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Two L-Band (1.4 GHz) microwave radiometer missions, Soil Moisture and Ocean

Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) currently provide

sea-surface salinity (SSS) measurements. At this frequency, salinity is measured

in the first centimetre below the sea surface, which makes it very sensitive to

the presence of fresh water lenses linked to rain events. A relationship between

salinity anomaly (ΔS) and rain rate (RR) is derived in the Pacific intertropical

convergence zone from SMOS SSS measurements and Special Sensor Microwave

Imager/Sounder (SSMIS) RR. It is then used to develop an algorithm to estimate

RR from SMOS SSS measurements. A heuristic function is developed to correct

the SMOS-estimated negative RR due to measurement noise. Correlation between

SMOS and SSMIS RR and between SMOS and Integrated MultisatellitE Retrievals

for GPM (IMERG) RR are high when SMOS and SSMIS passes are less than 15 min

apart (r= 0.7 at 1◦ × 1◦ resolution), showing a good quality of SMOS RR retrievals.

When the time shift between SMOS and SSMIS passes increases, the correlation

between SMOS and IMERG RR diminishes. This suggests that L-band radiometry

can provide information complementary to GPM missions to improve RR prod-

ucts interpolated at high temporal resolution. The retrieval is successfully tested on

SMAP SSS. We also check that our algorithm provides reliable estimates of RR

when averaged at a monthly time-scale.

KEYWORDS

IMERG, ITCZ, L-band radiometry, precipitation, sea-surface salinity anomalies,

SMAP, SMOS

1 INTRODUCTION

L-band radiometer measurements of salinity provide a syn-

optic view of the global ocean every 3–7 days. At the present

time, three satellite missions carrying L-band radiometers

have monitored and/or monitor sea-surface salinity (SSS)

from space: Soil Moisture and Ocean Salinity (SMOS) since

2010, Aquarius (between 2011 and 2015) and Soil Moisture

Active and Passive (SMAP) since 2015. Over the global

ocean, they sense the salinity in the upper first centimetres

while most in situ measurements are performed at a few

metres depth (Boutin et al., 2016) and while current ocean

†Deceased.

general circulation models usually do not include a descrip-

tion within the upper metre depth. In regions where rain is

infrequent, stratification between the first centimetre and a

few metres is expected to be small (Henocq et al., 2010).

However, in rainy regions, rain leads to the formation of

freshwater lenses at the ocean surface and of large vertical

salinity gradients. Hence, the interpretation of satellite SSS in

rainy regions requires a good knowledge of the rain rate (RR)

at the time of the satellite pass. This is often not well informed

by meteorological models which do not provide sufficient

temporal resolution given the high intermittency of rainfall

events and the rapid relaxation of the salinity freshening after

a rain event. Actually, in most observational case-studies,

salinity anomalies have a short lifetime (typically a few

Q J R Meteorol Soc. 2018;144 (Suppl. 1):103–119. wileyonlinelibrary.com/journal/qj © 2017 Royal Meteorological Society 103
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hours) after a rain event (Drushka, Asher, Ward, & Walesby,

2016; Reverdin, Morisset, Boutin, & Martin, 2012; Soloviev,

Lukas, & Matsuura, 2002; Wijesekera, Paulson, & Huyer,

1999), even though some fresh lenses have been observed

with a persistence time longer than 15 hr (Walesby, Vialard,

Minnett, Callaghan, & Ward, 2015). An alternative is to use

merged infrared and passive microwave (PMW) satellite rain

products (e.g. CMORPH, IMERG (Integrated MultisatellitE

Retrievals for Global Precipitation Measurement)) that pro-

vide RR every half-hour (Santos-Garcia et al., 2014) but, as

we will show, for cases when there is a time shift of more

than 1 hr between the PMW satellite and SMOS, the morphed

RR may be imprecise. In this article, we investigate to what

extent it is possible to infer RR from L-band radiometric data

themselves. Actually, earlier studies (see a review in Boutin

et al. (2016)) have shown a strong correlation between the

freshening observed by L-band radiometry and RR, at very

short time-scale (on the order of half an hour). The observed

linear relationships between freshening and RR have a sim-

ilar order of magnitude to the one predicted by the surface

renewal model of the molecular skin layer developed by

Schlussel, Soloviev, and Emery (1997). In fact, the thickness

of the molecular diffusion layer for salinity is only 0.05 mm

but rain induces mixing in the first centimetres of the sur-

face ocean (Ho, Asher, Schlosser, Bliven, & Gordon, 2000;

Zappa et al., 2009). The parameters that govern creation and

spatial and temporal evolution of these lenses (air–sea fluxes

of heat and momentum, upper-ocean mixing, advection) are

at present not well understood. Drushka et al. (2016) and

Bellenger et al. (2016) have used one-dimensional water

column models, the Generalized Ocean Turbulence Model

(GOTM) and a prognostic model respectively, to simulate the

formation and life cycle of rain-induced fresh lenses. How-

ever, given the difficulty of accessing the forcing parameters

(e.g. European Centre for Medium-range Weather Forecasts

(ECMWF) wind speed is of poor quality in rainy conditions

(Portabella et al., 2012)) and given that rain-induced freshen-

ing is observed on satellite salinity for ECMWF wind speed

between 3 and 12 m/s, we neglect the potential effect of the

wind on freshening highlighted by several studies based on

in situ measurements and modelling (Asher, Jessup, Branch,

& Clark, 2014; Bellenger et al., 2016; Drushka et al., 2016).

Hence, we will use an empirical relationship between instan-

taneous freshening and RR observed at moderate wind speed

(3–12 m/s) as shown in Boutin et al. (2014). The retrieval

algorithm is named PEALS for Precipitations Estimates And

L-band Salinity.

In addition to providing important information for users

of SMOS SSS, the PEALS-retrieved RR could also

complement measurements by PMW radiometers of the

Global Precipitation Measurement (GPM) constellation ded-

icated to rain retrieval and used in merged satellite rain

products.

Since the Tropical Rainfall Measuring Mission (TRMM)

launch in 1997, a very important breakthrough (Stephens &

FIGURE 1 Cumulative density function of the temporal shift between

SMOS and nearest SSMIS satellite for different years when SSMIS satellite

is the nearest PMW satellite from SMOS (time SSMIS − time SMOS).

Magenta vertical lines=−15 and +15 min temporal shifts

Kummerow, 2007) was accomplished in retrieving rain from

satellite data.

TRMM was such a successful mission that it was a deter-

mining argument to start the GPM project (Hou et al., 2014).

This project relies on a Core Observatory similar to TRMM

but differing in coverage which extends from 65◦S to 65◦N

and the addition of a Ka-band radar to complement the

Ku-band radar. The GPM mother satellite was launched in

spring 2014. In addition to the Core Observatory, GPM is also

a consortium of space agencies who agreed to share all the

data arising from PMW radiometers dedicated to rain retrieval

in order to provide users with a rain-oriented dataset giving

the best possible coverage (Kidd & Huffman, 2011).

Our study focusses on the retrieval of RR from L-band SSS

in the intertropical convergence zone (ITCZ) region (between

180◦ and 110◦W, 0◦ and 15◦N), a region characterized by

tropical convective systems for which the spatial resolution

of L-band radiometers (∼50 km) is well suited (Houze, 2004;

Waliser & Gautier, 1993). The chosen region is far from

coasts and not affected by freshwater water influx from rivers.

The study covers the period from August 2014 to July 2016.

The year 2015 corresponds to the training phase. During

this year, the Pacific ITCZ was impacted by a rate of pre-

cipitation higher than expected, due to El Niño conditions

(Bell, Halpert, & L’Heureux, 2016). The other years (2014

and 2016) are used as the validation period. We use SMOS

and SMAP data for salinity measurements and the IMERG

product for RR.

In Section 2, we present measurements and methods used in

this study to estimate salinity anomalies and to relate them to

RR. The algorithm developed for deriving RR from satellite

salinity, its validation and performance with respect to the RR

interpolated product are described in Section 3. Application

of the PEALS algorithm to SMAP data is described in Section
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4. Finally, results and perspectives of this study are discussed

in Section 5.

2 DATA AND METHODS

The shortest time shift between SMOS SSS and PMW RR

is observed in 2015 (Figure 1). So 2015 datasets are used to

develop the algorithm for retrieving SMOS RR from satel-

lite salinity, which will be described in Section 3. Validation

is done on instantaneous retrievals in 2014 and 2016. Then

instantaneous estimates and monthly averages of retrieved

SMOS RR are compared with the interpolated RR (IMERG

product) during the whole study period.

2.1 Data description

2.1.1 Salinity data
SMOS salinity data

SMOS is the first satellite mission that carries an L-band

microwave radiometer from which SSS can be retrieved. It

was launched in November 2009, and since 2010 provides

SSS from space (Kerr et al., 2010). It crosses the Equa-

tor at about 6:00 a.m. (0600 hr local time) on ascending

node and 6:00 p.m. (1800 hr) in descending node along a

Sun-synchronous orbit. The spatial resolution of individual

SMOS SSS is close to 50 km. SMOS SSS are oversam-

pled over an Icosahedral Snyder Equal Area (ISEA) grid

at 15 km resolution. In the ITCZ, typical noise on individ-

ual SMOS SSS is 0.5 pss (practical salinity scale) (Boutin

et al., 2014). When averaged over typically 1 month and

100 km× 100 km, the precision of SMOS SSS in tropical

regions is improved to typically 0.2–0.3 pss (Boutin, Martin,

Reverdin, Yin, & Gaillard, 2013; Hasson, Delcroix, Boutin,

Dussin, & Ballabrera-Poy, 2014). Hence, SMOS has already

demonstrated its usefulness to investigate different scales of

SSS variability (Boutin et al., 2016), but also to detect rain

imprint with individual measurements (Boutin et al., 2013,

2014). In this study, we use SMOS level 2 Sea Surface Salin-

ity, Ssat, from the second European Space Agency (ESA)

reprocessing (v622, Algorithm Theoretical Basis Document

available on https://smos.argans.co.uk/docs/deliverables/

delivered/ATBD/SO-TN-ARG-GS-0007_L2OS-ATBD_v3.

11_140905.pdf) and available on the ESA SMOS Online

Dissemination website. Only ascending orbits are considered

and in order to avoid uncertainties, we use the same flags as

in Boutin et al. (2014).

SMOS Ssat are considered only if at least 130 measurements

come from the alias-free field-of-view region to ensure a good

precision on the retrieved SSS (roughly corresponding to Ssat

retrieved at 300 km from the centre of the track) and if the

associated ECMWF wind speed is between 3 and 12 m/s, in

order to avoid uncertain retrievals at very low and high wind

speeds.

SMAP salinity data

SMAP was launched in January 2015 into a Sun-synchronous

orbit. It uses a single radiometer with a 6 m diameter reflector

that allows the retrieval of SSS over the ocean at a 40 km reso-

lution. SMAP was also equipped with an L-Band radar which

failed in July 2015. It crosses the Equator at the same time as

SMOS but in the opposite phase, near 6:00 a.m. for descend-

ing orbits and near 6:00 p.m. for ascending orbits, providing

numerous collocations between the two satellites. SMAP SSS

data are available since April 2015 to date providing a shared

period of more than a year between SMOS and SMAP.

We use SMAP L2B v3.0 data from Jet Propulsion Lab-

oratory (JPL) OurOcean Portal (SMAP Salinity and Wind

Speed, Data User’s Guide). SMAP L2B SSS are provided

by the SMAP TB-only salinity processing, on a grid sam-

pled at about 25 km. Their resolution is 40 km. We use

SSS data with valid flags for the quality of data, nominal

angles and with all four looks available. At the global scale

the root-mean-square difference (RMSD) between individual

SMAP SSS and HYCOM SSS is equal to 0.78 pss. The com-

parison with Argo buoy measurements at 1◦ × 1◦ resolution

averaged monthly show a standard deviation of 0.2 pss (Fore,

Yueh, Tang, Stiles, & Hayashi, 2016).

In this preliminary study, we compare SMOS and SMAP

measurements from January 2016 to July 2016. In approxi-

matively 60% of the cases temporal shift between SMOS and

SMAP is less than 15 min (less than 30 min in 90% of the

cases). In this article, SMAP descending passes are collocated

within 15 min of the SMOS ascending passes.

2.1.2 Rain data
In our study, we consider PMW RR (derived from the God-

dard Profiling algorithm (GPROF) scheme), IR RR (derived

from Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks-Cloud Classification

System (PERSIANN-CCS)) and interpolated RR (based on

morphing techniques) available in IMERG version 03 prod-

ucts (final run (Huffman, 2015a) in 2014 and 2015 and late

run (Huffman, 2015b) in 2016) distributed by the Precipita-

tion Processing System at the NASA Goddard Space Flight

Center. Precipitation Radar data are not used in this study

as the more frequent PMW RR have already been calibrated

with respect to Precipitation Radar and have a spatial resolu-

tion closer to the one of SMOS measurements. Different RRs

provided by the IMERG product are available with a spatial

resolution of 0.1◦ × 0.1◦.

Passive microwave rain data

The Global Precipitation Measurement (GPM) mission con-

stellation (Hou et al., 2014) has been designed to provide

measured RR using microwave radiometers at least every

3 h. PMW measurements calibration is based on the GPM

Core Observatory with the GPM Microwave Imager (GMI)

https://smos.argans.co.uk/docs/deliverables/delivered/ATBD/SO-TN-ARG-GS-0007_L2OS-ATBD_v3.11_140905.pdf
https://smos.argans.co.uk/docs/deliverables/delivered/ATBD/SO-TN-ARG-GS-0007_L2OS-ATBD_v3.11_140905.pdf
https://smos.argans.co.uk/docs/deliverables/delivered/ATBD/SO-TN-ARG-GS-0007_L2OS-ATBD_v3.11_140905.pdf
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and the Dual-frequency Precipitation Radar (DPR) (Huff-

man, Bolvin, & Nelkin, 2015). PMW RR measurement is

linked to three physical processes: variability of rain inten-

sities in the radiometer footprint or ‘beamfilling effect’, the

raindrops’ size distribution and the effective layer thickness

(Hilburn & Wentz, 2008). Different methodologies have been

developed to estimate RR from PMW measurements. The

Goddard Profiling scheme (GPROF: Kummerow, Olson, &

Giglio, 1996) extracts rain information, based on a Bayesian

approach and cloud-resolving models, contrary to the Unified

Microwave Ocean Retrieval algorithm (UMORA: Hilburn &

Wentz, 2008) that is based on a radiative transfer model and

an empirical relationship between cloud water liquid path, RR

and rain column height. The main differences between these

two different algorithms are different microphysical assump-

tions, cloud and rain partitioning and rain column height

(Hilburn & Wentz, 2008). With temporal and spatial smooth-

ing, GPROF and UMORA rain estimates agree very well,

but comparisons of individual pixels often indicate very dif-

ferent results (Hilburn & Wentz, 2008). PMW rain products

encounter some biases that are compensated by changing the

algorithm assumptions as a function of region and time. Fur-

ther work is needed to characterize the bias as a function

of microphysical parameters (Berg, L’Ecuyer, & Kummerow,

2006).

In this article, RR from PMW sensors on board polar-

orbiting satellites (RPMW) are derived from the GPROF2014

algorithm and come from a large set of polar-orbiting

satellites, such as conical-scan radiometers (Special Sen-

sor Microwave Imager/Sounder (SSMIS), etc.), but also

cross-track scanner (Microwave Humidity Sounders (MHS)).

Infrared rain data

IR measurements from the constellation of geostationary

satellites provide RR at higher temporal resolution than PMW

measurements, with global IR coverage every half hour. IR

rain measurements are based on the main assumption that

the precipitation intensity is inversely proportional to the

cloud-top temperature. While this assumption is valid with

time and spatial smoothing, the uncertainty on individual

measurements is much higher than the one of PWM rain

measurements (Arkin & Meisner, 1987).

Individual satellite RR derived from infrared sensors on

board geostationary satellites (RIR) are computed with the

PERSIANN-CSS algorithm (Hong, Gochis, Cheng, Hsu, &

Sorooshian, 2007) and provided every half-hour. The PER-

SIANN algorithm uses the higher quality of PMW data for

adjusting IR rain information and thus obtains precipitation

estimates with higher temporal coverage than with PMW

(Sorooshian et al., 2000).

Integrated multisatellite rain estimates

We use the IMERG interpolated rain product. It combines

GPM RR from polar-orbiting low frequency PMW with IR

FIGURE 2 Global PEALS algorithm diagram [Colour figure can be

viewed at wileyonlinelibrary.com].

FIGURE 3 Sea-surface salinity anomalies (ΔS) computation process in

PEALS algorithm

RR in order to provide RR estimates every 30 min using the

morphing technique from the Climate Prediction Center Mor-

phing method (CMORPH: Joyce, Janowiak, Arkin, & Xie,

2004). It takes advantage of the high repetition of IR satel-

lites to monitor the displacement of the rain cells and of the

less frequent but more precise RPMW. However, the accuracy

of RR derived with morphing method decreases when time

shift between considered time and PMW overpass increases

(Joyce et al., 2004). Complete IMERG RR fields (RIMERG) are

available every 30 min.

2.2 Methods

The signature of rain on the satellite SSS is a strong decrease

of SSS. We quantify this decrease by defining a salinity

anomaly with respect to a reference salinity. Once the salin-

ity anomaly is defined, it is collocated with rain products. The

PEALS algorithm is fully described in Figure 2.

2.2.1 Salinity anomalies
The method for deriving salinity anomalies is described

below and summarized in Figure 3. The salinity anomaly,

ΔS, is defined as the salinity measurement from SMOS, Ssat,

http://wileyonlinelibrary.com
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FIGURE 4 (a) Sref_first_step computation: (black) example of distribution of salinity observed with SMOS in 3◦ × 3◦ area; (magenta) simulated distribution of

salinity without rain; black-dashed line: average of salinity observed with SMOS in 3◦ × 3◦ area; magenta-dashed line: average simulated salinity without

rain= Sref_first_step. (b) Statistical distribution of ΔS (with 1◦ × 1◦ smoothing) computed with the dataset used in Boutin et al. (2014) and only for pixels without

rain: (blue) Sref is derived from monthly Argo interpolated field; (red) Sref is derived from SMOS data only following the method used in this article

minus a reference salinity, Sref, not affected by the rain (i.e.

corresponding to Ssat before the rain event):

ΔS = Ssat − Sref (1)

Sref computation is derived from the statistical distribution

of Ssat in a 3◦ × 3◦ region. This size is chosen because we

observe that such regions are never fully covered by rain, the

latitudinal extent of rainy areas being always less than 3◦.

Hence the statistical distribution of Ssat in 3◦ × 3◦ always

contains information coming from non-rainy pixels. The

freshening associated with rain creates in most cases a Ssat dis-

tribution skewed towards low Ssat values (Boutin et al., 2013).

The mean of the non-rainy salinities is used for estimating the

reference salinity assuming that (a) the upper part of the sta-

tistical distribution is affected only by non-rainy salinities, (b)

the non-rainy salinities in the 3◦ × 3◦ region have a Gaussian

distribution due to the noise on SMOS Ssat, and (c) the natu-

ral variability of the salinity in a 3◦ × 3◦ region is negligible

in front of SMOS Ssat noise. We use an iterative method: in

a first step, we estimate the salinity mean, Sref_first_step, that

would be Gaussian distributed and would have the same 0.8

quantile as the observed 3◦ × 3◦ distribution:

Sref_first_step = Q𝜶 − 𝝈SMOS × Z𝜶 . (2)

Q𝛼 is the 0.8 quantile of the Ssat distribution, 𝝈SMOS is the

theoretical error on Ssat and Z𝛼 (=0.84) is the theoretical value

for the 0.8 quantile for a Gaussian distribution. Figure 4a illus-

trates the distribution of a 3◦ × 3◦ area affected by rain which

has a negative skewness and the salinity distribution with-

out rain we simulate from the 0.8 quantile. Nevertheless, the

rainy pixels in the observed distribution can make its 0.8 quan-

tile deviate significantly from the 0.8 quantile of a non-rainy

Gaussian distribution. This effect is particularly important in

the case that a large part of the 3◦ × 3◦ area (typically one

half) is affected by rain. For this reason we apply a second

step in which we first filter the pixels likely to be affected

by rain using Sref_first_step. We remove pixels where (Ssat −
Sref_first_step) is less than −2𝝈SMOS and we recompute Sref as

the mean salinity in 3◦ × 3◦ areas.

The advantages of this approach with respect to using Sref

derived from Argo SSS as was done in Boutin et al. (2014) are

that (a) it does not use external information for rain determina-

tion, hence avoiding errors due to temporal shift between the

two measurements, and (b) it will remove any SMOS system-

atic error with a spatial coherence (e.g. coming from SMOS

calibration or from large-scale bias of wind speed (Yin et al.,

2014)). This methodology has been applied to the dataset used

in Boutin et al. ΔS have a distribution better centred around

0 and with a lower noise than the one obtained using a refer-

ence salinity equal to Argo monthly interpolated fields (ISAS:

Gaillard et al., 2009) (noise decreases from 0.34 to 0.25 pss;

Figure 4b). Three examples of ΔS computed with Sref are

shown in Figure 5 with rain isolines; the ΔS pattern seems

to qualitatively match with RPMW isolines. Since negative ΔS

are sometimes related to other processes than rain freshen-

ing, as for instance mesoscale variability or disturbances by

radiofrequency interference, we identify pixels close to rainy

regions using RIR. Actually, there is always an IR measure-

ment less than 15 min from an SMOS pass. By looking at the

spatial distribution of RSSMIS and RIR taken at less than 15 min

apart, we find that very few SSMIS rainy pixels occur in 3◦ ×
3◦ areas where at least one RIR is larger than 0 mm/hr: only

3% of RSSMIS are strictly positive and only 0.2% of RSSMIS are

higher than 1 mm/hr (for the training year, 2015). Hence, only

SMOS pixels surrounding a RIR larger than 0 mm/hr in 3◦ ×
3◦ area are considered hereafter to estimate RR.

2.2.2 Collocations
To ease the spatial collocations, the various gridded products

are projected onto a grid regularly sampled in latitude and

longitude at 0.2◦ resolution. The projected values are obtained
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FIGURE 5 SMOS ascending swath for two study cases, (a–c) January 12, 2015 and (d–f) September 22, 2015, in order to illustrate the use of Ssat (a, d) in

the derivation of Sref (b, e) and the computation of ΔS (c, f). Magenta isolines are selected contours of RIMERG (1, 3 and 5 mm/hr)

from the average of the adjacent pixels, the average being

weighted by the inverse of the surface of each original pixel

entering in the 0.2◦ × 0.2◦ grid. The 0.2◦ resolution has been

chosen as being intermediate between the original sampling

of the products (0.1◦ to 25 km) and the true resolution of

PMW-derived parameters (up to 4 km × 6 km and up to 15

km × 15 km for sounders).

Temporal collocations are made between closest available

products, within a given range of time. SMOS passes are

very often close to SSMIS passes; in about 45% of the

cases, SMOS and SSMIS passes are less than 15 min apart

(Figure 1). The temporal shift between SMOS and SSMIS

(principally F17 for 2014–2015–2016 period) satellites are

unequal as function of the considered year. Due to the orbital

drift of SSMIS satellites, the closest collocations occurred in

2015.

3 RETRIEVAL OF RR FROM SATELLITE
SALINITY

3.1 Training phase

3.1.1 ΔS versus RPMW relationship
Comparisons between ΔS and RPMW show slopes in the same

range as the ones reported in Boutin et al. (2016). Never-

theless, the scatter plots obtained with MHS RR (RMHS) are

much noisier than the ones obtained with SSMIS (r = −0.31

and −0.43 respectively, see Figure 6). SSMIS satellites use a

wide spectrum of frequencies (19–183 GHz) to extract infor-

mation on RR using emission and scattering properties by

rain. MHS satellites have a narrower spectrum (between 89

and 183 GHz, for AMSU-B) so that RRs are derived using

only scattering properties. Therefore, RSSMIS are expected to

be more precise than RMHS (Vila, Ferraro, & Joyce, 2007)

which is in line with results shown in Table 1. In the following

the relationship between SMOS ΔS and RR measurements

is derived using only RSSMIS collocations (Figure 6; statistics

are indicated in the first part of Table 1). It is remarkable that

the relationship obtained with SSMIS RR (RSSMIS) is inde-

pendent of the smoothing, suggesting that the relationship is

linear up to at least 7 mm/hr. Smoothing over 1◦ × 1◦ signifi-

cantly increases the correlation (r) between the two variables

(r = −0.43 without smoothing and r = −0.55 with 1◦ × 1◦

smoothing) and decreases the RMSD (RMSD = 0.51 mm/hr

without smoothing and RMSD = 0.29 mm/hr with 1◦ × 1◦

smoothing).

3.1.2 RSMOS retrieval
In order to retrieve RR from SMOS data, we apply the inverse

of the slope between ΔS and RSSMIS (−0.27 pss (mm/hr)−1;

Table 1 first line). Thus, the equation used to retrieve unbiased

Gaussian-shaped RR from SMOS ΔS (RSMOS_G) is:

RSMOS_G = −3.70 × 𝚫S − 0.04. (3)
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FIGURE 6 ΔS versus RSSMIS in rainy regions as detected by RIR (see Section 2.2.1. for the definition) for the 2015 year (a) without smoothing, and (b) with

1◦ × 1◦ smoothing. Mean and standard deviation computed for each RSSMIS classes and with RSSMIS reference. The colour scale corresponds to the log10 of the

number of occurrences

TABLE 1 Statistics on the relationship between ΔS and RPMW with all satellites with SSMIS and MHS computed during the training year (RR is given in
mm/hr)

Satellites Statistics Without smoothing With 1◦ × 1◦ smoothing

SSMIS Best-fit ΔS = −0.27 RSSMIS − 0.01 ΔS = −0.26 RSSMIS – 0.01

r −0.43 −0.55

RMSE (pss) 0.51 0.29

N 251 317 247 868

MHS Best-fit ΔS = −0.12 RMHS – 0.05 ΔS = − 0.14 RMHS – 0.04

r −0.31 −0.44

RMSE (pss) 0.53 0.30

N 33 691 33 156

Best-fit obtained with linear regressions. Root-mean-square error, RMSE =
√

(ΔSestim − ΔS)2. r = cov(ΔS,RSSMIS)
𝜎ΔS𝜎RSSMIS

.

RSMOS_G obtained with this relationship are noisy because

of SMOS Ssat noise. This can generate numerous nega-

tive rain values derived from SMOS freshening and conse-

quently RSMOS_G distribution largely differs from the SSMIS

log-normal-shaped rain distribution (Figure 7a). In order to

reduce the effect of SMOS measurement noise and to correct

the distribution of SMOS RR estimates, we use a heuristic

methodology. It consists in multiplying RSMOS_G by the prob-

ability that RSSMIS is above a threshold taken as the RR value

for which the difference between RSMOS_G CDF and RSSMIS

CDF is maximum. This probability is related to the value of

ΔS and to the lower part of the ΔS distribution in a 3◦ × 3◦

area. The latter is characterized by the 0.1 quantile of ΔS dis-

tribution (Q0.1: the ΔS value below which 10% of ΔS in the 3◦

× 3◦ area occur) in the 3◦ × 3◦ area surrounding the consid-

ered pixel, bearing in mind that rainy systems usually detected

by satellite measurements in the ITCZ are wider than 50 km.

In order to illustrate how this method works, Figure 7b

shows the difference between RSMOS and RSSMIS cumula-

tive distribution functions (CDF) in two cases: SMOS RR

computed with and without IR filtering. Without IR filtering

we observe that the CDF difference is maximum for R equal to

0 mm h−1. This is expected due to: (i) the fact that percentage

of non-rainy events (85%) is large in comparison to percent-

age of rainy events (15%), and (ii) RSSMIS is always positive

contrary to RSMOS_G. In this case, the large majority of neg-

ative RR are generated by non-rainy conditions. Hence our

heuristic method would have weighted RSMOS_G by P(RSSMIS

> 0 | ΔS and Q0.1). However, the PEALS algorithm uses an IR

filtering that changes the ratio of rainy/non-rainy events. After

IR filter, the percentage of rainy events increases and reaches

30%. In this case the CDF difference is maximum for R close

to 0.6 mm h−1. This is why we set the probability threshold

(P{RR > 0.6 mm h−1}) in order to equalize RSMOS and RSSMIS

distributions. Using ΔS/RSSMIS colocations during the 2015

year, we determine the probability that RR exceed 0.6 mm

h−1 (P{RR > 0.6 mm h−1}) as a function of ΔS and of Q0.1.

By weighting RSMOS_G with P(RSSMIS > 0.6 | ΔS and Q0.1),

Figure 7a shows that it is possible to correct the distribution

of rain estimates obtained with SMOS.
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FIGURE 7 (a) Normalized cumulative distribution functions for RSSMIS (blue full-line), RSMOS_G (red full-line), RSMOS (red dashed-line) (only the case with

IR filtering is considered). (b) Differences between RSMOS and RSSMIS CDF with IR filtering (blue) and without IR filtering (red)

FIGURE 8 Correction function computed over ITCZ during training period (2015), representing P(RSSMIS > 0.6) (colour bar) as function of Q0.1 and ΔS

Using this approach, the equation used to retrieve unbiased

log-normal-shaped RR from SMOS ΔS is:

RSMOS = RSMOS_G × P(RSSMIS > 0.6 | ΔS&Q0.1). (4)

P(RSSMIS > 0.6 | ΔS and Q0.1) is computed over ITCZ for

the training period and integrated in a correction function. As

expected and shown in Figure 8, the probability of observ-

ing RR higher than 0.6 mm h−1 increases when ΔS decreases

and when Q0.1 decreases. For a given Q0.1 value, probabil-

ity increases with ΔS. For a given ΔS value, the probability

increases with Q0.1.

3.1.3 Verification of RSMOS

In order to conduct a first evaluation of RSMOS, we compare

RSMOS and RSSMIS with two different resolutions. In addition

to the 0.2◦ × 0.2◦ resolution, rain estimates are smoothed

over 1◦ × 1◦ resolution. That corresponds to the typical size

of the smallest large-scale convective systems in the ITCZ

area (Houze, 2004; Waliser & Gautier, 1993) that will thus be

sampled.

A typical example of RSMOS obtained with and without

smoothing is presented in Figure 9. In this case, the tem-

poral shift between RSMOS and RSSMIS is small; SMOS flew

over the area 12–14 min after SSMIS. RSMOS is qualitatively

in good agreement with RSSMIS with and without smoothing.

Nevertheless, in this case, RSMOS seems to miss the lowest RR

located at the edge of rain cells and thus underestimates RR

after smoothing.

We compare RSMOS and RSSMIS with a pixel-to-pixel anal-

ysis in 2015 in a 15 min time interval with both resolutions,

including rain and rain-free scenes (Figure 10a and Table 2).

Results show a very good agreement between RSMOS and

RSSMIS (r= 0.64 and 0.73 without and with smoothing respec-

tively; RMSD = 0.62 mm h−1; with 1◦ × 1◦ smoothing:

RMSD = 0.42 mm h−1) (see Table 2).

3.2 Validation and seasonal variability

3.2.1 Pixel-to-pixel comparison of SMOS and SSMIS RR
In order to test the validity of the PEALS algorithm, we com-

pute statistics for RSMOS and RSSMIS during the validation
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(a) (b)

FIGURE 9 (a, b) RSMOS for a case-study (January 12, 2015) in comparison with RSSMIS for different smoothing levels. SMOS pass (1412 UTC) is 12–14 min

after SSMIS

period. During the second part of the validation period (June

and July 2016), differences due to the high cyclonic activity

(north of 9◦N) are observed. As shown in Figure 11, dur-

ing the Georgette cyclone study case SMOS RR are lower

than IMERG RR. It is not clear at this stage if it is due to

the linear approximation assumed in the relationship between

RSSMIS derived with the GPROF algorithm and ΔS or to inac-

curate ECMWF tracking and wind speed for tropical cyclones

(ECMWF, 2004) that are potential source of errors for salin-

ity estimates in their immediate vicinity. Because of these

uncertainties in the vicinity of cyclones, we have restricted the

area in which we investigate measurements to 0–9◦N between

June and July 2016. Results from this analysis for time shift

less than 15 min are shown in Table 2 and Figure 10b. They

are slightly noisier than the ones obtained during the training

period. The correlation for the validation period is 0.62 (0.72

with 1◦ × 1◦ smoothing), very close to the one of the training

period (0.64; 0.73 with 1◦ × 1◦ smoothing); the comparison

remains a little noisier considering the RMSD (RMSD = 0.64

mm h−1 instead of 0.62 mm h−1 in 2015; with 1◦ × 1◦ smooth-

ing: RMSD = 0.45 mm h−1 instead of 0.42 mm h−1 in 2015).

During the whole study period, the RMSD of SMOS RR with

respect to rainy SSMIS RR is 1.04 mm h−1 for SSMIS RR

less than 2 mm h−1 (87% of SSMIS rainy RR), 1.31 mm h−1

for SSMIS RR less than 5 mm h−1 (97% of SSMIS rainy RR).

This RMSD is larger for higher RR: 3.28 mm h−1 for SSMIS

RR greater than 2 mm h−1 (13% of SSMIS rainy RR) and 4.91

mm h−1 for SSMIS RR greater than 5 mm h−1 (3% of SSMIS

rainy RR).

3.2.2 Monthly variability of rain rate
In addition to validating RSMOS at short time-scale, we com-

pare monthly averages of RSMOS with RSSMIS and RIMERG.

SSMIS monthly averages are estimated by selecting only

RSSMIS in 15 min time interval from RSMOS. IMERG monthly

averages are estimated by selecting only the closest RSMOS

and RIMERG estimates (in space and time; only with SSMIS as

closest PMW). We take into account rainy and non-rainy pix-

els. The monthly average in a given pixel is equal to the rain

accumulation divided by the number of observations. Since

the number of observations during 1 month varies from one

pixel to another, the average has been preferred.

Hovmüller plots in which monthly RSMOS and RSSMIS are

averaged for each degree of latitude between 180◦W and

110◦W longitude (<RSMOS> and <RSSMIS>) show SMOS

ability to reproduce SSMIS seasonality as well as rainfall

average intensity (Figure 12a,c). The monthly time series of

the average over the whole region (Figure 13a,b) confirm a

good comparison even though slightly larger differences in

monthly RSMOS and RSSMIS are observed from July to Octo-

ber 2014 and in June–July 2016. During the latter period,

the differences are due to the high cyclonic activity north of

9◦N mentioned earlier. Correlation of SMOS Hovmüller pix-

els with SSMIS pixels computed in the restricted area (as

defined above) highlight the good agreement between SMOS

and SSMIS monthly rain estimates (the coefficient of corre-

lation of Hovmüller pixels is r = 0.89, RMSD = 0.07 mm h−1

and <RSMOS> = 1.03<RSSMIS> + 0.00).

This analysis was also conducted with RIMERG. Figure 12b,d

indicates that as for RSSMIS, the RIMERG Hovmüller plot also

present a good agreement with RSMOS (r = 0.92 and RMSD

= 0.06 mm h−1). However, as shown on Figure 13c,d and

confirmed by the relationship between RSMOS and RIMERG

Hovmüller (<RSMOS> = 0.90<RIMERG> + 0.01), RSMOS is

biased in comparison with RIMERG.
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FIGURE 10 Scatterplots between RSMOS and RSSMIS: (a) without smoothing, during training period; (b) without smoothing, during validation period; (c)

with 1◦ × 1◦ smoothing, during training period; (d) with 1◦ × 1◦ smoothing, during validation period. Magenta dashed-line: RSMOS = RSSMIS. The colour scale

corresponds to the log10 of the number of occurrences

TABLE 2 Statistics on the comparison between RSMOS and RSSMIS (from 0◦ to 15◦N between August 2014 and May 2016, and from 0◦ to 9◦ in June and July
2016)

Years r RMSD (mm/hr) N

2015 (without smoothing) 0.64 0.60 532 706

2014 and 2016 (without smoothing) 0.62 0.63 353 110

2015 (with 1◦ × 1◦ smoothing) 0.73 0.41 525 244

2014 and 2016 (with 1◦ × 1◦ smoothing) 0.71 0.44 348 644

RMSD =
√

(RSMOS − RSSMIS)2. r = cov(RSMOS ,RSSMIS)
𝜎RSMOS 𝜎RSSMIS

.

3.3 Validation with SMAP and influence of RSSMIS
availability

3.3.1 SMOS/SMAP comparison

Figure 14 summarizes comparisons between SMOS and

SMAP parameters collocated in a 15 min time interval from

January to July 2016. Associated statistics are reported in

Table 3. SMOS Ssat and SMAP Ssat are in good agreement

(Figure 14a) even though they are shifted by 0.26 pss on

average (Figure 14a and Table 3). SMOS and SMAP salin-

ity have slightly different standard deviation (STD) values,

suggesting that SMOS SSS are noisier than SMAP SSS

(Figure 14b and Table 3). Assuming that the total variance

measured by SMOS (𝜎2
𝑡𝑜𝑡 SMOS) and by SMAP (𝜎2

𝑡𝑜𝑡 SMAP) is

equal to the sum of the variance due to instrumental noise
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FIGURE 11 Study case, July 23, 2016, Cyclone Georgette: (a) RSMOS rain estimates; (b) RIMERG rain estimates; (c) ECMWF wind speed. Magenta circle:

flagged area due to wind speeds higher than 12 m/s

FIGURE 12 (a, c) SSMIS collocated with SMOS in 15 min time interval with (a) Hovmüller diagrams of RSSMIS and (c) Hovmüller diagrams of RSMOS; (b,

d) IMERG collocated with SMOS (but only with SSMIS as nearest collocated rain satellite) with (b) Hovmüller diagrams of RIMERG and (d) Hovmüller

diagrams of RSMOS. With an orthogonal regression <RSMOS>= 1.03<RSSMIS>+ 0.00 (r= 0.89; RMSD= 0.07) and <RSMOS>= 0.90<RIMERG>+ 0.01

(r= 0.92; RMSD= 0.06) after exclusion of pixels above 9◦N during the last 2 months of the study period

(𝜎2
inst) and due to natural variance (𝜎2

𝑛𝑎𝑡
), we can derive from

their total variance the error of SMAP Ssat relative to the one

of SMOS Ssat, with the following equations:

𝜎
2
𝑡𝑜𝑡 SMOS = 𝜎

2
inst SMOS + 𝜎

2
𝑛𝑎𝑡,

𝜎
2
𝑡𝑜𝑡 SMAP = 𝜎

2
inst SMAP + 𝜎

2
𝑛𝑎𝑡,

𝜎
2
inst SMOS = 𝜎

2
inst SMAP + 𝜎

2
𝑡𝑜𝑡 SMOS − 𝜎

2
𝑡𝑜𝑡 SMAP,

𝜎
2
inst SMOS = 𝜎

2
instSMAP + 0.802 − 0.752

,

𝝈
2
instSMOS =𝝈

2
instSMAP + 0.08.

In the ITCZ region, the error on individual SMOS Ssat

is estimated to be 0.57 pss (as measured over the whole

study area during 2015) resulting in an error on SMAP Ssat

estimated to be 0.49 pss.

In spite of the shift between SMOS and SMAP SSS dis-

tributions, the mean and the distribution of ΔS for SMOS

and SMAP are very close (Table 3 and Figure 14d). Conse-

quently, RSMAP and RSMOS are really comparable as shown

with the scatter plot (Figure 14e), their statistical distributions

(Figure 14f) and their mean values (Table 3).
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FIGURE 13 (a, c) During the whole period and for the whole study area: (a) monthly RR averages for SMOS and SSMIS (SSMIS collocated with SMOS in

15 min time interval) and (c) monthly RR averages for SMOS and IMERG (only with SSMIS as nearest collocated rain satellite). (b, d) For the restricted area

(without measurements between 9◦ and 15◦N during June to July 2016): (b) monthly RR averages for SMOS and SSMIS (SSMIS collocated with SMOS in

15 min time interval) and (d) monthly RR averages for SMOS and IMERG (only with SSMIS as nearest collocated rain satellite)

3.3.2 Influence of the availability of RSSMIS onto RIMERG

estimation

The dependency of the correlation between RSMOS and RSSMIS

(and RIMERG) on the temporal shift with the nearest SSMIS

satellite is studied during the whole study period. The main

target of the merged rain product RIMERG is to compensate

for the lack of information concerning rain due to the lack

of PMW at a given time by morphing of rain cell with the

help of IR rain estimates. We test the contribution of IMERG

merging by comparing the correlation between RSMOS and

the closest RIMERG (rRSMOS∕RIMERG ) as a function of increasing

temporal shift between SMOS and closest SSMIS (Figure 15;

only cases with SSMIS satellite as nearest PMW satellite are

considered). We subtract from them the correlation between

RSMOS and RIR (rRSMOS∕R𝐼𝑅
) that is considered as the mini-

mum correlation that could be reached between SMOS and

IMERG. During the whole study period, as expected, the

difference between rRSMOS∕RIMERG and rRSMOS∕R𝐼𝑅
decreases less

rapidly when Δt between SMOS and the nearest SSMIS satel-

lite increases than the difference between rRSMOS∕RSSMIS and

rRSMOS∕R𝐼𝑅
. This shows that RIMERG presents a better consis-

tency with RSMOS when no RSSMIS is shortly available, even

though it is not able to provide the same level of correlation

as the one obtained between RSMOS and RIMERG when RSSMIS

are available within a very short temporal radius (Figure 15).

Figure 16 illustrates the very good consistency of SMOS,

SMAP and IMERG RR for very short time shifts between all

radiometric measurements (less than 15 min), and the worse

consistency between IMERG and salinity-derived RR for the

largest temporal shift between nearest SSMIS and SMOS

or SMAP.

4 DISCUSSION AND CONCLUSION

Taking advantage of the relationship betweenΔS from SMOS

and rain intensity from PMW satellites, we have developed a

retrieval algorithm (PEALS) that estimates RR from SMOS

measurements. In order to avoid freshening due to other pro-

cesses than rainfall, we only retrieve SMOS RR in the vicinity

of regions identified as rainy by IR measurements. Because
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FIGURE 14 (a, c, e) Scatterplots between SMOS and SMAP data, and (b, d, f) distributions, collocated within less than 15 min (January to July 2016): (a, b)

salinity; (c, d) ΔS; (e, f) rain rate. The colour scale corresponds to the log10 of the number of occurrences

of SMOS SSS noise, numerous negative RR are retrieved

when just taking the inverse of the ΔS(RR) relationship. In

order to correct for this flaw, a heuristic scheme is applied.

The algorithm finally adopted consists of estimating at the

grid-point level the instantaneous RR from the SMOS fresh-

ening by using local information surrounding the considered

grid point.

Since the relaxation time of the freshening is extremely

short (of the order of a few hours) in comparison with the

satellite revisiting times, successive SMOS satellite passes

sample independent rain events. Monitoring the temporal

evolution of a rain event is only possible owing to satellite

passes close in time (e.g. SMOS, SMAP, SSMIS). Given

TABLE 3 Statistics on the comparison between SMOS and SMAP
(collocated within 15 min time interval; January to July 2016; without
smoothing)

Satellite Statistics Ssat (pss) 𝚫S (pss) R (mm/hr)

SMOS Mean 34.03 −0.05 0.13

std 0.80 0.52 0.81

SMAP Mean 34.29 −0.04 0.13

std 0.75 0.45 0.77

the important theoretical uncertainties that exist to account

for the physics of the ocean surface freshening by rain, we

have chosen to establish an empirical model that accounts
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FIGURE 15 (a) Correlation between RSMOS and RIMERG minus correlation between RSMOS and RIR (blue line); correlation between RSMOS and RSSMIS minus

correlation between RSMOS and RIR (red line), as function of temporal shift (Δt) between SMOS and nearest (in time) SSMIS. Size of Δt classes= 15 min. (b)

CDF of number of pixels as function of temporal shift (Δt) between SMOS and nearest (in time) SSMIS

FIGURE 16 (a–c) Case-study of 6 February 2016, short temporal shift between SMOS/SMAP and the closest PMW: (a) RSMOS; (b) RSMAP; (c) RIMERG. (d–f)

Case-study of 28 January 2016, long temporal shift between SMOS/SMAP and the closest PMW: (d) RSMOS; (e) RSMAP; (f) RIMERG.

for observations. This empirical approach is made possible

by the presence of SMOS data co-located with microwave

satellite data to estimate the RR. Several assumptions behind

this algorithm are recalled below: (i) We determine an

instantaneous RR. The correlation between freshening and

RR decreases very rapidly because the freshening relaxes

very quickly (see references in Boutin et al. (2016)). (ii) An

estimate of non-rainy SSS can be obtained from the 3◦ × 3◦
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data surrounding the grid node under consideration. (iii)

The ΔS(RR) model is linear. Theoretical models present a

broad spectrum of variation that depends on the underlying

parameters mainly related to micro-turbulence mixing mech-

anisms, and on environmental forcing parameters. Because

SMOS measurements are relatively noisy (at least 0.5 pss) and

because forcing parameters were not easily available, a linear

approach appeared to be appropriate at the first order. (iv) The

PEALS model is calibrated using GPROF2014 SSMIS RR

provided in the IMERG version 3 product. The GPROF2014

algorithm overestimates the number of low RR pixels (Kidd,

Panegrossi, Ringerud, & Stocker, 2017). In addition, as shown

by Hilburn and Wentz (2008), significant differences exist

between UMORA and GPROF which may explain part of the

nonlinear behaviour at high RR observed in Figure 6, as dis-

cussed below. (v) The model is not dependent on wind speed.

The current model does not include a wind speed dependence

explicitly in the equation. This is related to the fact that the

ECMWF model does not provide a reliable wind speed under

rain cells, and very few reliable satellite observations of wind

under rain cells are available. This is a strong assumption

that should be further investigated in the future. Locally in
situ measurements in rain puddles and modelling studies sug-

gest a strong influence of rain-induced freshening intensity

with wind speed (Asher et al., 2014; Bellenger et al., 2016;

Drushka et al., 2016). However, rain puddles are expected to

be very heterogeneous in a 50 km × 50 km satellite pixel

and local wind speed dependency is expected to be nonlinear.

Hence, the dependency of satellite rain-induced freshening

with wind speed is highly uncertain. In our study, we exclude

very low and very high wind speeds and we consider only sit-

uations where ECMWF wind speeds are moderate (3–12 m/s)

for which drifter measurements collocated with satellite RR

and satellite wind speeds do not suggest very large variations

(Boutin et al., 2014).

Correlation between SMOS and PMW RR is much larger

than between SMOS and IR RR (Figure 15). Both instan-

taneous and monthly SMOS RR have been validated. This

qualifies SMOS for bringing additional information into an

IMERG-type RR product. When SMOS and PMW satellites

passes are very close in time (within 1 h), high correla-

tion levels are recorded between the two RR, that highlight

PEALS ability to reproduce a very similar rain pattern to

the one observed by PMW satellites. However, this agree-

ment deteriorates when the time shift between the two satellite

passes increases and correlation between SMOS and PMW

RR largely decreases. In that case, comparison of SMOS RR

with IMERG merged rain products shows that morphing tech-

niques improve the correlation. However, agreement between

both rain products remains lower than the one between SMOS

and PMW when the time shift is short. As the temporal shift

between SMOS and nearest PMW satellite increases, SMOS

provides more supplementary information on instantaneous

rain rate estimates. Our approach tested on IMERG prod-

ucts could also be undertaken with other rain interpolated

products, such as Global Satellite Mapping of Precipitation

(GSMaP: Aonashi et al., 2009).

Validation of instantaneous RR derived from remotely

sensed measurements is challenging. Because of the strong

local variability of the rain, there is usually a poor consistency

of precipitation measured in situ and from satellite. Time aver-

aging of gauge measurements results in better correlations

with satellite individual measurements. Particularly good

agreements are observed at monthly and seasonal time-scales

(Bowman, 2005; Serra & McPhaden, 2003). In order to avoid

this difficulty and the lack of rain measurement over ocean in

comparison with satellite measurements, RR estimates from

PMW are considered as a reference in this study. Various algo-

rithms, either using conceptual precipitation models (Hilburn

& Wentz, 2008), Bayesian approach (Kummerow et al., 1996)

or neural network (Zabolotskikh & Chapron, 2015), have been

developed to retrieve RR from satellite PMW measurements.

The PEALS algorithm has been calibrated with GPROF2014,

in order to ensure consistency with IMERG v3. Hence, it may

reproduce biases contained in GPROF2014 and would have

to be revisited when later versions are available. Using the

UMORA RR, Boutin et al. (2014) found a slope between ΔS

and RR close to −0.20 pss (mm h−1)−1, instead of the −0.27

pss (mm h−1)−1 slope we find with GPROF2014. This comes

from the different dynamics in UMORA and GPROF RR at

low to moderate RR as seen in figure 10 of Hilburn and Wentz

(2008). In addition, the scatter plot between ΔS and RR from

UMORA appears to be closer to a linear regression than the

one observed with GPROF (Figure 6) and the range of very

high UMORA RR are in general lower than the one of GPROF

RR. Whether the various slopes between freshening and RR

could be used as independent validation for PMW RR could

deserve further investigation. For instance, observed ΔS and

RR relationships could be compared with the ones simulated

by theoretical models (Bellenger et al., 2016; Drushka et al.,

2016; Schlussel et al., 1997). In addition, atmospheric and

oceanic in situ measurements conducted during field cam-

paigns such as SPURS2 (SPURS-2 Planning Group, 2015)

are envisaged for further validations or improvements.

This study is limited to the Pacific ITCZ region. Boutin

et al. (2014) found that the relationship between ΔS and RR

in the South Pacific convergence zone (SPCZ) is very close to

the one for the ITCZ, so that one can reasonably expect that

the methodology developed in this article will remain valid

in other tropical regions. Future studies will be dedicated to

adapt this methodology at higher latitudes.

We also checked the consistency between SMOS and

SMAP SSS over the ITCZ area. In the region investigated,

we estimate that the noise on individual SMAP SSS is 0.49

(0.57 on SMOS SSS). This noise is much less than the

RMSD (0.78 pss) found by Fore et al. (2016) when com-

paring SMAP SSS and HYbrid Coordinate Ocean Model

(HYCOM) SSS at global scale. This is because SSS retrieval

is of much better quality in warm regions and because SMOS
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SSS characteristics are much closer to SMAP SSS charac-

teristics than HYCOM SSS. Actually, spatial resolutions of

SMOS and SMAP are very close to 40 km and the time

lag between SMOS ascending orbits and SMAP descending

orbits is only a few minutes. On average, SMAP salinity is

0.26 pss higher than SMOS salinity. Nevertheless, this bias

is almost corrected when salinity anomaly is considered so

that RR distributions derived from SMOS and SMAP mea-

surements are very close, both from a pixel-to-pixel analysis

and from comparing monthly averages. This result validates

the rain retrieval algorithm developed for SMOS with SMAP,

even though, in future work, the computation of Sref should be

adjusted to better take into account the noise on SMAP SSS.

Thus, both L-Band radiometers, SMOS and SMAP, could

bring a significant supplementary coverage for rainfall to the

GPM satellite constellation.
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