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The European Rosetta mission has been following
comet 67P/Churyumov-Gerasimenko for 2 years,
studying the nucleus and coma in great detail. For
most of these 2 years the Rosetta Orbiter Sensor for
Ion and Neutral Analysis (ROSINA) has analysed
the volatile part of the coma. With its high mass
resolution and sensitivity it was able to not only detect
deuterated water HDO, but also doubly deuterated
water, DO and deuterated hydrogen sulfide HDS.
The ratios for [HDO]/[H>O], [D,O]/[HDO] and
[HDS]/[H,S] derived from our measurements
are  (1.05+0.14) x 1073, (1.80+0.9) x 1072  and
(1.2£0.3) x 1073, respectively. These results yield a
very high ratio of 17 for [D,O]/[HDO] relative to
[HDO]/[HO]. Statistically one would expect just
1/4. Such a high value can be explained by cometary
water coming unprocessed from the presolar cloud,
where water is formed on grains, leading to high
deuterium fractionation. The high [HDS]/[H;S]
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ratio is compatible with upper limits determined in low-mass star-forming regions and also
points to a direct correlation of cometary HS with presolar grain surface chemistry.
This article is part of the themed issue ‘Cometary science after Rosetta’.

1. Introduction

Rosetta has followed comet 67P/Churyumov—Gerasimenko since August 2014. On board this
spacecraft the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) is almost constantly
analysing the gases in the coma of the comet. Already early in the mission it was able to measure
the D/H in cometary water, a value which is important for understanding the origin of the
comet, the formation temperature of water, and finally the formation of the solar system. In the
following we use the D/H ratio as well as the ratio of [HDO]/[H,O] whereby [HDO]/[H,O] is
twice the D/H ratio, as statistically two hydrogens can be replaced by deuterium. This value is
also considered to be important for the origin of terrestrial water as some solar system formation
models explain terrestrial water by impacts of comets in the early history of the Earth. Some
D/H values measured for comets, star-forming regions and hot cores can be found in table 1
and references therein. D/H was found to be approximately 3 x 10~* for most Oort cloud comets
(OC), whereas for Jupiter family comets (JECs) there were two measurements prior to the value
measured by ROSINA which were close to terrestrial. The D/H in water of 67P was found
to be very high (5.3 x 107%), higher than those measured in all comets before. This was quite
puzzling as solar system formation models assumed two distinct formation zones for the two
comet families; close to the giant planets for Oort cloud comets [22,23] and further out, outside
Neptune’s orbit for JECs [24]. Recently, two more D/H values for comets were reported, one close
to terrestrial (1.4 0.4) x 10~* in comet C/2014 Q2 (Lovejoy), the other one again a very high
value of (6.5+1.6) x 1074 in comet C/2012 F6 (Lemmon) (see table 1). Both comets are Oort cloud
comets. This shows that D/H in cometary water is very variable, for Oort cloud comets as well
as for Jupiter Family comets, spanning the range from terrestrial D/H of 1.5 x 1074 t0 6.5 x 107*
and overlapping for the two families. It was assumed that D/H reflects the distance from the Sun
where comets formed, increasing with solar distance. After it became clear that some JFCs, for
example Hartley 2, have terrestrial D/H ratios another model was invoked [25] which explained
the lower D/H ratio for objects formed at larger distances from the Sun. From the large variation
in D/H in cometary water and the overlap for D/H of the two families of comets it has now to be
concluded that most probably the formation regions of the two families of comets overlap [26],
that 67P (JFC) was formed relatively far from the Sun as was comet Lovejoy (OC), whereas comet
Hartley 2 (JFC) and comet Lemmon(OC) were formed much closer to the Sun. D/H in water is
therefore not typical for a comet family, but probably still reflects the region of comet formation.
The increase of the D/H ratio in water is a two-step process: first by enhancing the atomic
D/H ratio by ion-molecule reactions in the gas phase and second by dust grain chemistry. Recent
models have suggested that ion-molecule reactions in the solar nebula are inefficient [27]. High
D/H values in water have been found recently in low-mass star-forming regions (see table 1)
with values of [HDO]/[H;O] of a few per mille. These values are generally higher than in comets,
although for 67P the difference is not large, and are most probably due to grain surface chemistry.
Brown & Millar [28,29] and Charnley et al. [30] have shown that grain surface reactions can
enhance the deuterium fractionation considerably. It has also been shown for hot cores that it
takes more than 10* years after sublimation of these icy dust layers to lower the deuterium
value again. The values are, however, quite diverse which is explained by dust layering and
the corresponding time when they were formed on dust, the later in time the more fractionated
[10]. A recently published paper by Furuya et al. [31] clearly shows that high D/H values in
water from prestellar clouds can persist even if the water ice is reprocessed in the stellar disc
depending on the distance from the central star and on the amount of turbulent mixing. D/H is
therefore not a very clear indication of whether the water ice is inherited from the presolar cloud

i i Bobasdio



Table 1. HDO/H,0, D,0/HDO and HDS/H,S ratios for comets, low-mass protostar discs, hot cores and outer regions of protostars.

[HDO/H,0] [D,0/HDO]/

(=2 x [D/H]) [D,0/HDO]  [HDO/H,0] HDS/H,S ref.

comets

or if it is reprocessed in the star-forming disc. The same authors show, however, that the ratio of
[D20]/[HDO] over [HDO]/[H,O] is a better indication for the history of the water ice. Whereas in
prestellar clouds this ratio is generally >> 1, reprocessed water ice in stellar nebula has a ratio less
than 1.
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Therefore, more indications about the history of water in comets come from the
[D,0]/[HDQ] ratio. The first detection of D,O in a solar-type protostar region has yielded
[D20]/[HDO]~1.2 x 10~2 and [HDO]/[H,0]~1.7 x 102 (table 1) which means [D,O]/
[HDO] ~7 x [HDO]/[H2O]. From a statistical point of view one would expect a [D,0O]/[HDO]
ratio of 0.25 x [HDO]/[HO]. The deviation is explained by a mixture of water coming from
thermal desorption from grain mantles which gives a high D,O abundance and by water
formation at high temperatures in the gas phase which lowers the [HDO]/[H,O] ratio. We report
here the first detection of D,O in a comet.

Also HjS is a very interesting molecule. It is most probably formed on dust grains in the
presolar cloud as gas phase chemistry is very inefficient to form HjS (see [32] and references
therein). From the detection of S3 and S4 in comet 67P, Calmonte et al. [33] concluded that dust
grain chemistry has most probably played a major role in formation of H;S for 67P. As dust grain
chemistry tends to fractionate deuterated species, we expect a rather high D/H in H,S if cometary
H>S represents the presolar cloud material.

A very high ratio of [HDS]/[H,S] = 0.1 has been measured in the cold star-forming core IRAS
16293 (table 1). This low-mass star-forming region, although being a low-mass star-forming region
resembles more a high-mass star-forming region based on its composition. This is explained by its
age. Hatchell et al. [20] found upper limits for several hot cores of 1-2 x 1073 (table 1). They discuss
these limits in the framework of either formation of H,S in hot, post-shock gas or formation of
HbS in hot core ices at a temperature of 60-80 K. In the first case the ratio of D/H in H;S should
be close to the cosmic D/H ratio (approx. 107°). In this paper we report the first measurement
of [HDS]/[H,S] in a comet, which is (1.8 £0.9) x 10~3. This is clearly far higher than the cosmic
abundance and therefore points to grain surface chemistry for H,S. This is very well in agreement
with the findings by [32].

2. Measurements

The previously published D/H value in water measured for 67P [1] was determined early in the
mission outside of 3.0 AU, that is outside of the water snow line. Although several studies were
done about possible fractionation effects in the nucleus or in the coma (e.g. [34,35]) and most
studies concluded that these effects have to be minor, it is nevertheless interesting to follow the
evolution of the D/H ratio during the orbit of 67P around the Sun. In this paper we concentrate
on two periods for the analysis of D/H in water, one in December 2015, when Rosetta was again
within about 100km from the comet after having been much farther away most of the time
around perihelion due to interference of its star trackers with cometary dust. At that time 67P
was at 2 AU, still well within the water snow line. The Southern Hemisphere was in summer,
contrary to the first period analysed in Altwegg ef al. [1]. The Southern Hemisphere has a short
but very intense summer, losing several metres of its surface [36]. It is therefore believed to be
more pristine than the northern hemisphere as the seasonal heat wave penetrates more slowly
than the surface erosion. The second period chosen is March 2016, during equinox at 2.6 AU
near the water snow line when the subsolar point was at the equator and water started to die
off. At that time the spacecraft was within 20 km of the comet. This led to relatively high local
densities at the position of the spacecraft and ROSINA, making the analysis of [HDO] and [D20]
feasible. For D/H in [H,S] we used data from May 2016. At that time water production was
already quite low and concentrated around the subsolar latitude of 10° north. However, the more
volatile species CO, COy, and most of the Sulphur-bearing species had still a high production
mostly from the Southern Hemisphere. The S/C was within 10 km from the nucleus centre. This
allowed separating very nicely the HDS peak from interfering peaks of the less volatile species.
The sensor used was the ROSINA Double Focusing Mass Spectrometer (DFEMS). It was run
in high resolution mode with an electron emission current of 200 uA used for electron impact
ionization. Integration time per mass was 20s. The instrument is described in [37]. Details on
data analysis including discussion on sources of the measurement uncertainties can be found in
[38] and in [34]. From calibration measurements we know that mass peaks are fitted best using
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Figure 1. Samples of DFMS data for masses 19 Da, 20 Da and 35 Da with the corresponding peak fits.

a double Gaussian distribution where the second Gaussian has a peak height of approximately
0.1 of the first one and a width approximately three times broader than the narrow Gaussian [38].
All peaks belonging to the same integer mass share the same width of the primary and secondary
Gaussian distributions, respectively. This means, if there are multiple peaks, then, with known
masses, there is one common width and peak height per Gaussian for each mass to be fitted.
This makes the curve fits normally unique. Figure 1 shows three examples of DFMS data and
the corresponding fits for masses 19 Da, 20 Da, and 35 Da. For mass 19 Da and 35 Da the resulting
error is given mostly by the fit uncertainty, which is approximately 25%, whereas for 20 Da, due
to low count rates for D,0O, the uncertainty is a combination of statistical error and fit uncertainty
(approx. 45%).

The selected spectra are representative of whole comet rotations sampling all longitudes (see
table 2 for details on sub-spacecraft longitude and latitude for the individual measurements).
DEMS with its wide field of view of 20° samples at any time gas from all facets of the comet
which are oriented towards the spacecraft as long as the spacecraft is at distances more than 5km.
As has been shown by Bieler et al. [39], outgassing is mostly illumination driven and shadowed
areas contribute less than 10% of the outgassing. The signal is modulated due to the shape of 67P
by sub-spacecraft longitude and -latitude due to different illumination conditions. However, no
spatial information from where exactly the gas originates can be derived. Due to low count rates
especially for D,O not all latitudes could be sampled in the same way, especially not latitudes
experiencing winter, where illumination conditions are less favourable. It cannot be completely
excluded that there is some inhomogeneity in D/H over the nucleus.

Figure 2 shows the results for the analysed spectra for D/H in H,O and HDS and
[D20]/[HDQO]. A list of all measurements with their time stamp and the corresponding sub-
spacecraft longitudes and latitudes is given in table 2. The lines represent the mean values and the
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Table 2. List of analysed spectra.

time (UTC) sub-S/C longitude sub-S/C latitude D/H in water
1 03/12/2015 07:33 105.8 64.7 574 x 1074
R s G  — G Py
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date time (UTC) sub-S/Clongitude sub-S/C latitude D,0/HDO
1 03/12/2015 12:46 —44.8 64.0 0.012
R s R oy o
S o pe G T TR
R e G e TR i
e sione T e
e wios e T s o
e i o T o o
e e o s o o
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e i G Gy TR o
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e woe G T e S
ST wimne e e o
e o G R s R
o oo e e o o
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(Continued.)
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Table 2. (Continued.)

time (UTC) sub-S/Clongitude sub-S/C latitude D/Hin H,S
0.00101

27/05/2016
21/0

grey areas the standard deviation. D/H in H,O has a value of (5.25+0.7) x 1074, very close to the
value published in [1] of (5.3 £0.7) x 10~*. This value confirms therefore the first published value
and shows that indeed fractionation during sublimation or in the nucleus of 67P seems to play a
very minor role. [D,O]/[HDO]is (1.8 + 0.9) x 10~2 which is a factor 17 higher than [HDO]/[H,O].
D/H in HDS is (1.2 +0.3) x 1073, thus higher by more than a factor 2 than in water.

3. Discussion

The [D,0O]/[HDO] ratio of 1.8% is compatible within 1 sigma with the values measured by [11]
in a solar-type protostar region. They reported a [D,O]/[HDO] ratio of approximately 1.2% and
[HDO]/[H,0] ~ 1.7 x 1073 which means [D,0]/[HDO] ~ 7 x [HDO]/[H,O]. Our [D,0]/[HDO]
ratio is a factor 17 higher than [HDO]/[HO], mostly due to a lower [HDO]/[HO] ratio.
Generally, [HDO]/[H>O] ratios in low-mass star-forming regions are found to be slightly higher
than in 67P, whereas in hot cores values are very comparable. According to the modelling done
by Furuya et al. [31] this means that water ice in 67P is mostly inherited from the presolar
stage without much reprocessing. The variations among comets could then be explained by how
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Figure 2. From top to bottom: D/H in [H,0], [D,0]/[HDO], D/H in [H,S] measured in the coma of 67P during December 2015
(red)/March 2016 (black) and May 2016 (blue), respectively. For time stamp and geometrical information see table 2.

much reprocessing at the location of formation of the specific comet took place. The very high
[D,0]/[HDQ] ratio in 67P probably represents water, which has sublimated from grains that
have been highly fractionated with respect to the heavier isotope.

The high D/H in H,S is very consistent with the upper limits determined in hot cores (table 1).
According to these authors the D/H in HjS is either due to hot, post-shock gas or formation of
HbS in hot core ices at a temperature of 60-80K. In the first case the ratio of D/H in H;S should
be close to the cosmic interstellar D/H ratio of approximately 102, Our value is clearly much
higher. We therefore conclude that HyS in comets is the product of dust grain chemistry processes
in the presolar cloud. This is consistent with the detection of Sz and S4 in comet 67P [29] from
which the authors concluded that dust grain chemistry has most probably played a major role in
the formation of H,S for 67P.

From the high deuterium values in water and hydrogen sulfide and the very high
[D,0]/[HDO] we conclude that comet 67P contains material (water and hydrogen sulfide) from
the presolar disc, which was formed on dust grains and which was not significantly processed
before accretion by the comet.

Data accessibility. All ROSINA data have been released to the Planetary Science Archive of ESA (Www.cosmos.
esa.int/web/psa/psa-interfaces) and to the Planetary Data System archive of NASA (https://pds.nasa.
gov/). All data needed to evaluate the conclusions in the paper are present in the paper. Additional data
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