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Abstract 

Aegean extension is a process driven by slab rollback that, since 45 Ma, shows a two-

stage evolution. From Middle Eocene to Middle Miocene it is accommodated by 

localized deformation leading to i) the exhumation of high-pressure metamorphic 

rocks from mantle to crustal depths, ii) the exhumation of high-temperature rocks in 

core complexes and iii) the deposition of Paleogene sedimentary basins. Since Middle 

Miocene, extension is distributed over the whole Aegean domain giving a widespread 

development of onshore and offshore Neogene sedimentary basins. We reconstructed 

this two-stage evolution in 3D at Aegean scale by using available ages of 

metamorphic and sedimentary processes, geometry and kinematics of ductile 

deformation, paleomagnetic data and available tomographic models. The restoration 

model shows that the rate of trench retreat was around 0.6 cm/y during the first 30 

My and then accelerated up to 3.2 cm/y during the last 15 My. The sharp transition 

observed in the mode of extension, localized versus distributed, which occurred in 

Middle Miocene correlates with the acceleration of trench retreat and is more likely 

a consequence of the Hellenic slab tearing documented by mantle tomography. The 

development of large dextral NE-SW strike-slip faults during the second stage of 

Aegean extension, since Middle Miocene, is illustrated by the 450 Km-long fault, 

recently put in evidence, offshore from Myrthes to Ikaria and onshore from Izmir to 

Balikeshir, in western Anatolia. Therefore, the interaction between the Hellenic 

trench retreat and the westward displacement of Anatolia started in Middle Miocene, 
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almost 10 Ma before the propagation of the North Anatolian Fault in the North 

Aegean. This raises a fundamental issue concerning the dynamic relationship between 

slab tearing and Anatolia displacement. 

Keywords: Blueschists, core-complexes, basins. 

1. Introduction 

The Aegean Tertiary tectonic history, from a dynamic point of view, corresponds to back-arc 

extension driven by slab rollback (Royden, 1993; Jolivet and Faccenna, 2000; Faccenna et al., 2003, 

2014; Brun and Faccenna, 2008). Extension started around 45 Ma ago (Brun and Sokoutis, 2010) 

and accommodated up to 600 km of trench retreat (Jolivet and Brun, 2010; Jolivet et al., 2013). 

Extension followed the closure of the two oceanic domains of Vardar and Pindos in Cretaceous-

Eocene (Dercourt et al., 1993; Channell and Kozur, 1997; Robertson, 2004) leading to the stacking 

of three continental blocks that from top to base are: Rhodopia, Pelagonia and Adria (Fig. 1). 

 

Figure 1 - The three main continental blocks of Aegean: Rhodopia, Pelagonia and Adria. 

Tomographic models of the underlying mantle image a single slab (e.g. Wortel and Spakman, 2000; 

Piromallo and Morelli, 2003; Widiyantoro et al., 2004) indicating that the convergence of 

continental blocks, now separated by two suture zones, has been accommodated by a single 

subduction. During subduction rollback, the Pelagonia and Adria crust panels were fully detached 
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from the downgoing lithospheric mantle and moved back to surface, resting directly on top of 

asthenosphere (Brun and Faccenna, 2008; Tirel et al., 2013). 

In the present study we show that Aegean extension occurred in two main stages, from Middle 

Eocene to Middle Miocene and since Middle Miocene. The significant large-scale features that 

characterized these two stages of extension are defined in terms of sedimentation, deformation and 

metamorphism. It is argued i) that the major dynamic change that occurred in Middle Miocene, 

resulted from an acceleration of trench retreat that is more probably responsible for the observed 

transition between localized and distributed modes of extension and ii) that the likely cause of this 

acceleration due to slab tearing coeval with the onset of Anatolia westward displacement. 

2. The two main stages of Aegean extension 

The first plate kinematic models of eastern Mediterranean (McKenzie, 1972, 1978; Le Pichon and 

Angelier, 1981) and the present-day displacement field from satellite geodesy (McClusky et al., 

2000; Hollenstein et al., 2008; Müller et al., 2013) show that the active Aegean extension results 

from the combined effects of the southwestward retreat of the Hellenic trench and the westward 

displacement of Anatolia along the North Anatolian Fault (NAF).  

The geological record shows that this interaction between two strongly oblique components of 

boundary displacement started in Middle Miocene (Dewey and Şengör, 1979; Şengör et al., 2005; 

Philippon et al., 2014), around 10 My before the NAF reached the Aegean (Armijo et al., 1999; 

Hubert-Ferrari et al., 2003; Şengör et al., 2005). On the other hand, the coeval extensional 

exhumation of high-pressure metamorphic rocks in the Southern Hellenides and high-temperature 

metamorphic rocks in the Rhodope (Brun and Sokoutis, 2007; Brun and Faccenna, 2008) started in 

Middle Eocene (see review of data in Jolivet and Brun, 2010 and Philippon et al., 2012). This brief 

summary of the Aegean extension history during a large part of the Tertiary indicates a process that 

has not been continuous, neither in time nor in space. This is illustrated by a striking difference in 

the distribution of Paleogene and Neogene sedimentary basins at Aegean scale (Fig. 2) suggesting 

that a major change in the dynamics of Aegean extension occurred in Middle Miocene, more 30 My 

after its onset. 

2.1. Stage 1: Paleogene basins and ductile exhumation of metamorphic rocks 

Paleogene basins (Fig. 2a) that mostly contain Middle Eocene and/or Oligocene sediments are located 

i) on top of the Rhodopia block (Trace Basin: Görür and Okay, 1996; Siyako and Huvaz, 2007; Kilias 

et al., 2013); Vardar-Thermaikos Basin: Roussos, 1994; Carras and Georgala, 1998) and ii) on top of 

Pelagonia (Mesohellenic Trough: Doutsos et al., 1994; Ferrière et al., 2004) (Fig. 2a). 

The exhumation of core complexes (high-temperature metamorphism) and blueschists (high-

pressure metamorphism) (Figs. 3 and 4) resulted from significantly different mechanisms of 

development, primarily controlled by temperature-dependent rheology of the crustal units. 
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Figure 2 - Distribution of Paleogene (a) and Neogene (b) basins in the Aegean domain. 

The location of core complexes and high pressure belts in the Aegean, as well as their relative timing 

of exhumation, has important dynamic implications: 

 The Southern Rhodope Core Complex (SRCC) (Brun and Sokoutis, 2007) started to develop 

in Middle-Late Eocene in North Aegean when the Cycladic Blueschist Unit (CBU) started to 

exhume in central Aegean (Jolivet and Brun, 2010; Philippon et al., 2012). 

 The Central Cyclades Core Complex (CCCC) (Philippon et al., 2012) developed in central 

Aegean almost synchronous with the exhumation onset of HP-LT Phyllite–Quartzite Nappe 

(PQN) in Peloponnese and Crete (Jolivet et al., 2010). 

 The sense of shear and detachment dip, in core complexes, and sense of shear, in high-

pressure rocks, is top to SW in North Aegean (SRCC) (Brun and Sokoutis, 2007), to NE in 

central Aegean (CBU and CCCC) (Philippon et al., 2012) and to E and N in South Aegean 

(HP-LT PQN) (Jolivet et al., 2010). 

 The part of exhumation synchronous with ductile deformation ended in Middle Miocene in 

all types of metamorphic rocks, either high-temperature (SRCC and CCCC) or high pressure 

(CBU and HP-LT PQN) and whatever age of onset. 
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Figure 3 - The two core complexes (HT metamorphism) of the Aegean domain with 

corresponding PTt diagrams and related senses of shear. 

2.2. Stage 2: Neogene basins and dextral transtensional faulting 

The Neogene basins (Fig. 2b) whose deposition started in Middle Miocene constitute one of the 

most striking geological features of the Aegean domain, both onshore and offshore. They emplaced 

on all types of rock units (Paleogene basins, high-temperature or high-pressure metamorphic units, 

plutonic massives and volcanic buildups) of Rhodopia, Pelagonia and Adria and over around 1000 

km from Crete to Rhodope. The earlier deposits are Langhian-Serravalian in some basins but 

Tortonian sediments are present in most of them. Where structural data are available, field 

measurements or seismics, tectonic setting of most basins is extensional or transtensional (e.g. 

Mercier et al., 1987, 1989; Lyberis, 1984; Mascle and Martin, 1990; Koukouvelas and Aydin, 2002; 

Sakellariou et al., 2013). 

Low-temperature thermochronology ages, obtained by various methods (apatite and zircon fission-

track and U-Th/He on apatite and zircon) in high-temperature and high-pressure metamorphic units, 

which were exhumed during the first stage of extension, are dominantly Serravalian-Tortonian, over 

the whole Aegean (Brix et al., 2002; Wuthrich, 2009; Philippon et al., 2012; Marsellos et al., 2014). 

This indicates that metamorphic rocks of the SRCC, the CBU-CCCC and Peloponnese-Crete, whose 

onsets of exhumation were different, were reaching the surface in Middle-Late Miocene. 

The mode of extension during this second stage of Aegean extension is in strong contrast with the 

one that characterizes the first stage. Extension passed in Middle Miocene from the core complex 

mode to the wide rift mode (Buck, 1991; Brun, 1999), as demonstrated by the deposition of 

extensional or transtensional Neogene basins across the whole Aegean, offshore as well as onshore. 

The interruption of ductile exhumation in Middle Miocene, in all types of metamorphic rocks (HT 

as well as HP) whatever their age of onset, as well as the segmentation of the metamorphic units and 

the deposition of Neogene basins on top of them suggest that the transition between the two modes 

of extension was not progressive and likely occurred in a rather short delay. 
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Figure 3 - The HP metamorphic domain of Adria and Pelagonia blocks with corresponding 

PTt diagrams and related senses of shear. 

 

Fig. 4 - Major strike-slip faults and Neogene sedimentary basins in the Aegean Sea, as 

displayed by Aegean Sea bathymetry. 
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The Myrthes-Ikaria fault (MIF) (Philippon et al., 2012) that cut trough the whole Cyclades domain is 

the offshore extend of the onshore Ismir-Balikeshir transfer zone (IBTZ) (Sozbilir et al., 2010; Ersoy 

et al., 2012; Uzel et al., 2013) (Fig. 4). Lower (?)-Late Miocene sedimentary-volcanic basins were 

deposited in this transtensional corridor, located at the northwestern border of the Menderes Massif 

(Ersoy et al., 2012). Simultaneously, grabens developed in the Menderes, accommodating a NE-SW 

direction of stretching. Over 450 km, from Myrthes Basin to Balikeshir, this dextral strike-slip fault 

zone was active since Middle Miocene –i.e. around 10 My before the arrival of the NAT in the North 

Aegean. Whereas there is no direct evidence to identify when displacements ceased on this fault zone, 

it can be hypothesized that this occurred around 5 Ma when the NAF fully localized (Şengör et al., 

2005), in agreement with the youngest ages of exhumation recorded by low-temperature 

thermochronology in the Cyclades (Philippon et al., 2014). 

3. Discussion-Conclusion: Acceleration of slab rollback 

The restoration of displacements using the numerous data sets available (paleomagnetism, kinematic 

indicators and geochronology) (Brun and Sokoutis, 2010 and re-evaluation by Brun et al., 2012) 

shows that an acceleration of trench retreat started in Middle Miocene (Fig.5). The rate of trench 

retreat that was rather low, around 0.6 cm.y-1, during the first stage of extension increased to around 

1.7 cm.y-1 between Middle Miocene and Pliocene, reaching 3.2 cm.y-1 during the last 5 Ma. 

This acceleration of trench retreat (i.e. extensional boundary displacement), first by a factor 2 after 

Middle Miocene and then by a factor 5 after Pliocene, was more likely responsible for the observed 

change in the mode of extension, from localized to distributed - i.e. from core complex to wide rift 

(Buck, 1991; Brun, 1999; Tirel et al., 2006, 2008; Kydonakis et al., 2015). 

 

Fig. 5 - Modes of extension as a function of the rate of trench retreat. 

The acceleration of trench retreat is more likely related to the Hellenic slab tearing whose rather 

complex geometry was recently evidenced by S-wave tomography (Salaün et al., 2012). Whereas 

the exact timing of slab tearing is difficult to constrain, the sudden change in the mode of extension, 

which is associated with the acceleration of slab retreat, strongly supports that slab tearing should 

have started to develop earlier, possibly in Early Miocene, to become fully efficient from 15 Ma 

onward. 

The transtensional deformation pattern (Fig. 4) that results from the interaction between Hellenic 

trench retreat and Anatolia westward displacement and that is still active in the Aegean took place 

in Middle Miocene, as previously argued by Dewey and Şengör (1979) and Şengör et al. (2005). 

Consequently, the westward displacement of Anatolia was coeval with the acceleration of trench 

retreat. Whereas the North Anatolian Fault plays a major role in the present-day kinematic pattern, 

the 450 km-long Myrthes-Ikaria Fault-IBTF (Fig. 4) was the first large dextral strike-slip fault zone 
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to develop. Its location close to the Izmir-Ankara suture zone and parallel to it strongly suggests that 

the suture zone was acting as weak zone able to localize displacements at the onset of Anatolia 

westward displacement; as illustrated by the laboratory experiments of Philippon et al. (2014). 

However, this interaction between two plate boundary displacements raises a fundamental issue: 

What is the dynamic relationship between slab tearing and Anatolia displacement? Which one 

controlled the development of the other? 
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Abstract 

Six normal fault zones, with throws ranging from a few meters up to 50 m, were 

studied within an active, open pit, lignite mine in Ptolemais. Each fault was mapped 

20 times over a period of five years because at intervals of ca. 3 months working faces 

are taken back between 20 and 50 m exposing fresh fault outcrops for mapping. 

Various resolutions of photographs and structural measurements were imported into 

a fully georeferenced 3D structural interpretation package, resulting in aseismic scale 

and outcrop resolution 3D fault volume with outcrop and panoramic photographs 

acting as the seismic sections in equivalent seismic surveys. Low resolution 3D models 

for the fault system structure at mine scale and higher-resolution 3D models for the 

fault zone structure were produced after geological interpretation and they can be 

used for qualitative and quantitative analysis. 

Keywords: Normal faults, Fault geometry, 3D structural model, Kardia lignite mine. 

Περίληψη 

Έξι ζώνες κανονικών ρηγμάτων, με μεταπτώσεις που κυμαίνονται από λίγα έως 50 

μέτρα, μελετήθηκαν μέσα σε ένα ενεργό, επιφανειακό λιγνιτωρυχείο στην Πτολεμαΐδα. 

Κάθε ρήγμα χαρτογραφήθηκε 20 φορές σε χρονικό διάστημα πέντε ετών, σε διαστήματα 

περίπου 3 μηνών, καθώς κάθε πρανές μετακινείται προς τα πίσω κατά 20 με 50 μέτρα 

λόγω της εκσκαφής, εκθέτοντας καινούργιες εμφανίσεις ρηγμάτων για χαρτογράφηση. 

Φωτογραφίες και τεκτονικές μετρήσεις εισήχθησαν σε ένα λογισμικό, με πλήρη 

γεωαναφορά στο τρισδιάστατο χώρο, με αποτέλεσμα ένα τρισδιάστατο όγκο ρηγμάτων 

“σεισμικής κλίμακας” αλλά με ανάλυση πεδίου, με τις φωτογραφίες να ενεργούν σαν 

σεισμικές τομές στις αντίστοιχες σεισμικές έρευνες. Χαμηλότερης ανάλυσης 3D μοντέλα 

παρήχθησαν μετά την γεωλογική ερμηνεία για την ποιοτική και ποσοτική μελέτη της 

δομής του συστήματος ρηγμάτων σε κλίμακα ορυχείου και υψηλότερης ανάλυσης 3D 

μοντέλα, για τη μελέτη της δομής της ρηξιγενούς ζώνης σε κλίμακα πεδίου. 

Λέξεις κλειδιά: Κανονικά ρήγματα, Γεωμετρία ρηγμάτων, Τρισδιάστατο μοντέλο, 

Λιγνιτωρυχείο Καρδιάς. 
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1. Introduction 

Faults are zones of extreme internal complexity and heterogeneous strain distribution over a wide 

range of scales. Although this complexity does not lend itself to a simple description to which all 

faults conform, a simplified and generalised description of faults is required to achieve a better 

understanding of fault evolution and for many practical applications, such as the production of oil 

from faulted reservoirs and earthquake hazard assessment (Childs et al., 2009). 

A common feature of faults on all scales is the frequent presence of segmented fault arrays 

containing two or more fault segments which can be hard-linked by discrete faults or soft-linked by 

zones of continuous deformation (Peacock and Sanderson, 1991; Walsh and Watterson, 1989, 1990, 

1991; Childs et al., 1995, 1996; Walsh et al., 2003). Fault linkage is a dynamic process that evolves 

with increased displacement (Peacock and Sanderson, 1994; Childs et al., 1995; Walsh et al., 1999; 

Kristensen et al., 2008). 

In the published literature many attempts have been made to investigate and understand the fault 

zone structure and evolution by qualitative and quantitative analysis of various fault components 

such as thickness, length and displacement. Such data in the published literature are mainly derived 

from outcrop studies (2D), detailed geological-fault maps (2D), digital elevation models combined 

with satellite images (2D) and seismic interpretations (3D). 

Data derived from outcrop studies are characterized by their high resolution but lack of a three-

dimensional context, in contrast to seismic data which can be fully 3D but have very low resolution 

compared to outcrop data (the best quality seismic data is unable to resolve faults with throws less 

than 5 m). 

The goal of this paper is to examine the levels of and controls on geometrical complexity of fault 

zones by using an exceptional dataset which allows a truly 3D analysis of the fault zonesat outcrop 

resolution on a seismic scale. A few similar attempts for 3D investigation of faults at outcrop 

resolution have been made in the past (Koestler and Reksten, 1995; Childs et al., 1996; Kristensen 

et al., 2008). 

2. Data and Methodology 

2.1. Basic Geology and Structure of Kardia Mine 

The dataset used in this study is derived from Kardia mine which is one of the four, active, open pit, 

lignite fields in Ptolemais Basin, W. Macedonia, Greece(Fig. 1).The Ptolemais Basin is an elongated 

intramontane lacustrine basin and is part of Florina-Ptolemais-Servia Basin which is a NNW-SSE 

trending graben system that extends over a distance of 120 km from Bitola in the Former 

Yugoslavian Republic of Macedonia (F.Y.R.O.M.) to the village of Servia, south-east of Ptolemais, 

Greece (Pavlides, 1985). The depression is filled with a 500-600 m (in a few areas up to about 1000 

m) thick succession of sediments which are divided into the lower (Upper Miocene to Lower 

Pliocene) formation, the Pliocene middle formation and the Quaternary upper formation. The 

Pliocene middle formation contains the upper and lower lignite seams which alternate with clays, 

marls, sandy marls and sands (Pavlides, 1985; Koufos and Pavlides, 1988). 

The basin is bounded by two fault systems which can be related to two extensional episodes 

(Pavlides and Mountrakis, 1987; Mercier et al., 1989). The first, Late Miocene episode resulted in 

the origin of the basin in response to NE-SW extension, which was subsequently subjected to NW-

SE extension during the Quaternary, resulting in the NE-SW-striking faults which currently bound 

a number of sub-basins, including the basins of Florina, Ptolemais and Servia (Pavlides and 

Mountrakis, 1987, Fig. 1). 
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Figure 1 - Simplified geological sketch map of the Florina-Ptolemais-Servia Basin (after 

Pavlides, 1985; IGME, 1997 and Steenbrink et al., 2000). The black arrow indicates the 

Kardia lignite field. 

Kardia lignite field is situated approximately in the central part of the Neogene lignite basin and is 

dominated by the later faults which have approximately E-W orientations. In all, six normal fault 

zones with throws ranging from a few meters up to 50 m displace the lignite-marl sequence in the 

mine (Fig.2). 

The faults form soft-linked systems (Walsh and Watterson, 1991), characterised by a prevalence of 

fault tips as opposed to branch-points, with ductile bed rotations between faults accommodating 

transfers of strain between adjacent faults (Fig.3). Quantitative analysis of the faults indicates that 

these systems are extremely soft and that for a given throw, these faults are both shorter and more 

segmented than many other fault systems (Fault Analysis Group, 2011; Delogkos, 2011). 

2.2. Sampling 

As mentioned above, Kardia mine is one of the four active lignite fields in Ptolemais Basin, and 

every few months fresh fault outcrops are exposed due to the continuous mining operations. 

Kardia mine consists of six principal benches and faces which are in average 2.5 km long. The mine 

faces, with a height of ca. 20 m, step to the west from the bottom to the top of the mine and are 

separated by the benches which have a width of ca. 100 m (Fig. 4). In each bench, a huge excavator 

undertakes the excavation of lignite and moves each face back by about 30 m each pass, exhuming 

fresh outcrop. In addition to the main faces, small faces, with heights up to 4 m, are well exposed in 

trenches which are created by the excavators in the benches between the main faces (see benches 4 

and 5 in Fig. 4). 
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Figure 2 – a) A vertically exaggerated photomontage of the mine showing the faults and 

some of the horizons, b) a detailed map of the fault zones oriented in sympathy to the 

photomontage and c) rose diagram summarising the strikes of the normal faults (Fault 

Analysis Group, 2011). 

 

Figure 3 – Cartoon of a soft-linked fault system, characterised by ductile rotation of faults 

and beds at all stages of deformation (Walsh and Watterson, 1991). 

 

Figure 4 – Cartoon showing a cross-section of Kardia mine. The dashed line shows the faces 

and the benches as they were in June 2010 and the thick line as they were in July 2012. Light 

grey colour shows the area that has been excavated from June 2010 to July 2012. 

We have visited and mapped the mine 20 times from June 2010 until now, at intervals of ca. 3 

months, during which time each face is taken back between 20 and 50 m and fresh fault outcrops 

are subsequently available for mapping. The data collected during each fieldwork campaign are 

various resolutions of photographs, accurate GPS locations, structural measurements and 

interpretations for all the faults and all the other structures observed in the mine, such as normal or 
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reverse drag. In this paper, the area that is covered by our data is from June 2010 until July 2012, 9 

field seasons in total, and it is shown by light grey colour in Fig. 4. 

Various resolutions of photographs include: a) A set of panoramic photographs of the whole mine 

which are taken from a distance of ca. 1.5 km away from the mine faces (Fig. 2.a).b) Outcrop-scale 

photographs which are taken from a distance of ca. 40 m from each fault, perpendicular to the face 

and using a meter-stick at the bottom of the face for scale. c) Very high resolution panoramic 

photographs for individual faults showing in detail the complexity of the fault zones such as multiple 

fault slip surfaces and lignite or marl smear. 

Structural measurements in the field referred to orientations (strike, dip and dip direction) for all 

main fault slip surfaces, synthetic and antithetic faults. Detailed measurements of orientations were 

recorded for observable changes in strike and/or dip along the faults at outcrop-scale; abundant 

vertical strike refraction is a characteristic of these faults. Changes in bedding due to faulting, such 

as bed rotations within fault zones, normal and reverse drag, were also recorded. 

2.3. Workflow for inputting data into a fully georeferenced 3D structural 

interpretation package 

Three-dimensional models of the fault system were produced by placing our data within a fully 

georeferenced 3D structural interpretation package. For this purpose, TrapTester, a standard oil 

industry software package for fault analysis is used. This software is designed to input, process and 

interpret seismic and well data but not photographs of real-world outcrops. Therefore a non-standard 

import workflow had to be applied. 

Given that the XY coordinates for each fault and for the main structures at each individual face in 

the mine are known, as are the values of absolute altitude at the bottom and top of the mine faces, 

then the field dataset can be transferred into TrapTester software. 

Data covering the whole length of each mining face had to be imported into TrapTester, in order to 

build mine scale 3D structural model. Each one of the mining faces is cropped from the panoramic 

photographs and then is imported into TrapTester, in a similar way that the 2D seismic surveys are 

imported. 

In more detail, two main stages must be followed in order to import the cropped pictures, and the 

higher resolution close-up pictures, into TrapTester. The first stage is to import the 2D navigation 

lines of a 2D survey, each of which corresponds to a picture, into TrapTester and then the second 

stage involves definition of the Z-range (“seismic access definition (SIAC)”) for each picture. 

 

Figure 5 – An example of part of a mine face cropped from a panoramic photograph, 

showing the data required in order to import it into TrapTester. The XiYi coordinates and 

the corresponding pixels of the faults and the left and right end of the picture are needed to 

create the navigation lines. The XiYi coordinates for the left and right end of the picture are 

not known but they can easily be calculated as the number of pixels per meter is known. The 

altitude at the bottom of the picture is known and again using the pixels per meter, the 

altitude at the top can be calculated. 

2D navigation lines are in fact the map locations of the cropped pictures, and they are based on the 

XY coordinates of the faults, left and right ends of each picture and the corresponding horizontal 

distances in pixels of each picture (Fig. 5). Concerning the SIAC, each one contains information 
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about Z-shift and Z-scaling which are based on location of the top of the picture with respect to the 

chosen datum (Z-shift) and number of pixels per vertical meter (Z-scaling). 

Structural measurements are imported into TrapTester as tri-mesh surfaces which are displayed in 

3D space with the dip and dip-azimuth values as they are measured in the field. The information 

required for loading these data is XYZ locations and orientation of each structural measurement. 

These tri-mesh surfaces are a very useful guide for optimizing the precision of the structural 

interpretations. Additionally they are used to illustrate the complexity of the fault zone structures, 

such as the strike refraction. 

Empty sections can be imported into the 2D survey and they can be used for fault and/or horizon 

interpretations in areas where there are no available outcrop data but the interpretations are very 

predictable. Including them in the creation and analysis of the 3D fault volume, makes the final 

results more realistic and accurate. A particular use of empty sections is for placing faults tips located 

between two consecutive mapped mining faces. 

3. Results 

The result of importing our dataset into the 3D structural interpretation package is a volume similar 

to a 2D seismic survey, a data type common in the oil and gas industry. The difference is that our 

dataset, while at a seismic scale, has outcrop-scale resolution. 

This exceptional dataset is used for fault and horizon interpretations. Each fault zone is characterized 

by about 60 cross-sections perpendicular to ca. 900 m long and20 to 80 m high areas of the fault 

surface (Figs. 6 and 7). 

 

Figure 6 – Map view of the interpreted fault zones from Kardia mine. Interpretations are 

based on data derived from nine field seasons and cover the area shown by the navigation 

lines (red lines). South-dipping faults are shown with blue colour and north-dipping faults 

with green colour. 

The layering of lignite and marl makes these sediments ideal for detailed displacement analysis 

along the faults in cross-section and along strike as individual horizons are continuous across the 

scale of the structures investigated. 
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Various resolutions of fault interpretations and respectively 3D models can be made. We use this 

dataset to build low resolution 3D models for the fault system structure at mine scale (Fig. 7) and 

higher-resolution 3D models for the fault zone structure (Fig. 8). The fault zone is a part of a fault 

system. 

 

Figure 7 – Lateral view of the 3D TrapTester model showing: a) All the mining faces, which 

are cropped from the panoramic photographs and are imported into TrapTester like seismic 

sections. b) As (a) but including fault and horizon interpretations. c) Interpretation of the 

data showing five fault zones, the majority of which comprise several fault surfaces, which 

displace the lignite-marl sequence up to 40 meters. The blue fault surfaces dip to the south, 

and green fault surfaces dip to the north. The transparent red surface, which is displaced by 

the faults, is one of the interpreted horizons and is located near the middle of the exposed 

stratigraphic sequence. 

 

Figure 8 – Lateral view of the 3D TrapTester model showing a fault zone with maximum 

throw of ca. 36 m. This is actually an almost intact relay zone and consists of two main fault 

surfaces, a minor breaching fault and some synthetic and antithetic faults. a) All data. b) All 

the interpreted faults. The variation of the colours on the two main fault surfaces shows the 

displacement distribution (red is high displacement). The displacement is transferred 

between the relay bounding faults by bed rotation (c) and small offset along the minor 

breaching fault. c) One of the interpreted horizons showing the bed rotation within the relay 

zone. The variation of the colours shows the depth (red in deeper). 

In order to build the 3D fault system model, minor synthetic and antithetic faults are ignored and 

only the main faults and the main structure of the lignite-marl sequence which was displaced and 
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deformed because of faulting are interpreted. In contrast, for the high resolution 3D fault zone 

models, all the fault structures are taken into account. 

The final 3D fault models can be used for qualitative and quantitative analysis of the fault system 

and fault zone structure providing insights on the growth, propagation, evolution and geometrical 

complexity of faults, which will provide a basis for improving conceptual models of fault systems 

and fault zones, which underpin many practical applications such as the production of oil and gas 

from faulted reservoirs and earthquake hazard assessment. 

4. Conclusions 

Using this exceptional dataset from the active opencast lignite field in the Ptolemais basin, we 

construct 3D fault zone models at outcrop resolution on a seismic scale by importing various 

resolutions of photographs and structural measurements into a fully georeferenced 3D structural 

interpretation package. These models allow us to investigate and analyse fault zone structure in 

3D,andat outcrop resolution, a combination impossible to accomplish using either outcrop or seismic 

data. 
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