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Introduction 

Decision making relative to groundwater resources requires the characterization, modeling 

and prediction of complex and dynamical systems with many degrees of freedom. 

Nonetheless, these systems have large-scale structure that emerges from hierarchical 

properties based on conservation principles applied to fundamental physical quantities (e.g. 

mass, momentum, energy). Difficulties arise as hydrologic systems are inherently 

heterogeneous and sometimes chaotic. This is not specific to hydrology, it is generic to 

natural or man-made complex systems. Two approaches have been proposed to handle these 

complex systems. Whether they are called model-driven or data-driven, explicit or implicit, 

they differ widely by methodology. In the explicit model-driven approach, processes are 

physically modeled at each characteristic scale and progressively scaled up. Patterns, 

equivalent properties and effective laws emerge progressively through upscaling. This has 

been done extensively in stochastic hydrology to derive equivalent permeability and in 

percolation theory to identify universal scaling laws (Stauffer and Aharony 1992). Large-scale 
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observations are integrated by adapting the model parameters through the classic, but 

generally ill-posed, inverse problem (Zimmerman et al. 1998).  In the implicit data-driven 

approach, minimal assumptions are made on the structure of the models developed (Hastie et 

al. 2003; Montgomery 2006). Rather, this approach relies on generic data-driven analysis 

based on statistics and artificial intelligence. Among numerous methods, supervised-learning 

algorithms and, especially, artificial neural networks became popular in the 90s in hydrology.  

One well-cited example is their use for prediction and understanding of rainfall runoff 

processes (Hsu et al. 1995; Hsu et al. 2002).  

Implicit data-driven methods have been less active for the past decade (a period called the 

Artificial Intelligence Winter). But, there is renewed interest in machine learning methods due 

to the recent successes of deep neural networks in several Artificial Intelligence benchmarks 

including the first-time computer win at the game of Go (Silver et al. 2016). In general, deep 

network successes have been attributed to their ability to provide efficient high-dimensional 

interpolators that cope with multiple scales and heterogeneous information (LeCun et al. 

2015; Mallat 2016). This suggests a natural opportunity for the use of deep networks for 

hydrological sciences.  We discuss these possibilities with particular focus on their 

complementary and combined use with well-established model-driven approaches.  

Generalization, classification and hierarchical combination abilities in deep 

learning  

Deep learning is a new class of machine learning algorithms that recognizes high level 

abstractions in data. They are called deep because they are made up of some tens of 

hierarchically arranged layers, compared to classic neural networks that had only very few. 

Abstraction is achieved through the processing of the data by the internal layers to 
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automatically identify patterns of increasing complexity. We review three essential properties 

for their potential interest in hydrological sciences. 

Deep learning can be used for calibration. Classic neural networks have been shown to be 

universal estimators (Hornik et al. 1989). Deep learning can significantly improve their 

efficiency and accuracy (Bengio and Delalleau 2011; Mhaskar and Poggio 2016).  

Deep learning can find robust invariants from large, high dimensional datasets, leading to 

improved interpolation and generalization (Hinton and Salakhutdinov 2006). For example, a 

deep convolutional generative adversarial network (Goodfellow et al. 2014) was able to 

generate new bedroom images having all the same elements (bed, lamp, bedside table…) as 

the bedroom pictures used for training (Radford et al. 2015).  

Deep learning successes might indicate fundamental capacities to replicate multiscale 

modeling of physical principles. Generalization properties of deep convolutional networks 

have been related to the locality and upscaling principles of wavelets (Mallat 2016). The 

multilayer convolutive structure of deep networks is well adapted to let hierarchical patterns 

emerge through the combination of smaller scale elements. Potential consistency with 

physical processes may be further linked to the compositional nature of some physical 

processes, which might be derived from advanced combinations of symmetry, locality and 

compositional principles (Lin and Tegmark 2016). As an illustration, deep networks have 

prospectively been used to infer quantum energy of complex molecules, reaching state of the 

art quality of evaluation alternatively derived from Schrödinger equations (Hirn et al. 2016). 

This inherent upscaling opens new opportunities to apply deep learning to real physical 

systems (Baldi et al. 2014; Denil et al. 2016). 
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Deep learning prospects for hydrological inference 

Among the different interests of deep learning for hydrology, the first is its potential 

contribution to calibration, following the use of artificial neural networks in the 90s. Deep 

networks are especially designed for handling large data sets.  They might be considered for 

prediction issues (Figure 1, blue arrows), provided that the following conditions are met. 

Hydrological data are highly diverse and would require some extensive pre-processing to 

produce uniform training sets for deep networks. Basic prerequisite of deep learning methods 

should also be checked in terms of the density and nature of the training information. 

Nevertheless, deep neural networks have already been used for predicting precipitation from 

satellite clouds images and reduce significantly the bias compared to traditional neural 

networks (Tao et al. 2016).  

Second, deep networks may contribute to the initial choice of the structure of a physical 

model, which strongly conditions eventual predictions. For geological storage of high-level 

nuclear wastes, this issue has been handled by requesting independent models (models 

ensemble) from different research groups (Zimmerman et al. 1998; Bodin et al. 2012). Such 

benchmarks are, however, possible only for highly sensitive applications with significant 

costs. On the other hand, modeling as well as computational capacities have critically 

progressed to the point such that it is feasible to simulate a broad range of model 

configurations (Kumar 2015). Models also become more faithful to the point where synthetic 

catchments, synthetic aquifers and virtual observatories no longer seem out of reach (Thomas 

et al. 2016; Yu et al. 2016). The limiting factor increasingly comes from the exploration and 

analysis of the resulting simulations (Hermans 2017). Deep networks might contribute to 

more systematic interpretation through interpolation and category classification. They could 

be considered for interpolating explicit models as has been done in surrogate modeling 

(Figure 1, green arrows) (Razavi et al. 2012; Asher et al. 2015). They could also be trained on 
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extensive databases of model realizations that support uncertainty analyses (de Pasquale 

2017). The advantage of deep networks over other interpolators is their ability to cope with 

many simulations while inherently complying with different levels of organization of the 

hydrological systems (Sposito 1998). Practically, this will require careful consideration of 

methods to execute many models, manage errors, systematize formatting of inputs and 

outputs, and ensure easy access to simulation results.  

Using deep networks as a possible high-dimensional interpolator is motivated by some 

reduction in computational costs through the use of existing simulations.  But, current interest 

is also directed to model reduction, category classification and uncertainty quantification 

through the constitution of extensive databases of simulations (Figure 1, green arrows) (Clark 

et al. 2015). Model reduction is an active field of research in applied mathematics and 

computational science (Schilders 2008) designed to retain only the key structural parameters 

of the models for the phenomena or predictions of interest (Castelletti et al. 2012). While the 

first target would be to refine our understanding of hydrological processes, several other 

issues could be handled. For example, the ability to identify model classes would help to 

address the question of the model structural adequacy beyond the identification of optimal 

parametrization (Gupta et al. 2012; Guthke 2017). It might also contribute to identify classes 

of acceptable models at the core of null-space identification (Gallagher and Doherty 2007), 

equifinality analysis (Beven 2006), and, more generally, uncertainty quantification. Even 

more prospectively, we might investigate its potentialities in proposing alternative model 

structural assumptions, especially for investigating the likelihood of diverse hydrological 

scenarios of critical importance for stakeholders (Ferre 2017; Marshall 2017) and in assisting 

the design of hydrological experiments (Kikuchi et al. 2015) (Figure 1). Deep networks might 

be used to assess expert knowledge in a more systematic way (Seibert and McDonnell 2002; 

Hrachowitz et al. 2014).  The real strength of deep networks, and implicit data-driven models 
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in general, is that emergent system properties can be identified that cannot be uncovered by 

explicit models that are imposed on an analysis (Figure 1, orange arrows). This may 

automatically adapt our models to conform to natural processes and to the data available 

(Kirchner 2006; Troch et al. 2009), while exploring model space more completely.  

Despite the potential contributions of deep learning, we do not suggest that they should 

replace classic approaches in hydrology. Rather, they are attractive as a complementary tool 

having, at least conceptually, some properties highly relevant to hydrological systems like 

their built-in hierarchical combination. This could similarly benefit ongoing automated 

model-building efforts that also require some definition of the range of model structures to 

consider and the ways in which they should be combined (Clark et al. 2015).  In addition to 

these enhanced capacities, deep networks will find particular use in integrating larger data sets 

and explicit model results produced by rapid technological progress in automated and remote 

sensing. In this sense, we see deep learning as a loose coupling between growing data-driven 

and model-driven approaches (Figure 1). It is not designed as an effective calibration 

technique applied on explicit physical models (Certes and de Marsily 1991; Doherty 2003), 

but rather as an implicit data-driven approach to correct errors from explicit physical based 

models (Szidarovszky et al. 2007; Demissie et al. 2009; Gusyev et al. 2013). Prospective 

testing and interactions are needed with the deep learning community to understand how 

information content between synthetic models and field data should be balanced in the 

training sequence (Nearing and Gupta 2015).  

A roadmap to investigate the relevance of deep learning to hydrology 

We propose three steps toward integrating deep learning into hydrologic science: testing on 

data; testing on benchmarks; and collaboration with the wider deep learning community.   



7 

 

Testing on hydrological numerical data will require the collection and organization of 

systematic and well-organized databases. Availability of such database has been one of the 

main reasons for the success of deep learning techniques (Krizhevsky et al. 2012). This could 

include measured data, but should also rely heavily on synthetic data sets.  Such synthetic 

hydrological databases are achievable, for example by building extensive stochastic 

simulations performed on heterogeneous media (Pirot 2017). Constitution of systematic and 

standardized field databases is also under way following the dynamics of critical zone 

observatories, open international normalization initiatives (Ames et al. 2012) and regulatory 

incentives. 

Testing on hydrological benchmarks can begin with target synthetic benchmarks described 

above. More complicated benchmarks can be developed according to their consistency with 

existing deep learning benchmarks, i.e. based on images or succession of images to describe 

processes (Mathieu et al. 2015). Hydrologic insight will be necessary to ensure that the 

benchmarks are relevant to important hydrological complexities, especially those related to 

the multi-scale nature of the hydrologic systems. 

Cross-disciplinary discussions with the deep learning community will be required to take full 

advantage of deep learning methods and to introduce hydrology as a topic of interest to that 

community. Data heterogeneity, in terms of quantities measured and scales, have already been 

mentioned and are critical to improve our ability to integrate diverse information sources. 

Hydrology offers an opportunity for the deep learning community to expand their interest 

beyond controlled and deterministic systems like the double pendulum (Schmidt and Lipson 

2009) to natural systems that are characterized by epistemic or aleatory uncertainties. The 

heterogeneous and sometimes chaotic nature of the hydrologic system makes it difficult to 

directly transpose existing results obtained on deterministic experiments but is an opportunity 

to assess deep learning potentialities.  
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Figure 

Figure 1: Deep learning seen as a complementary tool to assist iterative hydrological 

inference. Brown arrows show the classic methodology for understanding processes (here 

rainfall/runoff processes) by confronting hypotheses (explicit, process-based models) 

formulated as predictions to experiments and data. Deep learning could be used as implicit, 

data-based models trained (calibrated) on real datasets to perform predictions (blue arrows). It 

could provide a tool to explore and interpolate model simulations, or even model ensembles 

(green arrows). More prospectively, it might be applied to discover patterns in data, find 

trends in synthetic versus real data misfits to assist hydrologists in formulating testable 

hypotheses (orange arrows). This last possibility is seen as an unsupervised learning task as 

opposed to supervised learning for the other ones with real or synthetic datasets. 
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