
{
bk

n(θ0, t)bk′∗
n′ (θ0, t ′)

} = E
{
bk

n(t)bk′∗
n′ (t ′)

}
. (B20)

Given eq. (B9), eq. (B20) is eq. (B7b).
Thus, it appears that eqs (B9) and (B16) (or equivalently eq. 15) are sufficient conditions for the process to be invariant under any rotation

about the Oy axis. Because they also imply eq. (16), they also are sufficient conditions for the process to be invariant under any rotation about
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the Oz axis. It then remains to show that they also are sufficient conditions for the process to be invariant under any other type of rotation (i.e.
change of frame of reference).

To show this, we rely on the well-known property that any rotation can always be defined by three Euler angles defining three successive
elementary rotations leading to the same final transformation. Let us denote �1 and �4 the initial and final frames of reference. The rotation
of �1 into �4 can be decomposed into a first finite rotation of �1 about the Oz1 axis, leading to an intermediate frame �2, a second finite
rotation of �2 about the Oy2 axis, leading to another intermediate frame �3, and a final finite rotation of �3 about the Oz3 axis leading to �4.

If eqs (B9) and (B16) are satisfied in �1, it follows from our earlier results that the process is invariant under any rotation about the Oz1

axis. Thus, the process is defined by the same µ and γ(τ ) in both �1 and �2. However, because eqs (B9) and (B16) (equivalent to eq. 15)
make a definition of µ and γ(τ ), it follows that eqs (B9) and (B16) are also satisfied in �2. This then shows that the process is invariant under
any rotation about the Oy2 axis, and is again defined by the same µ and γ(τ ) in �3, where eqs (B9) and (B16) again hold. Hence, the process
is again invariant under the rotation about the Oz3 axis leading to �4 where the process is finally defined by the same µ and γ(τ ) as in �1.

It therefore appears that eqs (B9) and (B16), or alternately eq. (15), are the necessary and sufficient conditions to be satisfied in any one
frame of reference for the process to be spherically symmetric.
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