Jean Marçais 
email: jean.marcais@gmail.com.
  
Jean-Raynald De Dreuzy 
email: jr.dreuzy@gmail.com.
  
Prospective interest of deep learning for hydrological inference

Keywords: Deep learning, Explicit process-based models, Implicit data-driven models, Calibration, Models structural adequacy. Impact

Deep learning may assist hydrological inference through its increased capacities

Introduction

Decision making relative to groundwater resources requires the characterization, modeling and prediction of complex and dynamical systems with many degrees of freedom.

Nonetheless, these systems have large-scale structure that emerges from hierarchical properties based on conservation principles applied to fundamental physical quantities (e.g. mass, momentum, energy). Difficulties arise as hydrologic systems are inherently heterogeneous and sometimes chaotic. This is not specific to hydrology, it is generic to natural or man-made complex systems. Two approaches have been proposed to handle these complex systems. Whether they are called model-driven or data-driven, explicit or implicit, they differ widely by methodology. In the explicit model-driven approach, processes are physically modeled at each characteristic scale and progressively scaled up. Patterns, equivalent properties and effective laws emerge progressively through upscaling. This has been done extensively in stochastic hydrology to derive equivalent permeability and in percolation theory to identify universal scaling laws (Stauffer and Aharony 1992). Large-scale observations are integrated by adapting the model parameters through the classic, but generally ill-posed, inverse problem [START_REF] Zimmerman | A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow[END_REF]). In the implicit data-driven approach, minimal assumptions are made on the structure of the models developed [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF][START_REF] Montgomery | Design and Analysis of Experiments[END_REF]. Rather, this approach relies on generic data-driven analysis based on statistics and artificial intelligence. Among numerous methods, supervised-learning algorithms and, especially, artificial neural networks became popular in the 90s in hydrology. One well-cited example is their use for prediction and understanding of rainfall runoff processes [START_REF] Hsu | Artificial neural-network modeling of the rainfall-runoff process[END_REF][START_REF] Hsu | Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis[END_REF].

Implicit data-driven methods have been less active for the past decade (a period called the Artificial Intelligence Winter). But, there is renewed interest in machine learning methods due to the recent successes of deep neural networks in several Artificial Intelligence benchmarks including the first-time computer win at the game of Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]. In general, deep network successes have been attributed to their ability to provide efficient high-dimensional interpolators that cope with multiple scales and heterogeneous information [START_REF] Lecun | Deep learning[END_REF][START_REF] Mallat | Understanding deep convolutional networks[END_REF]. This suggests a natural opportunity for the use of deep networks for hydrological sciences. We discuss these possibilities with particular focus on their complementary and combined use with well-established model-driven approaches.

Generalization, classification and hierarchical combination abilities in deep learning

Deep learning is a new class of machine learning algorithms that recognizes high level abstractions in data. They are called deep because they are made up of some tens of hierarchically arranged layers, compared to classic neural networks that had only very few.

Abstraction is achieved through the processing of the data by the internal layers to automatically identify patterns of increasing complexity. We review three essential properties for their potential interest in hydrological sciences.

Deep learning can be used for calibration. Classic neural networks have been shown to be universal estimators [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF]. Deep learning can significantly improve their efficiency and accuracy [START_REF] Bengio | On the Expressive Power of Deep Architectures[END_REF][START_REF] Mhaskar | Deep vs. shallow networks: An approximation theory perspective[END_REF].

Deep learning can find robust invariants from large, high dimensional datasets, leading to improved interpolation and generalization [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF]. For example, a deep convolutional generative adversarial network [START_REF] Goodfellow | Generative Adversarial Networks[END_REF]) was able to generate new bedroom images having all the same elements (bed, lamp, bedside table…) as the bedroom pictures used for training [START_REF] Radford | Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[END_REF].

Deep learning successes might indicate fundamental capacities to replicate multiscale modeling of physical principles. Generalization properties of deep convolutional networks have been related to the locality and upscaling principles of wavelets [START_REF] Mallat | Understanding deep convolutional networks[END_REF]. The multilayer convolutive structure of deep networks is well adapted to let hierarchical patterns emerge through the combination of smaller scale elements. Potential consistency with physical processes may be further linked to the compositional nature of some physical processes, which might be derived from advanced combinations of symmetry, locality and compositional principles [START_REF] Lin | Why does deep and cheap learning work so well?[END_REF]. As an illustration, deep networks have prospectively been used to infer quantum energy of complex molecules, reaching state of the art quality of evaluation alternatively derived from Schrödinger equations [START_REF] Hirn | Quantum energy regression using scattering transforms[END_REF]. This inherent upscaling opens new opportunities to apply deep learning to real physical systems [START_REF] Baldi | Searching for exotic particles in high-energy physics with deep learning[END_REF][START_REF] Denil | Learning to Perform Physics Experiments via Deep Reinforcement Learning[END_REF].

Deep learning prospects for hydrological inference

Among the different interests of deep learning for hydrology, the first is its potential contribution to calibration, following the use of artificial neural networks in the 90s. Deep networks are especially designed for handling large data sets. They might be considered for prediction issues (Figure 1, blue arrows), provided that the following conditions are met. Hydrological data are highly diverse and would require some extensive pre-processing to produce uniform training sets for deep networks. Basic prerequisite of deep learning methods should also be checked in terms of the density and nature of the training information.

Nevertheless, deep neural networks have already been used for predicting precipitation from satellite clouds images and reduce significantly the bias compared to traditional neural networks [START_REF] Tao | A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products[END_REF].

Second, deep networks may contribute to the initial choice of the structure of a physical model, which strongly conditions eventual predictions. For geological storage of high-level nuclear wastes, this issue has been handled by requesting independent models (models ensemble) from different research groups [START_REF] Zimmerman | A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow[END_REF][START_REF] Bodin | Predictive modelling of hydraulic head responses to dipole flow experiments in a fractured/karstified limestone aquifer: Insights from a comparison of five modelling approaches to real-field experiments[END_REF]). Such benchmarks are, however, possible only for highly sensitive applications with significant costs. On the other hand, modeling as well as computational capacities have critically progressed to the point such that it is feasible to simulate a broad range of model configurations [START_REF] Kumar | Hydrocomplexity: Addressing water security and emergent environmental risks[END_REF]. Models also become more faithful to the point where synthetic catchments, synthetic aquifers and virtual observatories no longer seem out of reach [START_REF] Thomas | Constitution of a catchment virtual observatory for sharing flow and transport models outputs[END_REF][START_REF] Yu | Cyber-Innovated Watershed Research at the Shale Hills Critical Zone Observatory[END_REF]. The limiting factor increasingly comes from the exploration and analysis of the resulting simulations [START_REF] Hermans | TITLE TO BE FINALIZED[END_REF]. Deep networks might contribute to more systematic interpretation through interpolation and category classification. They could be considered for interpolating explicit models as has been done in surrogate modeling (Figure 1, green arrows) [START_REF] Razavi | Review of surrogate modeling in water resources[END_REF][START_REF] Asher | A review of surrogate models and their application to groundwater modeling[END_REF]. They could also be trained on extensive databases of model realizations that support uncertainty analyses (de Pasquale 2017). The advantage of deep networks over other interpolators is their ability to cope with many simulations while inherently complying with different levels of organization of the hydrological systems [START_REF] Sposito | Scale Dependence and Scale Invariance in Hydrology[END_REF]. Practically, this will require careful consideration of methods to execute many models, manage errors, systematize formatting of inputs and outputs, and ensure easy access to simulation results.

Using deep networks as a possible high-dimensional interpolator is motivated by some reduction in computational costs through the use of existing simulations. But, current interest is also directed to model reduction, category classification and uncertainty quantification through the constitution of extensive databases of simulations (Figure 1, green arrows) [START_REF] Clark | A unified approach for process-based hydrologic modeling: 1. Modeling concept[END_REF]. Model reduction is an active field of research in applied mathematics and computational science [START_REF] Schilders | Introduction to Model Order Reduction[END_REF]) designed to retain only the key structural parameters of the models for the phenomena or predictions of interest [START_REF] Castelletti | A general framework for Dynamic Emulation Modelling in environmental problems[END_REF]. While the first target would be to refine our understanding of hydrological processes, several other issues could be handled. For example, the ability to identify model classes would help to address the question of the model structural adequacy beyond the identification of optimal parametrization [START_REF] Gupta | Towards a comprehensive assessment of model structural adequacy[END_REF][START_REF] Guthke | TITLE TO BE FINALIZED[END_REF]. It might also contribute to identify classes of acceptable models at the core of null-space identification [START_REF] Gallagher | Parameter estimation and uncertainty analysis for a watershed model[END_REF], equifinality analysis [START_REF] Beven | A manifesto for the equifinality thesis[END_REF], and, more generally, uncertainty quantification. Even more prospectively, we might investigate its potentialities in proposing alternative model structural assumptions, especially for investigating the likelihood of diverse hydrological scenarios of critical importance for stakeholders [START_REF] Ferre | Revisiting the Relationship between Data, Models, and Decision-Making[END_REF][START_REF] Marshall | TITLE TO BE FINALIZED[END_REF] and in assisting the design of hydrological experiments [START_REF] Kikuchi | On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models[END_REF] (Figure 1). Deep networks might be used to assess expert knowledge in a more systematic way [START_REF] Seibert | On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration[END_REF][START_REF] Hrachowitz | Process consistency in models: The importance of system signatures, expert knowledge, and process complexity[END_REF]. The real strength of deep networks, and implicit data-driven models in general, is that emergent system properties can be identified that cannot be uncovered by explicit models that are imposed on an analysis (Figure 1, orange arrows). This may automatically adapt our models to conform to natural processes and to the data available [START_REF] Kirchner | Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology[END_REF][START_REF] Troch | Dealing with Landscape Heterogeneity in Watershed Hydrology: A Review of Recent Progress toward New Hydrological Theory[END_REF]), while exploring model space more completely.

Despite the potential contributions of deep learning, we do not suggest that they should replace classic approaches in hydrology. Rather, they are attractive as a complementary tool having, at least conceptually, some properties highly relevant to hydrological systems like their built-in hierarchical combination. This could similarly benefit ongoing automated model-building efforts that also require some definition of the range of model structures to consider and the ways in which they should be combined [START_REF] Clark | A unified approach for process-based hydrologic modeling: 1. Modeling concept[END_REF]. In addition to these enhanced capacities, deep networks will find particular use in integrating larger data sets and explicit model results produced by rapid technological progress in automated and remote sensing. In this sense, we see deep learning as a loose coupling between growing data-driven and model-driven approaches (Figure 1). It is not designed as an effective calibration technique applied on explicit physical models [START_REF] Certes | Application of the pilot point method to the identification of aquifer transmissivities[END_REF][START_REF] Doherty | Ground water model calibration using pilot points and regularization[END_REF], but rather as an implicit data-driven approach to correct errors from explicit physical based models [START_REF] Szidarovszky | A Hybrid Artificial Neural Network-Numerical Model for Ground Water Problems[END_REF][START_REF] Demissie | Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions[END_REF][START_REF] Gusyev | Use of Nested Flow Models and Interpolation Techniques for Science-Based Management of the Sheyenne National Grassland[END_REF]. Prospective testing and interactions are needed with the deep learning community to understand how information content between synthetic models and field data should be balanced in the training sequence [START_REF] Nearing | The quantity and quality of information in hydrologic models[END_REF].

A roadmap to investigate the relevance of deep learning to hydrology

We propose three steps toward integrating deep learning into hydrologic science: testing on data; testing on benchmarks; and collaboration with the wider deep learning community.

Testing on hydrological numerical data will require the collection and organization of systematic and well-organized databases. Availability of such database has been one of the main reasons for the success of deep learning techniques [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. This could include measured data, but should also rely heavily on synthetic data sets. Such synthetic hydrological databases are achievable, for example by building extensive stochastic simulations performed on heterogeneous media [START_REF] Pirot | TITLE TO BE FINALIZED[END_REF]. Constitution of systematic and standardized field databases is also under way following the dynamics of critical zone observatories, open international normalization initiatives [START_REF] Ames | HydroDesktop: Web services-based software for hydrologic data discovery, download, visualization, and analysis[END_REF]) and regulatory incentives.

Testing on hydrological benchmarks can begin with target synthetic benchmarks described above. More complicated benchmarks can be developed according to their consistency with existing deep learning benchmarks, i.e. based on images or succession of images to describe processes [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF]. Hydrologic insight will be necessary to ensure that the benchmarks are relevant to important hydrological complexities, especially those related to the multi-scale nature of the hydrologic systems.

Cross-disciplinary discussions with the deep learning community will be required to take full advantage of deep learning methods and to introduce hydrology as a topic of interest to that community. Data heterogeneity, in terms of quantities measured and scales, have already been mentioned and are critical to improve our ability to integrate diverse information sources.

Hydrology offers an opportunity for the deep learning community to expand their interest beyond controlled and deterministic systems like the double pendulum [START_REF] Schmidt | Distilling Free-Form Natural Laws from Experimental Data[END_REF] to natural systems that are characterized by epistemic or aleatory uncertainties. The heterogeneous and sometimes chaotic nature of the hydrologic system makes it difficult to directly transpose existing results obtained on deterministic experiments but is an opportunity to assess deep learning potentialities. . More prospectively, it might be applied to discover patterns in data, find trends in synthetic versus real data misfits to assist hydrologists in formulating testable hypotheses (orange arrows). This last possibility is seen as an unsupervised learning task as opposed to supervised learning for the other ones with real or synthetic datasets.
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