

Structure of the plumbing system at Tungurahua volcano, Ecuador: Insights from phase equilibrium experiments on July-August 2006 eruption products

Joan Andújar, Caroline Martel, Michel Pichavant, Pablo Samaniego, Bruno Scaillet, Indira Molina

▶ To cite this version:

Joan Andújar, Caroline Martel, Michel Pichavant, Pablo Samaniego, Bruno Scaillet, et al.. Structure of the plumbing system at Tungurahua volcano, Ecuador: Insights from phase equilibrium experiments on July-August 2006 eruption products. Journal of Petrology, 2017, 58 (7), pp.1249-1278. 10.1093/petrology/egx054. insu-01583929

HAL Id: insu-01583929 https://insu.hal.science/insu-01583929v1

Submitted on 8 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Structure of the plumbing system at Tungurahua volcano, Ecuador: Insights from phase equilibrium experiments on July-August 2006 eruption products

Joan Andújar^{1,*}, Caroline Martel¹, Michel Pichavant¹, Pablo Samaniego², Bruno Scaillet¹, Indira Molina³

- 1. Institut des Sciences de la Terre d'Orléans, CNRS-Université d'Orléans-BRGM, 1a rue de la Férolerie, 45071, Orléans France
- Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, F-63000 Clermont-Ferrand, France
- 3. Instituto Geofísico, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito, Ecuador

*Corresponding author: Joan Andújar

phone number: (+33) 2 38 25 54 04

Fax: (+33) 02 38 63 64 88

e-mail address: Juan. Andujar@cnrs-orleans.fr

Caroline Martel e-mail address: <u>Caroline.Martel@cnrs-orleans.fr</u>
Michel Pichavant e-mail address: <u>pichavan@cnrs-orleans.fr</u>
Pablo Samaniego e-mail address: <u>pablo.samaniego@ird.fr</u>

Bruno Scaillet e-mail address: <u>bscaille@cnrs-orleans.fr</u>
Indira Molina e-mail address: <u>indimolina08@gmail.com</u>

ABSTRACT

Understanding the plumbing system structure below volcanoes and the storage conditions (temperature, pressure, volatile content and oxygen fugacity) of erupted magmas is of paramount importance for eruption forecasting and understanding of the factors controlling eruptive dynamics. Phase equilibria experiments have been performed on a Tungurahua andesite (Ecuador) to shed light on the magmatic conditions that lead to the July-August 2006 eruptions and the parameters that controlled the eruptive dynamics. Crystallization experiments were performed on a representative August 2006 mafic andesite product between 950-1025°C, at 100, 200 and 400 MPa and NNO+1 and +2, and water mole fractions in the fluid (XH₂O) from 0.3 to 1 (water-saturation). Comparison of the natural phenocryst assemblage, proportions and phenocryst compositions with our experimental data indicates that the natural andesite experienced two levels of ponding prior to the eruption. During the first step, the magma was stored at 400 MPa (15-16 km), 1000°C, and contained ca. 6 wt % dissolved H₂O. In the second step, the magma rose to a confining pressure of 200 MPa (8-10 km), where subsequent cooling (down to 975°C) and water-degassing of the magma led to the crystallization of reversely zoned rims on pre-existing phenocrysts. The combination of these processes induced oxidation of the system and overpressure of the reservoir, triggering the July 2006 eruption. The injection of a new, hot, volatile-rich andesitic magma from 15-16 km into the 200 MPa reservoir shortly before the eruption, was responsible for the August 2006 explosive event. Our results highlight the complexity of the Tungurahua plumbing system in which different magmatic reservoirs can co-exist and interact in time and are the main controlling factors of the eruptive dynamics.

INTRODUCTION

Volcanic eruptions in populated areas represent a major threat to human beings, having both regional economic and social impacts and global consequences. Nowadays, the monitoring of active volcanoes helps to forecast volcanic eruptions with several days or weeks of anticipation. However, geophysical techniques do not allow prediction of the eruptive style of an incipient or on-going eruption. This task usually involves consideration of the eruptive history of the volcano, which very often records significant variations in eruptive style during a single event, or during the lifetime of a volcano. Regardless of the volume of material extruded, the eruptive activity displayed by a volcanic system falls into two broad categories:

either purely effusive events, typically generating lava flows or domes, or explosive ones that generate Strombolian, Vulcanian or Plinian eruptions with associated pyroclastic flows. The transition between effusive and explosive activity has been the focus of numerous petrological, numerical simulation and experimental studies (e.g., Jaupart & Allègre, 1991; Martel *et al.*, 1998; Andújar & Scaillet, 2012b). Proposed causes involve differences in the volatile content of the magma, compositional and volatile stratification of the magma chamber, changes in vent conditions, changes in levels of magma storage or magma compositions, processes occurring during magma ascent to the surface (e.g. magma degassing in the conduit, differences in ascent velocity, variation in the rheological properties of the magma; Sparks *et al.*, 1994; Martel & Schmidt, 2003; Martel, 2012; Castro & Mercer, 2004; Scaillet *et al.*, 2008; Andújar & Scaillet, 2012b; Andújar *et al.*, 2013).

Since large explosive events likely result from the interplay of various processes, their forecasting and understanding still represent a major challenge to the volcanological community. Additionally, the causes leading to either effusive or explosive eruptions may be different for different volcanoes (depending on the geodynamic context, magma composition and gas content, involved magmatic volumes, etc...), so that there is a necessity to address the eruptive dynamics on a specific basis for each volcanic system. From this work we aim to understand the factors that control the eruptive dynamics (i.e. effusive *versus* explosive, long-lasting intermediate explosive *versus* short-lived highly explosive events) at Tungurahua, Ecuador, with emphasis on the role played by dissolved volatiles, magma composition and relative location of the reservoir(s) below the edifice.

TUNGURAHUA VOLCANO: GEOLOGICAL SETTING AND VOLCANIC ACTIVITY

Active volcanoes monitored by a permanent sensor network provide a variety of data that illuminate the on-going magmatic processes occurring below the edifice (e.g., El Hierro in Canary Islands, López *et al.* 2012; Martí *et al.* 2013). However, current geophysical and geochemical techniques still need to be improved in order to discriminate between magma or gas movement within a volcanic edifice, especially when the seismic signals do not have simple decaying oscillations as the one shown by Molina *et al.* (2004) for Tungurahua volcano. In other cases, the density of the geophysical network or the presence of aquifers at near surface levels make it difficult to identify the presence of deep magma reservoirs and, or,

conduits. This is the case of Tungurahua volcano (5023 m above sea level - asl), located in the Eastern Cordillera of the Ecuadorian Andes, one of the most active volcanoes in Ecuador, along with other large edifices like Cayambe, Antisana, Cotopaxi and Sangay (Fig.1). During the last millennia, Tungurahua volcano frequently emitted andesitic magmas during medium-to-high explosive eruptions (VEI \leq 3) that generate tephra fallouts, pyroclastic flows and lahars, together with blocky lava flows (Hall *et al.*, 1999; Le Pennec *et al.*, 2008; 2016). These eruptions display a minimum recurrent time of at least one pyroclastic flow-forming eruption per century and include the historical eruptions of AD 1640, 1773 and 1916-1918. However, the volcano stratigraphic sequence also records the occurrence of much more explosive events (VEI \geq 4), characterized by regional tephra fallout and pumice pyroclastic flows that involve dacitic magmas (Hall *et al.*, 1999; Le Pennec *et al.*, 2013), the most recent being the large AD 1886 dacitic plinian event (Le Pennec *et al.*, 2016; Samaniego *et al.* 2011).

After 75 years of repose, Tungurahua initiated a new eruptive period in 1999, which is still on-going (March 2017, Fig. 1; IGEPN reports at www.igepn.edu.ec/tungurahua-informes). From 1999 to 2005 the eruptive activity typically consisted of recurrent low-to-moderate explosive phases, characterised by a strombolian style, with short duration (canon-like) explosions that fed small volcanic plumes reaching up to 7 km above the summit, and local ash fallout. In April 2006, a new unrest period started with seismicity moving from deep (15 km) towards very shallow depths (< 5 km) (IGEPN reports) as well as a change in the degassing pattern of the volcano (Arellano *et al.*, 2008), ending with the July-August 2006 paroxysmal phase that generated a ~15 km asl sub-plinian column, a regional tephra fallout and several pyroclastic flows that descended over the flanks of the volcano (Samaniego *et al.*, 2011; Eychenne *et al.*, 2013; Hall *et al.*, 2013).

The eruptive products from the 1999-2005 events have a homogeneous andesitic composition (58-59 wt.% SiO₂). In comparison, samples from the historical eruptions of Tungurahua (AD 1641, 1773, and 1918) display a wider silica content (56-59 wt% SiO₂). In contrast, during the 2006 paroxysmal eruption, two different types of magma were erupted: a very minor dacitic (61-65 wt% SiO₂) component (< 1 vol.%, Eychenne *et al.*, 2013), with characteristics akin to those of the AD 1886 products, dispersed into a homogeneous and volumetrically dominant mafic andesite (58-59 wt% SiO₂).

In this study, we have experimentally investigated the phase relationships of the 2006 andesite from Tungurahua, in order to determine the conditions of magma storage and differentiation (pressure, temperature, volatile fugacities) and shed light on the structure of the plumbing system. Along with these volcanological aspects, Tungurahua and other volcanic edifices of the Northern Volcanic Zone of the Andean arc in Ecuador (i.e., Antisana, Pichincha, Sangay, Cayambe) are known to erupt geochemically distinctive products, characterized by primitive magnesian andesites with Mg#>50 (Kelemen *et al.* 2014) with an adakitic affinity (e.g., Bourdon *et al.* 2002a,b; Garrison & Davidson 2003; Samaniego et al. 2005; Hidalgo *et al.* 2012, among others). Intermediate to silicic adakitic magmas have been previously studied (e.g., Mt. Pinatubo, Scaillet & Evans, 1999; Prouteau & Scaillet, 2003) but mafic compositions with an adakitic affinity such as those erupting at Tungurahua have been left virtually uncharacterized experimentally. Although similar rocks such as high-Mg andesites have been investigated by Blatter & Carmichael (1998), Moore & Carmichael (1998) and Wood & Turner (2009), data on the Tungurahua andesite presented in this study contribute to the experimental database for mafic magmas close to the adakitic series.

Previous Constraints on the Tungurahua plumbing system

Although Tungurahua is a permanently monitored volcano characterized by a high eruption frequency since 1999, to date there is no consensus about magma storage conditions, in terms of depth, temperature, or gas content. Molina *et al.* (2005) obtained a tomographic image of Tungurahua volcano and inferred that the presently active magmatic conduit system probably coincides with vertically aligned earthquake hypocenters that span over 4-5 km below the summit. These are located just above the vertically oriented high-velocity core interpreted as the source zone recharging the shallow magmatic system which is located 5 to 6 km below the summit. Molina *et al.* (2005) suggested that a main magma body is likely to exist beneath this high-velocity zone, although the resolution of tomographic images is poorer at such depths. For instance, hypocenter locations of volcano-tectonic earthquakes are extensively scattered from 6-17 km below the summit, in a large region likely to host a magma body (see *Figure 5d* from Molina *et al.*, 2005). Recent data have shown that eruption events recorded in 2010 were triggered 6 km below the summit (Kumagai et al., 2011), which is interpreted as the depth at which magma is subjected to pressure disturbances, further resulting in fragmentation of the magma at shallower depths. In addition, Biggs *et al.* (2010) using synthetic aperture radar

interferometry (InSAR) images of Tungurahua during the February 2008 eruption, reported a

rapid uplift associated with a shallow sill-like magmatic source inside the Tungurahua cone.

Based on petrological constraints on the July-August 2006 eruptive products,

Samaniego et al. (2011) estimated pre-eruptive temperatures between 950-1015°C and

pressures of 200-250 MPa (i.e. ~7-10 km below the summit) for the magma reservoir. Myers

et al. (2014), based on the study of melt inclusions (MI) trapped in mineral phases (olivine,

pyroxene, plagioclase) from basaltic andesite and andesite of the 2006 and 2010 eruptions,

reported dissolved H₂O contents up to 4 wt% and pressures of 50-100 MPa for Tungurahua

magmas. It should be noted that these are minimum saturation pressures since CO₂ was not

measured or was present in very low amounts (< 250 ppm; Myers et al., 2014).

Lastly, the study of InSAR images acquired during the 2003-2009 period at

Tungurahua allowed Champenois et al. (2014) to identify a large-scale (at least 20 km in

diameter) uplift region, located just to the west of the Tungurahua stratovolcano (but

including it). These authors suggested that the observed deformation was due to a recharge

episode into a magma body located at 11-12 km below sea level (i.e. 15-16 km below the

summit of Tungurahua).

Altogether, the above suggest that the Tungurahua magmas are stored over a wide

range of depths ranging from 6 to 17 km below the summit (at pressures from 50 to 400

MPa). Thus, our phase equilibrium experiments were aimed at covering the conditions that

match these estimations, i.e. pressures between 100 and 400 MPa, temperatures of 950-1025-

°C, water contents from saturated to nominally-dry and oxygen fugacity (fO₂) between

NNO+1 and NNO+2.

EXPERIMENTAL SAMPLE

Bulk-rock

We used as starting material the scoriae lapilli products of the August 2006 episode

corresponding to sample TUNG-PS-51B of Samaniego et al. (2011). Further analytical and

petrographic work was performed to complete the available data concerning the petrography

and chemistry of the August 2006 products (see below for the analytical conditions). The

sample is a Mg-rich mafic andesite (58 wt % SiO₂; Table 1). It exhibits an adakitic affinity

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua

(Defant & Drummond 1990), marked by elevated MgO (4.5 wt %) and Na₂O (3.9 wt %), high

Sr (570 ppm) and La/Yb (12) and a low Y (17 ppm; Table 1). TUNG-PS-51B and the other

Tungurahua samples plot mid-way between typical Cenozoic adakites and island arc magmas

in geochemical discrimination diagrams (Drummond et al., 1996). In a Mg#gl/whole-rock

(=100*MgO/MgO+FeO*) vs SiO₂ diagram, TUNG-PS-51B plots in the same group as other

mafic Tungurahua magmas (Fig 1c), demonstrating that our sample is representative of the

August 2006 products, as well as of the basaltic-andesite magmas erupted at Tungurahua. The

good match between the TUNG-PS-51B bulk-rock and glass inclusion compositions (Fig. 1c)

suggests that our starting material represents a "true" liquid characteristic of the Tungurahua

magmatic system.

Phase assemblage and compositions.

The mineralogy is dominated by phenocrysts of plagioclase (Pl), clinopyroxene (Cpx),

orthopyroxene (Opx), and magnetite (Mt); some crystals of resorbed olivine (Ol) and ilmenite

(Ilm) are also present (Table 1, see Supplementary Data Appendix natural sample). This

assemblage is set in a highly vesiculated matrix.

Plagioclase.

Pl appears as euhedral to subhedral crystals with sizes up to 1 mm. The main population of Pl

has an average composition of An_{51±4}Ab_{46±3}Or_{3±0.5}, with slight normal zoning (cores of An₆₀

and rims of An₅₁. Fig. 2a). In addition, the presence of reversely zoned plagioclases in the

andesite, with cores of An₅₁ and rims of An₆₅₋₇₀, is a remarkable feature (i.e., Samaniego *et al.*

2011). We stress that this Ca-rich composition was only found as part of Pl rims and never as

single isolated crystals.

Clinopyroxene.

Cpx appears as euhedral to subhedral crystals with sizes similar to those of plagioclase. They

have a homogeneous core-to-rim composition of $En_{41\pm1}$ $Fs_{18\pm2}$ $Wo_{41\pm1}$, and a Mg# of 69 ± 1

(Mg#=100* Mg/(Mg+Fe*) in moles; Fig. 2, Table 1). However, 40-50 vol.% of the crystals

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

show a reverse zoning pattern with rim compositions of En_{46±1}Fs_{11±1}Wo_{43±0.5} and Mg# of

81±2 (Fig 2b). These compositional variations encompass those already observed for the same

2006 mafic andesite by Samaniego et al. (2011).

Orthopyroxene.

The main Opx population (~500 μm to up to 1 mm) has a composition of En_{67±2.5}Fs_{30±1}Wo₃,

and a Mg# of 69±1. However, when compared to Cpx, most crystals do not show any

compositional variation over their long axis (Fig. 2b). Only rare Opx crystals have a more

Mg-rich composition of En_{74±1}Fs_{23±11}Wo₃, and an Mg# of 76±1 (Fig. 2b). As for Cpx, both

Opx populations appear as isolated crystals within the sample. A few of them, however,

display complex textural relationships with Cpx. We identified a Cpx crystal (En₄₁Fs₁₈Wo₄₁,

Mg# = 69) surrounded by an Opx of composition $En_{74}Fs_{22}Wo_3$ and Mg# = 77 (Fig. 2b).

Again, Opx compositional zoning matches that which was reported by Samaniego et al.

(2011) on 2006 mafic andesite products.

Ti-Magnetite.

Mt is quite scarce, appearing as euhedral to subhedral crystals with sizes between 100-200

μm. The main population has a homogeneous composition, with FeO* (total Fe as FeO) =

75±1 wt %, $TiO_2 = 11\pm0.2$ wt % and $Cr_2O_3 = 0.54\pm0.2$ wt %, being similar to that previously

found by Samaniego et al. (2011).

Matrix glass

The residual glass has an average composition of silicic andesite, with 63 wt % SiO₂, 16 wt %

Al₂O₃, 6 wt % FeO*, 7 wt % Na₂O+K₂O, and 2.3 wt % MgO (Table 1). This glass

composition is, within analytical error, the same as found for the same eruption product by

Samaniego et al. (2011; see Supplementary Data appendix natural sample).

Other mineral phases

Dispersed within the vesiculated matrix, we occasionally found (<0.5 vol.%; Samaniego et

al., 2011) OI phenocrysts, normally zoned from Fo_{80±2} cores to Fo_{75±2} rims (Samaniego et al.,

2011; Myers et al., 2014). These crystals show clear evidence of reaction, i.e. they have

resorbed rims overgrown by an Opx of composition En₇₁Fs₂₅Wo₄ and Mg# = 75

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

(Supplementary Data Appendix natural sample). The origin of such textural relationships and

compositional zoning of Ol and related Opx is addressed subsequently.

We also found a partially resorbed Ilm crystal (41 wt % TiO₂, 49 wt % FeO*)

surrounded by a Mt crystal with a composition similar to that of the main population ($TiO_2 =$

13 wt%, Mg# = 5). Taking into account the Ilm-Mt equilibrium test of Bacon & Hirschmann

(1988) and using the model of Sauerzapf et al. (2008), this pair yields a T of 1001°C and a fO₂

of NNO+0.92 (Supplementary Data Appendix natural sample).

Phase proportions.

Petrographic information, along with mineral and glass compositions, was used to estimate

the phase (crystals and glass) proportions in the andesite magma by mass-balance. The

andesite contains 56 wt % glass and 44 wt % phenocrysts including 28 wt % Pl (An₅₁), 7.5 wt

% Opx (En₆₇), 7.1 wt % Cpx (En₄₁) and 1.1 wt % Mt, (Table 1). If the Ca-rich (An₆₅₋₇₀) Pl and

the Mg-rich Cpx (En₄₆) and Opx (En₇₄) are used instead of the main compositions, the

calculated crystal content decreases to 32 wt % (20 wt % Pl, 6 wt % Opx, 5 wt % Cpx and 1.5

wt % Mt).

EXPERIMENTAL APPROACH AND ANALYTICAL TECHNIQUES

Starting material

The starting glass material for our experimental study was prepared by crushing and milling

several pieces of andesitic sample (about 10 g) followed by a two-step fusion of the resulting

powder at 1400°C (with grinding in between) in a Pt crucible at atmospheric pressure for three

hours. The composition and homogeneity of the dry glass was verified by electron microprobe

(EPMA) and found to be similar to the X-ray fluorescence (XRF) analysis (Table 1;

Samaniego et al., 2011). The glass was finally ground and stored at 120°C in an oven to avoid

atmospheric hydration.

Capsules

All experiments were run in 1.5 cm long, 2.5 mm inner diameter, 0.2 mm walled Au capsules

to minimize Fe loss under reduced conditions. Capsules were prepared following standard

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua

procedures (e.g. Scaillet *et al.*, 1995; Martel *et al.*, 1998; Andújar & Scaillet, 2012a) where H₂O is added first, followed by silver oxalate as a source of CO₂ in H₂O-undersaturated charges and finally 30 mg of starting glass powder. The fluid/silicate ratio in the capsules was maintained constant (~10 wt %) to ensure fluid-saturated conditions, which were always achieved by adding 3±0.5 mg of fluid (H₂O+CO₂) to the 30 mg glass powder. For each run, different XH₂O_{in} [=initial H₂O/(H₂O+CO₂) in moles] were explored by adding different proportions of starting H₂O-CO₂ mixtures to the capsule in order to cover an XH₂O_{in} range of 1-0.3, hence different melt water content (H₂O_{melt}) in the experimental glasses (Table 2). Capsules were then arc-welded and inserted in an oil bath to check for possible leaks. Successful capsules were left in an oven at 100°C for a few hours to allow H₂O to homogenise within the charge before the experiments. We checked systematically the weight of all charges prior to and after the experiments. Capsules were considered successful when the weight difference between each step agreed to within 0.0004 g (which is about the precision of the analytical balance), confirming that no volatiles escaped during the experiments.

Experimental equipment

A total of 62 crystallization experiments were conducted in a vertical Internally Heated Pressure Vessel (IHPV), using Ar as pressurizing medium, which was mixed with different amounts of H₂ at room temperature to achieve the desired fO_2 conditions. We used a double-winding high-temperature molybdenum furnace, which ensures near-isothermal conditions (gradient <2-3°C) along a 3 cm long hotspot. Temperature and pressure were continuously recorded with two S-type thermocouples and a pressure transducer, with an accuracy of ±5°C and ±20 bars, respectively. A typical run contained 4 to 5 capsules loaded with silicate+fluid components plus an extra capsule containing a Ni-Pd-O redox sensor (see Taylor *et al.*, 1992) to monitor the prevailing fH_2 at the desired T-P. Each set of charges was run at the selected T-P- fH_2 for an average of about 90 hours and terminated by a drop quenching (Table 2; Andújar & Scaillet, 2012a; Di Carlo *et al.*, 2006). At the end of all experiments, we systematically observed a rise of the total pressure indicating that the sample holder had fallen into the bottom cold part of the vessel and that drop quench was successful (quench rate >100°C/s). After the experiments capsules were checked for leaks by weight comparison (see above), opened, and some pieces of the run products were embedded in epoxy and polished for optical

observation and subsequent Scanning Electron Microscope (SEM) and electron microprobe

(EMP) analyses.

Analytical techniques

The natural rock, starting glass and experimental run products were analysed using a SX-

FIVE electron microprobe at ISTO-BRGM in Orléans (France) using an acceleration voltage

of 15 kV, sample current of 6 nA, and 10 s as counting time. Calibration was performed by

using the following standards: Si+Na in albite, Ti+Mn in MnTiO₃, Al in Al₂O₃, Fe* in Fe₂O₃,

Mg in MgO, Ca in andradite, K in orthoclase, Cr in Cr₂O₃, Ni in NiO and P in apatite. A

focused beam was employed for analysing minerals (both natural and experimental), whereas

a defocussed 10µm beam was used for experimental glasses to minimize alkali migration (i.e.,

Devine et al., 1995; Andújar & Scaillet, 2012a). In addition, crystal-free or near-liquidus

charges (i.e., T10, T28) were analysed first in each probe session to assess the correction due

to alkali migration for the determination of H₂O_{melt} in crystal-bearing charges with the "by-

difference" method (Devine et al., 1995).

We calculated phase proportions (wt %) by performing mass-balance calculations with

the XLFRAC programme (Stormer & Nichols, 1978) for charges where we could successfully

analyse the composition of the mineral and glass phases. However, in charges having small

crystal sizes (<5 µm), it was difficult to obtain electron microprobe analyses without glass

contamination, in particular for Mt and Pl. In this case, we used the compositions of minerals

from other charges run at the same P-T-fH₂ conditions (Table 2). Glass composition is

normalized to a 100 wt % anhydrous basis to avoid any compositional effect due to the

dissolved H₂O_{melt}. Calculated phase proportions (wt %), and the corresponding sums of

residuals (ΣR^2 , usually ≤ 0.5) are given in Table 2.

Water content, fH_2 , fO_2 in the experimental charges

The different H₂O+CO₂ mixtures (thus the different XH₂O_{in}, Table 2) in the capsules allowed

us to explore different melt water contents (H2Omelt), which were determined as follows. In

runs containing low-to-medium crystal contents, the H₂O dissolved in glass was obtained

from the difference between the glass analyses and 100 wt % (cf. Devine et al., 1995), as

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

determined by using near-liquidus charges (i.e., typically T10 and T28) as standards. In charges characterised by a high crystal content (>25-30 wt %; Table 2) and an homogeneous distribution of the mineral phases (see below), EMP analysis of the residual glass was difficult and so, the "by-difference" method could not be applied. Thus, for internal consistency and to restrict the use of different methodologies, the water content dissolved in all charges was determined by using the method of Scaillet & Macdonald (2006). This was achieved first by calculating H₂O_{melt} for each experimental charge under water-saturated conditions and for any given P-T by using the water solubility model of Papale et al. (2006). Second, these data were used along with f^oH₂O (the fugacity of pure water at the relevant P-T, Burnham et al. 1969) to calibrate an equation of the form f^oH₂O (in bars)=a(H₂O_{melt} (wt %)^b, in which the retrieved coefficients were a = 51.19 and b = 2.06 ($R^2 = 0.991$). Third, for each water-undersaturated charge, we used the relationship $fH_2O = f^0H_2O \times XH_2O_{in}$ to calculate the fH_2O for each charge, and the respective H₂O_{melt} was retrieved by inverting the above equation: H₂O_{melt}(wt %)= $(fH_2O/51.19)^{1/2.06}$. With H_2O_{melt} calculated using this methodology, the main source of uncertainty concerns the determination of fH_2O and the assumption that $XH_2O = XH_2O_{in}$ (see Scaillet & Macdonald, 2006). To assess the impact of these parameters on calculated H₂O_{melt}, we systematically varied fH₂O and XH₂O and found that changes of 100 to 300 bars on fH₂O or ± 0.15 in XH₂O_{in} produce a variation on H₂O_{melt} ≤ 0.7 wt %.

We stress that the above procedure is equivalent to assuming ideal behaviour in the H₂O-CO₂ fluid phase, and neglects the amount of H₂O lost by the fluid through dissolution into the melt: hence, retrieved values must be considered as maximum melt water contents (e.g., Berndt *et al.*, 2005; Scaillet & Macdonald, 2006; Andújar *et al.*, 2015). However, the water contents calculated following this procedure and those obtained with the standard "bydifference" method were found to agree within relative analytical errors (±1.3 wt %; Table 2).

As mentioned before, we used Ni-Pd-O sensors to determine the prevailing fH_2 and, ultimately, the fO_2 specific to each charge (see below). Two contrasted redox conditions were explored: (1) NNO+0.79 (± 0.31 log units, here after referred to as NNO+1 experiments) and (2) NNO+1.90 (± 0.19 log units see Table 2, here after referred to as NNO+2 experiments); these values corresponding to the water-saturated charges. However, for each P-T- fH_2 , the fO_2 decreases with decreasing aH_2O (or XH_2O_{in} ; see Scaillet $et\ al.$, 1995; Freise $et\ al.$, 2009; Andújar & Scaillet, 2012a). Thus, the water-undersaturated charges have a fO_2 lower than the values above (see Scaillet $et\ al.$ 1995; Berndt $et\ al.$ 2005; Andújar & Scaillet 2012a). In detail, calculated fO_2 for charges from the NNO+1 experiments ranged from NNO+1.22 to NNO-

0.85 whereas, for the NNO+2 experiments, the fO₂ varied from NNO+0.94 to NNO+2.2

(Table 2; for more details see Andújar & Scaillet, 2012a; Andújar et al., 2015).

Overall, the crystallization experiments successfully covered the range of conditions

inferred so far for the Tungurahua magmatic system: temperature: 950-1025°C; pressure: 100-

400 MPa; fO₂: NNO+1 - NNO+2 (Table 2).

Attainment of equilibrium

The experimental procedure followed in this work is similar to that of previous studies where

near-equilibrium conditions were achieved (e.g., Martel et al., 1999; Costa et al., 2004;

Berndt et al., 2005; Andújar et al., 2015). Different observations from our run products show

that near-equilibrium conditions were also attained in this study: the euhedral shape of

crystals, the homogeneous distribution of phases within the charges, the smooth variation of

phase proportions and compositions with changes in experimental conditions, the fact that

calculated crystal-liquid exchange coefficients (Kd) for olivine, clinopyroxene and

plagioclase are similar to those from the literature when calculated under similar conditions

(see below), and the small sum of residuals (generally ≤ 0.5 ; Table 2) of mass-balance

calculations, the latter indicating that no major phase has been omitted. Experimental run

durations (≤ 115 hours) are within the range of other studies performed on andesitic

compositions for which near-equilibrium conditions have been also claimed (e.g. Moore &

Carmichael, 1998; Almeev et al., 2013).

RESULTS

Mineral phases identified in run products include Ol, Cpx, Opx, Pl, Amph (amphibole), Mt,

and Ilm. For each charge, the phase assemblage and calculated proportions are given in Table

2. The relationships between the different mineral phases and the effect of T, P, H₂O_{melt}

content and fO_2 on their stability are displayed in a series of isobaric-polythermal or

isothermal-polybaric diagrams (Figs. 3a to f). The position of the different mineral saturation

curves was first defined from the identified phase assemblages and then refined by using the

phase proportions from Table 2.

Phase relationships at fO₂~NNO+1

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua

At 200 MPa, Ol, Mt and Cpx are the liquidus phases and dominate the hottest and water-rich part of the diagram (960-1020°C; 5-6 wt % H₂O; Fig. 3a). A decrease in H₂O_{melt} and temperature results in the crystallization of Pl+Opx, followed by Ilm until temperatures slightly below 980°C and H₂O_{melt} < 3 wt % are reached. Amph is stable only below 960°C and at water-rich conditions (5-6 wt % H₂O_{melt}), being replaced by Opx at lower H₂O_{melt} (Fig. 3a). Olivine is not stable below 980°C and 5 wt % H₂O_{melt}, and the assemblage Opx+Pl+Cpx+Mt+Ilm is stable in the dry part of the diagram. A decrease in pressure from 200 to 100 MPa enhances the Pl stability field, where Pl co-crystallizes with Ol+Cpx at nearliquidus conditions (Fig. 3b), and the Mt-in curve is depressed by ~25°C. Ol stability also extends to a lower temperature than at 200 MPa. At 1000°C, Ol, Cpx and Pl are joined by Opx and Ilm when H₂O_{melt} is decreased. Increasing pressure from 200 to 400 MPa has an important effect on the phase relationships. Liquidus conditions are achieved at 1025°C and ~9 wt % H₂O_{melt}. At this temperature, the sequence of crystallization upon decreasing H₂O is: Cpx, Opx, Mt and then Pl, this last phase appearing later in the sequence than at 200 MPa. Ol is not part of the liquidus phase assemblage at 400 MPa. It has a restricted stability field, appearing at ≤1010°C and for H₂O_{melt} contents between 9 and 7.5 wt % (Fig 3c). Ilm appears at the same temperature as Ol, but at $H_2O_{melt} \le 5$ wt % (Fig 3c).

Phase relationships at fO₂~NNO+2

Increasing fO_2 to NNO+2 affects mineral stabilities to various extents depending on the prevailing pressure. At 100 and 200 MPa, such an increase in fO_2 suppresses IIm crystallization, and strongly shifts the OI stability field towards the water-rich part of the diagram ($H_2O_{melt} > 4$ -6 wt %; Fig. 3a, b). As a result, at lower H_2O_{melt} contents, the dominant phase assemblage is Opx+Cpx+Pl+Mt (Fig. 3a). At 400 MPa, OI is conspicuously absent in charges run at NNO+2 (Fig. 3d). Mt becomes the liquidus phase at 1025°C and 9 wt % H_2O_{melt} , and is followed by Opx+Pl at lower H_2O_{melt} (Fig. 3d). Amph crystallizes at 1000°C and ~9 wt % H_2O_{melt} , and its stability domain at 950°C expands toward lower H_2O_{melt} (up to 6 wt %) in comparison with at NNO+1). It is worth noting that Cpx is not stable below 960°C, being replaced either by Opx (+Pl+Mt) or by Amph (+Pl) depending on H_2O_{melt} (Fig. 3d), with a possible peritectic relationship between Amph and Cpx (e.g., Rutherford, 2008).

Crystal content and phase proportions

Liquidus conditions (i.e., 0 wt.% crystals) have been attained at 1025°C, 400 MPa, ~ 9 wt % H_2O_{melt} and $fO_2\sim NNO+1$ (Supplementary Data Appendix crystal content, Table 2) whereas

the maximum amount of crystals (45 wt %) occurs at 1025°C, 400 MPa, 6.6 wt % H₂O_{melt} and $fO_2\sim$ NNO+1. In general, the crystal content of the charges varies with the experimental parameters, mostly T, H₂O_{melt} and P, whereas a change in fO_2 from NNO+1 to NNO+2 does not have a major influence (see Supplementary Data Appendix crystal content). Lowering H₂O_{melt} and temperature at a given pressure increases the crystal content (see for instance the 200 and 400 MPa charges; Table 2). For charges with the same range of H₂O_{melt} (4-6 wt %) at the same temperature (i.e., 1000°C), the crystal content is positively correlated with pressure (appendix crystals; Table 2). Mt and Ol are present in low amounts, never exceeding 4 wt %. At the onset of crystallization, Opx is present in low amounts (< 1 wt %), its proportion progressively increasing (up to 9 wt %) with decreasing H₂O_{melt}. The amount of Cpx increases rapidly with decreasing H₂O_{melt} and temperature, achieving a maximum of 13 wt % (see charge T36 in Table 2); however, the increase is not as high as that for plagioclase, which rapidly becomes the dominant mineral phase when present (Table 2).

Phase compositions

Experimental phase compositions (minerals and glass) are displayed in Tables 3 to 9 and their variation with experimental variables (P-T- fO_2 and H_2O_{melt}) is discussed in the following sections.

Olivine

Experimental OI ranges in composition from Fo₆₄ to Fo₈₁. The maximum Fo content was reached at 1000°C, 200 MPa and $fO_2\sim NNO+2$, whereas the lowest Fo was obtained at 950°C, 200 MPa, $fO_2\sim NNO+1$, both charges, however, containing similar H_2O_{melt} (~6 wt %, Table 3). At a given pressure and temperature, a decrease in H_2O_{melt} decreases drastically the Fo content of OI; this is exemplified by the series at 200 MPa and NNO+1 in which a decrease of ~2 wt % in H_2O_{melt} decreases the Fo content of OI by about ~13 mol% (Fig 4a). A decrease in temperature also affects OI composition at a given H_2O_{melt} and pressure. At higher temperatures (1000°C-975°C) and H_2O_{melt} , the effect of T is maximum: a decrease of 25°C reduces by 5 mol% the Fo content. In lower temperature (thus more crystallized) charges, the influence of temperature becomes less important (Table 3, Fig 4a; Andújar *et al.*, 2015; Berndt *et al.*, 2005; Di Carlo *et al.*, 2006).

In our work, the effect of changing fO_2 remains modest since the difference between

the two differents series is generally ~ 1.5 log unit (Table 2). Notwithstanding, this fO_2

variation produced changes in Ol composition of 2-4 mol% Fo at a given pressure,

temperature and H₂O_{melt} (i.e., see charges T10 and T45b at 1000°C/200 MPa and 6 wt %

 H_2O_{melt}).

At any given temperature, fO_2 and pressure, the CaO content in Ol increases with

decreasing H₂O_{melt}, Fo content, and increasing crystal content (hence with SiO₂ enrichment,

see below), in agreement with previous experimental studies (Fig. 4b; Libourel, 1999; Berndt

et al., 2005; Di Carlo et al., 2006; Feig et al., 2006; Andújar et al., 2015).

The average olivine-liquid exchange (Kd^{Fe^*-Mg} ; using FeO* as total iron) is 0.27

(varying between 0.22 to 0.31); whereas when Kd^{Fe*-Mg} is calculated with melt Fe²⁺/Fe³⁺

estimated by the method of Kress & Carmichael (1991), the exchange coefficient varies

between 0.34-0.45 (Table 3). These values are in good agreement with previous experimental

studies (Sisson & Grove, 1993; Pichavant et al., 2002; Barclay & Carmichael, 2004; Feig et

al. 2006), confirming that our calculated fO₂ values are correct and that equilibrium was likely

attained in our experimental runs.

Clinopyroxene

According to the classification of Morimoto (1989) our experimental Cpx are diopsides and

augites with compositions in the range $\text{En}_{41.48} \, \text{Fs}_{10.29} \, \text{Wo}_{23.44}, \, \text{Mg} = 62.83, \, \text{TiO}_2 = 0.3.1 \, \text{wt}$

% and $Al_2O_3 = 2-5$ wt % (Table 4; Fig 5).

The main parameter affecting the Cpx composition is H₂O_{melt} since a variation of 5 wt

% produces a change of 10 mol% Mg#; for example, in series conducted at 400 MPa (charges

T33 to T36, Table 2) the Cpx changes from $En_{46}Fs_{10}Wo_{43}$, Mg# = 82 to $En_{42}Fs_{18}Wo_{40}$, Mg#

= 70 when H_2O_{melt} is reduced from 9 to 7 wt %.

As stated previously, a decrease in H₂O_{melt} increases the crystal content of the charges

and the residual melt evolves towards more silicic compositions (Table 2; Supplementary

Data Appendix crystals, see below). Thus, apart from H₂O_{melt} variations, the Cpx is also

sensitive to the degree of evolution of the liquid. A progressive enrichment in the SiO₂

content of the residual melt produces Cpx that are richer in En, Fs and TiO2 and poorer in

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

Al₂O₃, Mg#, and Wo (Fig. 5), as observed in previous studies (Pichavant & Macdonald, 2007; Andújar *et al.*, 2015). As for olivine, the modest increase in *f*O₂ has little effect on Cpx composition (Fig 5, Table 4) and crystals from charges run at NNO+1 and NNO+2 partially overlap. However, compared to Ol, the effect of pressure on Cpx composition is more marked; a decrease in pressure produces En- and Wo-richer and Fs-poorer Cpx, in particular at pressures < 200 MPa and H₂O_{melt} < 5 wt % (Fig. 5). In contrast, changes in temperature have small effects on Cpx (< 5 mol% of En, Fs and Wo) when compared to those resulting from H₂O_{melt} and pressure variations (see above). Calculated Kd^{Fe*-Mg} of clinopyroxene-liquid pairs (calculations performed using FeO*in both melt and Cpx) vary between 0.17 to 0.32, with an average value of 0.24, again in agreement with previous results (Table 4; Berndt *et al.*, 2005; Di Carlo *et al.*, 2006; Andújar *et al.*, 2015)

Orthopyroxene

Representative analyses of experimental Opx are reported in Table 5. Since the Mg# of coexisting Opx and Cpx correlate with each other, within 1-4 mol%, in charges run at the same T, P, H_2O , fO_2 (Tables 4, 5), we expect that the variation of intensive parameters generates compositional changes in Opx that are similar to those in Cpx. The Mg-richest Opx has a composition $En_{77}Fs_{19}Wo_4$, Mg# = 80 at $1025^{\circ}C$, 400 MPa, NNO+1 and for 8 wt % H_2O_{melt} , whereas the Mg-poorest (En₆₂Fs₃₃Wo₄, Mg# = 65) crystallised at the same fO_2 but at somewhat lower T (975°C), P (200 MPa) and H₂O_{melt} (4 wt %); all experimental Opx compositions lie in between these two end-members (Fig. 6, Table 5). In a similar way as for Cpx, a decrease in H₂O_{melt} of 1 wt % (at a given T and P) increases En- and Mg# and decreases Fs by 10 mol% (i.e., see charges T2 toT4 at 975°C, 200 MPa), while Wo remains unaffected. A similar compositional change is produced by a temperature decrease of about 75°C (i.e., charges T51, T39, T44 at 400 MPa, NNO+2). In comparison, an fO₂ increase from NNO+1 to NNO+2 has a smaller compositional effect on Opx (\leq 5 mol% on En), being more marked at 100 MPa than at 200-400 MPa. In those charges where Opx and the coexisting melt compositions were available, the calculated Kd^{Fe*-Mg} exchange coefficient between crystal and liquid (again, FeO* in both melt and Cpx were used for the calculations) yielded an average value 0.23 (0.18-0.28; Table 5).

Plagioclase

Changes of Pl composition as a function of H_2O_{melt} are shown in Fig. 7. Experimental Pl compositions are in the range $An_{42-69}Ab_{31-53}Or_{0.8-6}$, the most calcic composition crystallizing at

1000°C, 100 MPa, NNO+1 and 4 wt % H₂O_{melt} and the least calcic at 950°C, 400 MPa,

NNO+2 and 6 wt % H₂O_{melt} (Fig. 7, Table 6). As already observed in previous experimental

studies performed on hydrous basaltic andesite melts, Pl composition is highly sensitive to

changes in H₂O_{melt} (Sisson & Grove, 1993; Pichavant et al., 2002). This behaviour is well

illustrated by the runs at 100 MPa in which the An content decreases by almost 15 mol% (and

reciprocally Or increases) when H₂O_{melt} decreases by 1 wt % (Fig. 7). Compared to water,

changing pressure and temperature produces less marked compositional variations (≤ 5 mol%

An), whereas a change in fO₂ has no significant effect (Fig. 7, Table 6). The calculated Pl-

liquid Ca-Na exchange Kd in our experimental charges varies between 0.94 to 1.95, having an

average value of 1.5, again in agreement with values found for similar basaltic andesite

compositions (Table 6; e.g., Sisson & Grove, 1993; Pichavant et al., 2002).

Fe-Ti Oxides

Modal abundances of Fe-Ti oxides are rather low in our experimental charges, never

exceeding 3 wt % at NNO+2 and 1.5 wt % at NNO+1 (Table 2). In addition, in most charges,

Fe-Ti oxides are of small size ($\leq 5 \mu m$), and this prevented us from obtaining reliable

analyses, particularly for Ilm whose occurrence was mainly detected by SEM (Table 7). Thus,

below we only address the effect of experimental parameters on Mt composition.

As for other Fe-Mg phases, variations in H₂O_{melt} affect the Mg# of Mt: a decrease in

H₂O_{melt} decreases Mg# and increases the TiO₂ content (Fig. 8). An increase in fO₂ (NNO+1 to

NNO+2) at a given P and T slightly increases Mg# (< 1%), whereas the TiO₂ content is

decreased by ca. 50 % (Fig. 8). Magnetites crystallised at NNO+1 have distinctly higher TiO₂

contents compared to those at NNO+2 (Fig. 8). The effect of P can only be assessed in

charges conducted at NNO+2 and 200-400 MPa, due to the small number of charges in which

Mt could be analysed at NNO+1. Results show that a decrease in pressure produces Mt with

lower TiO₂ and higher Mg# (Fig. 8, Table 7).

Amphiboles

Experimental Amph is a Ti- or Fe-tschermakitic hornblende according to the classification of

Leake et al. (1997). The limited amount of data available on Amph prevents us from

discussing in detail the compositional dependence of amphibole with intensive parameters.

Nevertheless, for a given experimental series at constant T and P, a decrease in H₂O_{melt}

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

produces amphiboles with lower Mg# and slightly higher Ti (Table 8). Traditionally, changes in Al^{IV} and Al^{VI} in Amph have been related to changes in pressure and temperature, respectively, and used as thermobarometers (i.e., Ridolfi & Renzulli, 2012). Whereas pressures calculated on our experimental 400 MPa amphiboles following Ridolfi & Renzulli (2012) are in relatively good agreement with experimental values (387 to 481 MPa), pressures calculated for the 200 MPa amphiboles overestimate experimental values by ~200 MPa (386-396 MPa). Calculated temperatures also overestimate experimental values by 50 to 100°C (Table 8). As pointed out by Erdmann *et al.* (2014), this likely reflects the influence of melt composition, which is not considered in the formulation of Ridolfi & Renzulli (2012). In particular, the model of Ridolfi & Renzulli (2012) has not been calibrated with andesitic melts as rich in Mg as those of Tungurahua or with andesite compositions such as found at Santorini (i.e., Andújar *et al.*, 2015).

Residual glasses

Based on the classification of Le Bas & Streckeisen (1991), our experimental glasses have andesitic to rhyolitic compositions (59-70 wt % SiO₂), some straddling the boundary between the trachyandesite and trachydacite fields (Table 9). The compositional evolution of the residual glasses is mostly controlled by variations in T and H₂O_{melt} (or by the degree of crystallization) and, to a lesser extent, by P and fO2. Between 1025 and 975°C, at a fixed P and fO2 glasses become enriched in SiO2, TiO2, Na2O, K2O and depleted in MgO, CaO and FeO* (Fig 9). The Al₂O₃ content also decreases with H₂O_{melt}, in particular at or below 200 MPa, where a decrease of H₂O_{melt} by 1 wt % decreases by 3 wt % the Al₂O₃ content of the residual liquid (see charges T54 to T57 at 100 MPa). At higher P (400 MPa) and at an fO₂ of NNO+2, a decrease of either 75°C or 4 wt % in H₂O_{melt} is required to produce Al₂O₃ variations of the same magnitude in the residual glass. Ti and Fe* display a different behaviour depending on the prevailing fO₂ and temperature. Decreasing the H₂O_{melt} at NNO+1 produces a slight increase in TiO₂ and a decrease in FeO*; runs at NNO+2, 400 MPa and 1025-1000°C show broadly the same behaviour. However, at NNO+2, a decrease in T down to 950°C drastically reduces (by 50%) the Ti and Fe* contents of the glass, leading to a strong depletion of the liquid in these elements (Fig. 9).

In addition to the influence of fO_2 , there are differences in melt evolution with temperature that can be related to changes in mineral assemblages and phase proportions. The progressive melt evolution between 975-1025°C reflects the crystallization of the

Pl+Cpx+Opx±Mt-Ilm-Ol mineral assemblage in this temperature interval. Upon lowering

temperature, the amount of fractionating Cpx continuously increases, being joined by Opx

and coupled with crystallization of a low proportion (< 2 wt %) of Fe-Ti oxides. This results

in a progressive enrichment in SiO₂, TiO₂ and Na₂O+K₂O in the melt and a depletion in CaO,

MgO and FeO*, Al₂O₃ being little affected. The onset of Pl appearance, and its crystallization

as the dominant fractionating phase, accelerates the evolution of the melt, reduces the Al₂O₃

and further increases the alkali content (Fig 9). At 400 MPa and NNO+2, Amph

crystallization (in proportions that exceed 12-15 wt % and are up to 25 wt % at 950°C),

combined with Pl in similar amounts, is responsible for a sudden SiO₂ increase in the melt

(+10 wt % compared to charges at 1025°C and 7 wt % H₂O melt).

DISCUSSION

Pre-eruptive conditions of the 2006 andesitic products at Tungurahua

To understand the storage conditions of the 2006 andesite and the magmatic processes

occurring prior to the eruption, we compare our experimental data with information

previously gained from the natural rock. The comparison of experimental and natural mineral

assemblages, compositions, and modal proportions provides tight constraints on the pre-

eruptive conditions (T, P, H₂O_{melt}, fO₂) of the Tungurahua magma prior to the 2006 eruption.

We first use the information gained from the main unzoned population of phenocrysts

(Cpx+Opx+Mt+Pl) and the core composition of the zoned crystals (Cpx, Pl, Opx) to infer the

crystallization conditions of these minerals. Second, we constrain the origin of the Mg-rich

(Cpx, Opx) and Ca-rich (Pl) phenocryst rims. Rims and cores correspond to two different

crystallization environments that are also separated in time. Unzoned minerals and crystal

cores formed early during a first episode. These were later subjected to a second

crystallization episode, leading to cores being resorbed with subsequent overgrowth of Mg-

rich and Ca-rich rims. Below, we use the experimental results to constrain these two

successive crystallization stages.

Early crystallization stage: main population of phenocrysts and crystal cores

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

The natural andesite is dominated by the mineral assemblage Pl+Cpx+Opx+Mt. From our experimental results, this phase assemblage is stable from 975 to 1025°C at > 200 MPa (for NNO+1) or, in the same temperature range, at 100 MPa (for NNO+2). The lack of Amph in the mafic andesitic products of the 2006 eruption sets a robust low temperature constraint for the crystallization of the main phenocryst assemblage. For an fO_2 of NNO+1, this minimum temperature can be placed at about 960-970°C (Fig. 3a; c), increasing to higher values (up to 1000-1010°C) if magmatic conditions are more oxidizing than NNO+1 (Fig. 3d). However, since the phase assemblage Pl+Cpx+Opx+Mt is encountered over a relatively wide range of experimental T, P, fO_2 and H₂O_{melt}, additional constraints such as the compositions of mineral phases are used below to refine the pre-eruptive conditions of phenocryst crystallization.

The En content of natural Cpx (En₄₀₋₄₂) is closely reproduced at 400 MPa, 1000°C with 6-8 wt % H₂O_{melt} (Fig. 5b). Only the 400 MPa data reproduce the natural Cpx compositional range. Besides En, the other natural Cpx compositional parameters (Fs, Wo, Mg#) are also reproduced at these conditions (see Tables 2, 4; Fig. 5). Among the 400 MPa charges, two at NNO+1 (T35-36) and two at NNO+2 (T39-T40) contain Opx, Pl and glass with compositions that all approach their natural counterparts. The natural Opx composition (En₆₈) is best matched by the 1000°C, 400 MPa, 6 wt.% H₂O_{melt}, fO₂~NNO+0.13 charge (T36; Tables 2, 4, 5), as are the Ca-poor Pl (An₄₉₋₅₀; Fig. 7) and the andesitic residual glass (Fig. 9). Although we do not have the Mt composition in T36, the compositional trend defined by charges run at lower pressures (100-200 MPa) for the same oxygen fugacity (NNO+1) rules out an fO₂ as high as NNO+2, since Mt would have a too low TiO₂ compared to the natural composition (Fig 8c). This supports a temperature of 1000°C and an fO₂ of ~NNO for the early crystallization stage of the andesitic magma.

It should be noted that, for such conditions (1000°C, 400 MPa, 6 wt % H₂O_{melt}, NNO), the assemblage Cpx+Pl+Opx+Mt should coexist with small amounts of ilmenite (Fig. 3c). However, this mineral was only found in the rock as a resorbed crystal surrounded by Mt. This observation suggests that Ilm was indeed part of the early mineral assemblage but that the conditions of the system later became more oxidizing (see below).

As stated above, the assemblage Pl+Cpx+Opx+Mt is also stable at shallower conditions (P \leq 200 MPa; Fig. 3 a, b). However, such low pre-eruptive crystallization pressures can be ruled out since, at these pressures, Cpx and Pl are respectively Mg- (En \geq 43, Fig 5) and Ca- (An \geq 57, Fig 7) rich, outside the natural ranges. The difficulty of crystallizing

Ca-rich Pl in equilibrium with Mg-rich Cpx at 400 MPa can be explained by: (1) the relatively

low Ca/Na of our starting material (Table 1, see above) and (2) the fact that Pl is late in the

crystallization sequence at this pressure (Fig 3c). Thus, Pl crystallizes from melts depleted in

Ca because of Cpx crystallization, which limits An enrichment (Table 9). In contrast, when Pl

crystallizes near the liquidus and at low pressures (P ≤ 200 MPa), the residual melt has

enough Ca to precipitate high An Pl.

Late crystallization stage: Ca-rich plagioclase and Mg-rich pyroxene rims

Textural and compositional observations indicate that the Ca-rich Pl and the Mg-rich

pyroxene rims crystallized simultaneously in the andesitic magma. Our experimental data can

be used again to shed light about their crystallization conditions.

Pl has a large stability field under our explored experimental conditions. Nevertheless,

An-rich compositions (≥ 65 mol%, typical of Pl rims) were produced in only 3 charges: T15

(1000°C, 100 MPa, 4 wt % H₂O_{melt}, NNO+1), T54 (1000°C, 100 MPa, 4 wt % H₂O_{melt},

NNO+2) and T24 (975°C, 200 MPa, ~5 wt % H₂O_{melt}, NNO+1.7, Fig. 7). In comparison, at

400 MPa, the An content of Pl is \leq 60 (Fig. 7, Table 6) which implies that a pressure of 400

MPa is too high for crystallization of the Ca-rich rims.

For charges that reproduce the Ca-rich Pl compositions, the lack of Opx in the two

charges T15 and T54 indicates that 100 MPa is too low a pressure. Indeed, the mineral

assemblage at 100 MPa, 1000°C, 4 wt % H₂O_{melt} (Ol+Cpx+Pl±Mt) does not reproduce the

phenocryst assemblage (Fig. 3b, Table 2), the latter being only found in charge T24. Mt in

this charge has a composition (Mg#=5.4 and TiO₂ = 8 wt %), Opx is En₇₅Fs₂₁Wo₄, Mg# = 79,

Cpx $En_{46}Fs_{13}Wo_{40}$, Mg# = 78, these being in the range of the Mg-rich Cpx-Opx population

(rims and isolated crystals) of the natural mafic andesite (Tables 4 to 7). In addition, glass in

charge T24 also matches (within analytical errors) the glass composition reported by

Samaniego et al. (2011) and in this work for the August 2006 eruption products (see

Supplementary Data Appendix natural and Table 1). Therefore, the data consistently point to

a shallow origin for crystallizing the mafic rim compositions.

However, it is worth noting that under the conditions of charge T24, a small

proportion (<0.2 wt %) of Ol (Fo₇₇) is present together with the Mg- and Ca-rich mineral

assemblage (Table 2; Fig. 3b). It is emphasized that Fo₇₇ is in the range of compositions of

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

olivine rims (Fo_{75±2}; Fig. 4) which are commonly resorbed. Thus, there is a need to clarify the origin of olivine and the mechanism of olivine resorption in the plumbing system (see below).

Tungurahua's plumbing system

Comparison between our experimental data and the natural andesite allows us to constrain the storage conditions of the magma prior to the eruption. According to our results, the two texturally and chemically distinctive mineral populations crystallized at two different levels. The low-Ca PI (An_{50 \pm 5}), Mg-poor Cpx (En₄₀₋₄₂) and Opx (En₆₈) were generated at 1000°C, 400 MPa, 6±0.7 wt % H₂O_{melt}, ~NNO, i.e., at depths corresponding to 15-16 km for a rock density of 2500-2700 kg/m³. In contrast, the Mg-rich pyroxenes and Ca-rich Pl crystallized at somewhat lower temperatures (975°C), shallower depths (200 MPa, corresponding to 8-10 km), for a lower H_2O_{melt} (5±0.7 wt %) and under more oxidized conditions ($fO_2\sim NNO+1.7$). These estimates are in good agreement with tomography data of Molina et al. (2005) and with previous thermo-barometric estimates, which suggested ponding levels for the andesitic magma at 200-250 MPa (Samaniego et al., 2011). Our estimates for the deep crystallization stage (400 MPa, i.e. ~15-16 km deep) encompass those inferred from INSAR which suggest the presence of a large magmatic body at depths of 12-15 km below Tungurahua (Champenois et al. 2014). In contrast, melt inclusions in minerals such as Ol, Cpx, Opx and Pl have suggested pressures as low as ≤ 100 MPa (4 km depth) for the andesitic body (Myers et al. 2014). However, as stressed above, at these pressures, neither the natural mineral assemblage nor the phase compositions have been experimentally reproduced, which suggest that there is no permanently established magma reservoir in this pressure range. Our single Fe-Ti oxide temperature estimate (1000°C) and those of Samaniego et al. (2011) based on clinopyroxene-orthopyroxene equilibrium (1007 ± 14 °C), encompass the temperatures inferred experimentally for the andesitic magma. It should be noted that the range of melt water contents predicted experimentally (5-6 wt % H₂O) implies that the Tungurahua magmas are quite water-rich. This observation is in broad agreement with the elevated H₂O contents (up to 4 wt %) of melt inclusions in Fo_{80±2} olivine which are in equilibrium with 54-57 wt % SiO₂ melts (Myers et al., 2014).

An open magmatic system

Mineralogical evidence for two different superimposed crystallization environments in the andesite magma is consistent with Tungurahua behaving as an open magmatic system. According to this model, the 200 MPa ponding level would be periodically recharged by magma batches coming from the 400 MPa reservoir. Ultimately, all magmas would originate from the deep storage level at 15-16 km depth. We have tested further the model by checking that the Ca- and Mg-rich rims on plagioclase and pyroxene crystals cannot originate from mixing with a foreign mafic (i.e., basaltic or basaltic andesitic) melt. To do so, the distribution of Fe* content in Pl, as proposed by Ruprecht & Wörner (2007) has been used: a rimward increase of both Ca and Fe* in Pl crystals would suggest a mixing process involving a mafic magma. In our case, the An₆₅₋₇₀ rims have FeO* contents (\sim 0.5-0.6 wt %) similar to the An_{50±5} cores (Table 1, Supplementary Data Appendix natural; Samaniego et al., 2011) which rules out the foreign basaltic magma hypothesis to explain the Ca and Mg-rich rim compositions. This conclusion is consistent with the lack of basaltic magmas at Tungurahua. Magmas with the highest Ca/Na (able to crystallize An-rich plagioclase) are represented by basaltic andesitic whole-rocks and melt inclusions whose SiO₂ contents are 54 wt % minimum (Fig. 1c; Hall et al. 1999; Samaniego et al. 2011; Myers et al. 2014).

Origin of olivine in the andesitic magma

One striking feature of 2006 samples and andesitic products emitted at Tungurahua in general is the presence of normally zoned Ol crystals ($Fo_{80\pm2}$ to $Fo_{75\pm2}$), all of them displaying clear evidence for disequilibrium as marked by resorbed margins and narrow rims with Opx (En_{71}), Pl and Fe-Ti oxides (Supplementary Data Appendix natural; Samaniego *et al.*, 2011; Myers *et al.*, 2014). This suggests either that Ol crystals are not in equilibrium with the interstitial melt (witnessing the injection of a foreign basaltic magma) or that Ol was once part of the stable phenocryst assemblage of the mafic andesitie magma, but conditions in the feeding system evolved to make it unstable, reacting to Opx.

Concerning the first hypothesis, the involvement of a foreign basaltic magma is not consistent with the previously discussed Ca and Fe* Pl zonation data. If the MI data in Ol are examined, it appears that melts trapped in Fo_{80±2} olivines have SiO₂ between 54-58 wt % (Figs. 1c, 4c; Myers *et al.*, 2014) and those in Fo_{75±2} have 60-63 wt % SiO₂ (Figs. 1c; 4c). The Mg-poor olivine group (Fo_{75±2}) is therefore associated with andesitic and the Mg-rich group with basaltic andesite melts (Fig 4c). Despite their wide SiO₂ range (54-58 wt %), the basaltic

andesite MI have similar and rather low Mg# (\sim Mg# = 40; Mg# = 100*MgO/(MgO+FeO*); Fig 1d). Thus, there is no indication from the MI data for the existence of primitive basaltic liquids and so the presence of olivine xenocrysts appears very unlikely. In contrast, the natural olivine compositions have been successfully reproduced at equilibrium with liquids from 60 and up to 64 wt % SiO₂ (Fig. 4c). Therefore, experimental results indicate that the second hypothesis is viable, as long as water-rich conditions prevail ($H_2O_{melt} > 5$ wt %; Fig. 3, 4a). However, conditions (in particular depths) of crystallization of Ol crystals remain to be determined and the mechanism of Ol resorption clarified.

In the experiments, Fo_{80±2} Ol crystallized under water-saturated conditions at 100 MPa (charge T54), 200 MPa (T45b, T23, T10) and 400 MPa (T33; Fig. 3; Table 3). At 100 MPa, Ol is at equilibrium with a Cpx (Wo₄₀) depleted in Ca compared to the Mg-rich pyroxene population (Wo_{43±0.5}). This rules out 100 MPa as the crystallization pressure for the Fo_{80±2} Ol. Ol crystallized at higher pressures (200 and 400 MPa) coexists with a Cpx that encompasses the natural compositions ($En_{46\pm1}Fs_{11\pm1}Wo_{43\pm0.5}$, $Mg\# = 81\pm2$, Table 4). However, our phase equilibrium results indicate that Ol stability is drastically reduced when pressure is increased from 200 to 400 MPa (Fig. 3e). At 400 MPa, olivine is only present at 1000°C for ~10 wt % H₂O_{melt} (Fig. 3, charge 33), i.e., for an H₂O_{melt} range that exceeds our estimates for the early crystallization stage. This observation, together with the lack of isolated homogenous Fo_{80±2} crystals in the erupted products, point towards an origin at P < 400 MPa for the $Fo_{80\pm2}$ olivines, most probably at pressures of ~200 MPa. One additional indication comes from normal zoning in natural Ol. According to our results, compositions of Mg-poor Ol rims (Fo_{75±2}) can form at 975°C, 200 MPa, NNO+2 (run T24; Fig. 4a). The available experimental evidence therefore implies that Ol crystallizes as a stable phenocryst phase in the Tungurahua plumbing system.

To explain the resorption of the $Fo_{80\pm2}$ Ol crystallized at 200 MPa, it should be reminded that Tungurahua is characterised by the presence of a continuous degassing plume (Fig. 1d) and by a high eruption rate (several events per year since 1999; IGEPN internal reports). Such a permanent degassing regime, perhaps maintained by the recurrent partial emptying of the shallow reservoir and, or, the conduit during eruptions, could slightly lower the H_2O content inferred for the 200 MPa magma ponding level (5 wt % H_2O_{melt} ; Fig. 3a), shifting the system outside the olivine stability field (Fig. 3a). In the 200 MPa phase diagram, the field for shallow pre-eruptive conditions straddles the Ol stability curve so that a temperature drop < 975°C or an fO_2 increase above NNO+2 would also lead to Ol resorption

(Fig. 3a). The transition from an Ol-bearing to an Ol-free phase assemblage has been experimentally simulated at 975°C, 200 MPa between charges T24 and T25 (Table 2). Opx in the Ol-free charge T25 is En_{75} , close to Opx compositions in Ol reaction rims (En_{71-72} ; Supplementary Data Appendix natural; Samaniego *et al.*, 2011; Myers *et al.*, 2014). Note also that the co-crystallizing Cpx is $En_{44}Fs_{14}Wo_{41}$, Mg# = 75 (charge T25; Table 4), a composition that occurs in the natural andesite (Fig. 2a) and thus strengthens our interpretation that Ol resorption takes place in the plumbing system at pressures close to 200 MPa.

Sequence of events for the July-August 2006 eruption

By combining our estimates of pre-eruptive conditions for the andesite magma and its petrological attributes, below we propose the following sequence of events for the 2006 Tungurahua eruptions.

A significant volume of basaltic andesite magma was first stored at 400 MPa (15-16 km depth), 1000°C, fO₂~NNO and ca. 6 wt % H₂O_{melt}. Ponding of the magma under these conditions led to the crystallization of the main mineral assemblage Pl ($An_{50\pm5}$), Cpx (En_{40-42}), Opx (En₆₈), Mt (Mg#5), and Ilm (Fig. 10, 1st step). Intrusion of a new batch of mafic andesite into the 400 MPa reservoir might have triggered magma ascent to shallower depths (200 MPa or 8-10 km; Fig 10, 2nd -3rd steps). Crystallization and subsequent cooling (from 1000°C to 975°C) of the system at this level (200 MPa) produced first the Fo_{80±2} olivine, the Mt and the Ca- and Mg-rich rims on Pl and Cpx; and second, the low-Mg Ol, the Ca- and Mg-rich Pl and Opx respectively. The excess H₂O generated during crystallization was then outgassed, which could have increased the fO₂ of the magma from NNO+0.13 to NNO+1.7 (i.e., Burgisser et al., 2008; Fig. 10, 4th step), thus destabilizing the few Ilm crystals present (Fig. 3a). At this point, we cannot rule out the possibility that crystallization or degassing of the magma overpressurized the system to trigger an eruption (for instance the July 2006 events; Fig. 10 5th step) since the volcanic products emitted during July and August 2006 share similar petrological and chemical features (Samaniego et al., 2011). The permanent degassing (from 6 to 5 wt % H₂O_{melt}; Figs 3a,c) or the partial emptying of the reservoir by subsequent July eruptions, could have slightly changed the H₂O content of the 200 MPa reservoir and affected olivine stability (Fig 3). Crossing of the olivine-out curve promoted olivine resorption to Opx (En₇₁₋₇₂) reaction rims (Fig. 3, run T25).

Finally, after a period of quiescence, a new batch of hot, volatile-rich, andesite magma (coming from 400 MPa and containing the same phase assemblage and mineral compositions as the first batch), again intruded the andesite residing at 200 MPa, triggering a new eruption (August 2006; Fig 10, 6th-7th steps). Importantly, the time difference between injection and eruption must have been short, preventing thorough chemical mixing between the intruding and resident andesitic batches, so as to preserve the two crystal populations crystallized at 200 and 400 MPa. The above model proposed for the July-August 2006 Tungurahua events is consistent with the open-system, highly dynamic and high eruption frequency characteristic of this volcano during past and present times (Hall *et al.* 1999; Le Pennec *et al.*, 2008; Samaniego *et al.*, 2011, IGEPN internal reports.

CONCLUSIONS

The combination of new petrological and phase equilibrium data obtained on the 2006 eruptive products of Tungurahua allow us to determine the storage conditions of the andesitic magmas emitted during this eruption, as well as to infer the structure of the plumbing system below the volcano. Our results suggest that the Tungurahua andesitic magmas are hot (1000-975°C) and water-rich (5-6 wt%). These characteristics seem to be a constant feature at this volcano since, historically, Tungurahua has emitted rather homogeneous andesitic magmas.

The July-August 2006 plumbing system was characterised by two magma reservoirs located at 15-16 km (400 MPa) and 8-10 km (200 MPa), both simultaneously active during this time period. Magmas stored at 400 MPa interacted with those residing at 200 MPa, resulting in a complex inverse zonation of the phenocrysts. Moreover, the interaction between these two reservoirs played an important role in controlling the eruptive dynamics of the system. Magmas residing in the 200 MPa reservoir were slightly colder and more degassed than those in the 400 MPa reservoir, which were hotter and water-rich. The shallow reservoir fed the strombolian-vulcanian and effusive activity, whereas the more explosive (subplinian) events were driven by the incoming of the deeper magmas from the 15-16 km depth reservoir (400 MPa). How detailed petrological characterization can lead to a better understanding of the eruptive dynamics is demonstrated by our work. Finally, results presented in this paper contribute to the experimental characterization of mafic members of the adaktic series and are potentially applicable to other geochemically similar systems in the Northern Volcanic Zone of Ecuador.

ACKNOWLEDGEMENTS

The ISTO group thanks I. Di Carlo for the technical support with SEM and EMPA and Daniel

Andrade, Silvana Hidalgo, Patricia Mothes and Mario Ruíz for scientific discussions about

Tungurahua. Reviews from I. Smith and two anonymous reviewers improved the quality of

the manuscript. We also thank for the comments and Editorial handling of editors J. Gamble

and M. Wilson

FUNDING

This work was funded by Prometeo program (I. M.), VUELCO project and Equipex-Planex

ANR-11-EOPX-0036, INSU-CNRS ALEA.

REFERENCES

Almeev, R.R., Holtz, F., Ariskin, A.A. & Kimura, J-I. (2013). Storage conditions of

Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and

700 MPa. Contributions to Mineralogy and Petrology 166, 1389–1414.

Andújar, J. & Scaillet, B. (2012a). Experimental constraints on parameters controlling the

difference in the eruptive dynamic of phonolitic magmas: the case from Tenerife (Canary

Islands). Journal of Petrology 53, 1777-1806.

Andújar J, Scaillet B (2012b) Relationships between pre-eruptive conditions and eruptive

styles of phonolite-trachyte magmas. Lithos 152, 122-131

Andújar, J., Costa, F. & Scaillet, B. (2013). Storage conditions and eruptive dynamics of

central versus flank eruptions in volcanic islands; the case of Tenerife (Canary Islands,

62-790 Spain). Journal of Volcanology GeothermalResearch, **260**. and

doi:10.1016/j.jvolgeores.2013.05.004.

Andújar, J., Scaillet, B., Pichavant, M. & Druitt, T.H. (2015); Differentiation Conditions of a

Basaltic Magma from Santorini, and its Bearing on the Production of Andesite in Arc

Settings. *Journal of Petrology* **56**,765-794.

Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

Arellano S., Hall, M.L., Samaniego, P., Le Pennec, J.L., Ruiz, G., Molina, I. & Yepes, H. (2008). Degassing patterns of Tungurahua volcano, Ecuador, during the 1999–2006 eruptive period deduced from spectroscopic remote measurements of SO₂ emissions. *Journal of Volcanology and Geothermal Research* **176**,151–162

Bacon, C.R. & Hirschmann M.M: (1988). Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides. *American Mineralogist* **73**, 57-61.

Barclay, J. & Carmichael, I. S. E. (2004). A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure–temperature window of eruptibility. *Journal of Petrology* **45**, 485–506.

Berndt, J., Koepke, J. & Holtz, F. (2005). An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. *Journal of Petrology* **46**, 135-167.

Biggs, J., Mothes, P., Ruíz, M., Amelung, F., Dixon, T.H., Baker, S. & Hong, S.H. (2010). Stratovolcano growth by co-eruptive intrusion: The 2008 eruption of Tungurahua Ecuador. *Geophysical Research letters* **37**, L21302

Blatter, D.L. & Carmichael, I.E.S. (1998). Plagioclase-free andesites from Zitácuaro (Michoacán), Mexico: petrology and experimental constraints. *Contributions to Mineralogy and Petrology* **132**, 121–138.

Bourdon, E., Eissen, J-P, Monzier, M., Robin, C., Martin, H., Cotten, J. & Hall, M.L. (2002 a). Adakite-like Lavas from Antisana Volcano (Ecuador): Evidence for Slab Melt Metasomatism Beneath the Andean Northern Volcanic Zone. Journal of Petrology 43, 199-207.

Bourdon, E., Eissen, J-P, Gutscher, M-A., Monzier, M., Hall, M.L. & Cotton, J. (2002b). Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). *Earth and Planetary Science Letters* **205**, 123-138

Burgisser, A. & Scaillet, B. (2007). Redox evolution of a degassing magma rising to the surface. *Nature* **445**, 194-197.

Burnham, C.W., Holloway, J.R., Davis, N.F. (1969). Thermo-dynamic properties of water to 1000 °C and 10000 bar. Geological Society of America, Special Paper 132, 1–96.

Castro, J. M. & Mercer, C. (2004). Microlite textures and volatile contents of obsidian from Inyo volcanic chain, California. *Geophysical Research Letters* **31**, L18605.

Champenois, J., V. Pinel, S. Baize, L. Audin, H. Jomard, A. Hooper, A. Alvarado & H. Yepes (2014). Large-scale inflation of Tungurahua volcano (Ecuador) revealed by Persistent Scatterers SAR interferometry. ,Geophysical Research Letters 41,doi:10.1002/2014GL060956.

Costa, F., Scaillet, B. & Pichavant, M. (2004). Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite fromVolcan San Pedro (368S,Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. *Journal of Petrology* **45**, 855-881.

Deer, W.A.; Howie, R.A. & Zussman, J. (1972). Rock forming minerals: Framework silicates 4, 435 pp.

Drummond, M.S. & Defant, M.J. (1990). Derivation of some modern arc magmas by melting of young subducted lithosphere. *Nature* **347**, 662 - 665*Devine, J. D., Gardner, J. E., Brack, H. P., Layne, G. D. & Rutherford, M. J. (1995). Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. *American Mineralogist* **80**, 319-328.

Di Carlo, I., Pichavant, M., Rotolo, S.G. & Scaillet, B. (2006). Experimental crystallization of a High-K arc basalt: the golden pumice, Stromboli volcano (Italy). *Journal of Petrology* **47**, 1317-1343.

Erdmann, S., Martel, C., Pichavant, M. & Kushnir, A. (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. *Contribution to Mineralogy and Petrology* **167**, 1016, DOI 10.1007/s00410-014-1016-4.

Eychenne, J., Le Pennec, J.L., Ramón, P.& Yepes, H. (2013). Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador). *Earth and Planetary Science Letters* **361**, 343-355.

Feig, S. T. Æ Ju rgen Koepke, J. & Snow, J.E. (2006). Effect of water on tholeitic basalt phase equilibria: an experimental study under oxidizing conditions. *Contributions to Mineralogy and Petrology* **152**,611–638

Freise, M., Holtz, F., Nowak, M., Scoates, J. S. & Strauss, H. (2009). Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: an experimental study. *Contributions to Mineralogy and Petrology* **158**, 505-527.

Garrison, J.M. & Davidson, J.P. (2003). Dubious case for slab melting in the Northern volcanic zone of the Andes. *Geology* **31**, 565–568

Hall, M.L., Robin, C., Beate, B., Mothes, P. & Monzier, M. (1999). Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. *Journal of Volcanology and Geothermal Research* **91**, 1-21.

Hall, M.L., Steele, A.L., Mothes, P.A. & Ruiz, M.C. (2013). Pyroclastic density currents (PDC) of the 16-17 August 2006 eruptions of Tungurahua volcano, Ecuador: geophysical registry and characteristics. *Journal of Volcanology and Geothermal Research* **265**, 78-93.

Hidalgo, S., Gerbe. M.C., Martin, H., Samaniego, P. & Bourdon, E. (2012). Role of crustal and slab components in the Northern Volcanic Zone of the Andes (Ecuador) constrained by Sr–Nd–O isotopes. Lithos 132-133 180–192.

Jaupart, C. & Allègre, C.J. (1991). Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. *Earth and Planetary Science Letters* **102**, 413-429.

Kelemen, P.B., Hanghøj, K. & Greene, A.R. (2014). One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry 2nd Edition 749-805. http://dx.doi.org/10.1016/B978-0-08-095975-7.00323-5

Kress, V. C. & Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. *Contributions to Mineralogy and Petrology* **108**, 82–92.

Kumagai, H., Palacios, P., Ruíz, M., Yepes, H. & Kozono, T. (2011). Ascending seismic source during an explosive eruption at Tungurahua volcano, Ecuador. *Geophysical Research letters* **38**, L01306, doi:10.1029/2010GL045944, 2011

Leake, B. E., Woolley, A. R., Arps, C. E. S., et al. (1997). Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. *Mineralogical Magazine* **61**, 295–321.

Le Bas, M.J. & Streckeisen, A.L. (1991). The IUGS systematics of igneous rocks. *Journal of the Geological Society of London* **148**, 825–833.

Le Pennec, J.-L., Jaya, D., Samaniego, P., Ramón, P., Moreno Yánez, S., Egred, J. & Van der Plicht, J. (2008). The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating, *Journal of Volcanology and Geothermal Research* **176**, 70-81. doi:10.1016/j.jvolgeores.2008.05.019

Le Pennec, J.L., de Saulieu, G., Samaniego, P., Jaya, D. & Gailler, L. (2013). A devastating Plinian eruption at Tungurahua volcano reveals formative occupation at ~1100 cal BC in Central Ecuador. *Radiocarbon* **55**, 1199-1214.

Le Pennec, J.L., Ramon, P., Robin, C. & Almeida, E. (2016). Combining historical and 14C data to assess pyroclastic density current hazards in Baños city near Tungurahua volcano (Ecuador). *Quaternary International* **394**, 98-114

Libourel, G. (1999). Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. *Contributions to Mineralogy and Petrology* **136**, 63–80

López, C., Blanco, M. J., Abella, R. et al. (2012). Monitoring the unrest of El Hierro (Canary Islands) before the onset of the 2011 submarine eruption. Geophysical Research Letters 39, L13303, doi:10.1029/2012GL051846.

Martel C. (2012). Eruption dynamics inferred from microlite crystallization experiments: Application to Plinian and dome-forming eruptions of Mt. Pelée (Martinique, Lesser Antilles). *Journal of Petrology* **53**, 699-725.

Martel, C., Pichavant, M., Bourdier, J.L., Traineau, H., Holtz, F., Scaillet, B., 1998. Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth and Planetary Science Letters 156, 89–99.

Martel, C., Pichavant, M., Holtz, F. & Scaillet, B. (1999). Effects of fO_2 and H_2O on andesite phase relations between 2 and 4 kbar. *Journal of Geophysical Research* **104**, 29,453-29,470.

Martel, C. & Schmidt, B.C. (2003). Decompression experiments as an insight into ascent rates of silicic magmas. *Contributions to Mineralogy and Petrology* **144**, 397–415

Martí, J., Castro, A., Rodríguez, C., Costa, F., Carrasquilla, S., Pedreira, R. & Bolos, X., (2013). Correlation of magma evolution and geophysical monitoring during the 2011–2012 El Hierro (Canary Islands) submarine eruption: *Journal of Petrology*, **54**, 1349–1373, doi:10.1093/petrology/egt014.

Molina, I., Kumagai, H. & Yepes, H. (2004) Resonances of a conduit triggered by repetitive injections of an ash-laden gas. *Geophysical Research Letters* **31**, 1-4, doi:10.1029/2003GL018934.

Molina, I., Kumagai, H., Le Pennec, J.L. & Hall, M. (2005). Three-dimensional P-wave velocity structure of Tungurahua Volcano, Ecuador. *Journal of Volcanology and Geothermal Research* **147**, 144-156.

Moore, G. & Carmichael. I.E.S. (1998). The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. *Contributions to Mineralogy and Petrology* **130**, 304-319

Morimoto N. (1989). Nomenclature of pyroxenes. Subcomitee on pyroxenes. Commission on new minerals and mineral names. *Canadian Mineralogist* **27**, 143-156.

Myers, M-L., Geist, D.J., Rowe, M.C., Harpp K.S., Wallace, P.J. & Dufek, J. (2014). Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano. *Bulletin of Volcanology* **76**, 872-

Papale, P., Moretti, R. & Barbato, D. (2006). The compositional dependence of the saturation surface of H₂O+CO₂ fluids in silicate melts. *Chemical Geology* **229**, 78–95

Pichavant M., Martel C., Bourdier J.-L. & Scaillet B. (2002). Physical conditions, structure and dynamics of a zoned magma chamber: Mt. Pele'e (Martinique, Lesser Antilles arc). *Journal of Geophysical Research* **107**, doi:10.1029/2001JB000315

Pichavant, M. & Macdonald, R. (2007). Crystallization of primitive basaltic magmas atcrustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St. Vincent, Lesser Antilles arc. *Contributions to Mineralogy and Petrology* **154**, 535-558.

Prouteau, G & Scaillet, B. (2003). Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology 44, 2203-2241.

Pownceby, M.I. & O'Neill, H. St.C. (1994). Thermodynamic data redox reactions at high temperatures.III. Activity-composition relations in Ni-Pd alloys from EMF measurements at 850-1250 K and calibration of the NiO+Ni-Pd assemblage a redox sensor. *Contributions to Mineralogy and Petrology* **116**, 327-339.

Ridolfi, F. & Renzulli, A. (2012). Calcic amphiboles in calcalkaline and alkalinemagmas: thermobarometric and chemometric empirical equations valid up to 1130°C and 22GPa. *Contributions toMineralogy and Petrology* **163**, 877–895.

Robie, R.A., Hemingway, B.S. & Fisher, J.R. (1979). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. *US Geological Survey Bulletin* **1452**, 456.

Ruprecht, P. & Wörner, G. (2007). Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. *Journal of Volcanology and Geothermal Research* **165**, 142–162.

Rutherford, M.J. (2008). Magma ascent rates. Reviews in Mineralogy 69, 241-271.

Samaniego, P., Martin, H., Monzier, M., Robin, Fornari, M., Eissen, J-P. & Cotton, J. (2005). Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: The Geology and Petrology of Cayambe Volcanic Complex (Ecuador). Journal of Petrology 46, 2225-2252.

Samaniego, P., Le Pennec, J.L., Robin, C. & Hidalgo, S. (2011). Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador). *Journal of Volcanology and Geothermal Research* **199**, 69-84. doi:10.1016/j.jvolgeores.2010.10.010

Sauerzapf, U., Lattard, D., Burchard, M. & Engelmann, R. (2008). The titanomagnetite ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. *Journal of Petrology* **49**, 1161–1185.

Scaillet, B., Pichavant, M. & Roux, J. (1995). Experimental crystallization of leucogranites magmas. *Journal of Petrology* **36**, 663-705.

Scaillet, B. & Evans, B. W. (1999). The 15 June 1991 eruption of Mount Pinatubo. I. phase equilibria and Pre-eruption P-TfO₂-aH₂O. Journal of Petrology 40, 381–411.

Scaillet, B. & Macdonald, R. (2006). Experimental and thermodynamic constraints on the sulphur yield of peralkaline and metaluminous silicic flood eruptions. *Journal of Petrology* **47**, 1413-1437.

Scaillet, B., Pichavant, M. & Cioni, R. (2008). Upward migration of Vesuvius magma chamber over the past 20,000 years. *Nature* 455, 216–219.

Sisson, T. W. & Grove, T. L. (1993). Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. *Contributions to Mineralogy and Petrology* **113**, 143–166.

Stormer, J.C. & Nichols, J. (1978). XLFRAC: a program for the interactive testing of magmatic differentiation models. *Computers & Geoscience* **4**, 143–159.

Sparks, R. S. J., Barclay, J., Jaupart, C., Mader, H. M. & Phillips, J. C. (1994). Physical aspect of magmatic degassing I. Experimental and theoretical constraints on vesiculation. In: Carroll, M. R. & Taylor, J. R., Wall, V.J. & Pownceby, M. I. (1992). The calibration and application of accurate redox sensors. *American Mineralogist* 77, 284-295.

Wood, B.J., & Turner, S. (2009). Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. *Earth and Planetary Science Letters*, **283**, 59–66.

FIGURE CAPTIONS

Figure 1. (a) Location of the Ecuadorian volcanic belt and (b) digital elevation model of Tungurahua showing the distribution of the July-August 2006 products (after Samaniego *et al.* 2011); (c) Mg# melt vs SiO₂ content of volcanic rocks, melt inclusions (MI) and starting material (stars are for bulk-rock and glass composition of Table 1). Data from Hall *et al.* (1999), Samaniego *et al.* (2011), Myers *et al.* (2014) and this work. (d) Photograph of Tungurahua summit showing permanent degassing plume (B. Scaillet)

Figure 2. Representative compositional zoning profiles of phenocrysts in the August 2006

andesite. (a) plagioclase (b) clinopyroxene and orthopyroxene.

Figure 3. Isobaric phase relationships of the August 2006 Tungurahua andesite. (a) 200 MPa-

NNO+1 and NNO+2, (b) 100 MPa-NNO+1 and NNO+2, (c) 400 MPa-NNO+1, (d) 400 MPa-

NNO+2, (e) isothermal section at 1000°C - NNO+1, (f) isothermal section at 1000°C-NNO+2;

In (a) and (b) purple lines show the mineral-in curves at NNO+2. In (c) Ol is stable in one

charge. Grey-shaded boxes bound the inferred pre-eruptive conditions of the natural rock.

Figure 4. Compositions of experimental olivines (Fo content in mol %) versus (a) H₂O (wt%)

in co-existing melt; (b) CaO (wt%) in olivines; (c) Fo content in mol % versus SiO₂ content in

co-existing melt. Orange and red circles correspond to the Fo content and Melt Inclusion SiO₂

content of the 2006 and 2010 natural products of Myers et al. (2014). Numbers next to the

symbols in the legend indicate pressure (MPa) and prevailing fO2 conditions.

Figure 5. Compositional variation of experimental clinopyroxenes. (a) Mg#, (b) En content

(mol%), (c) Fs content (mol%) and (d) Wo content (mol%) of the clinopyroxene as function

of melt H₂O content (wt%). Numbers next to symbols in the legend indicate pressure (MPa)

and prevailing fO2 conditions.

Figure 6. Compositional variation of experimental orthopyroxenes. (a) Mg#, (b) En content

(mol%), (c) Fs content (mol%) as functions of melt H₂O content (wt%). Numbers next to

symbols in the legend indicate pressure (MPa) and prevailing fO2 conditions.

Figure 7. Compositional variation of the experimental plagioclase. (a) An content (mol %)

versus H₂O_{melt} (wt%); (b) Ab content (mol %) versus H₂O_{melt}, and (c) Or content (mol %)

versus H₂O_{melt} (wt%). Numbers next to symbols in the legend indicate pressure (MPa) and

prevailing fO2 conditions.

Figure 8. Compositional variation of experimental magnetite. (a) Mg# and (b) TiO₂ (wt %)

content as function of melt H₂O₂ (c) TiO₂ (wt %) content as function of Mg#. The star shows

the magnetite population observed in the 2006 andesite sample. Legend as in previous figures.

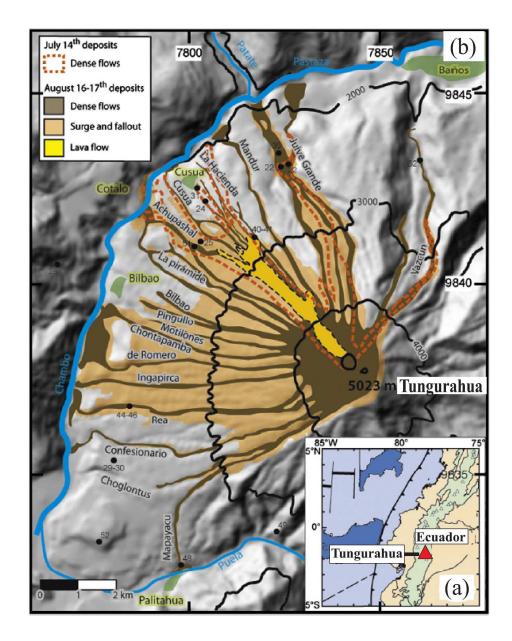
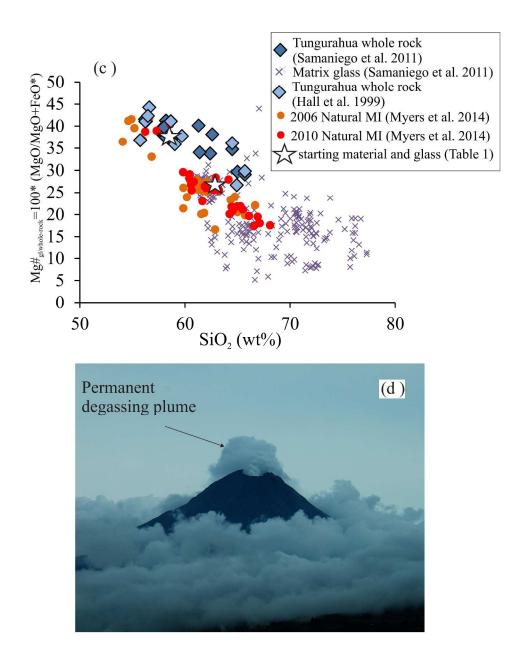
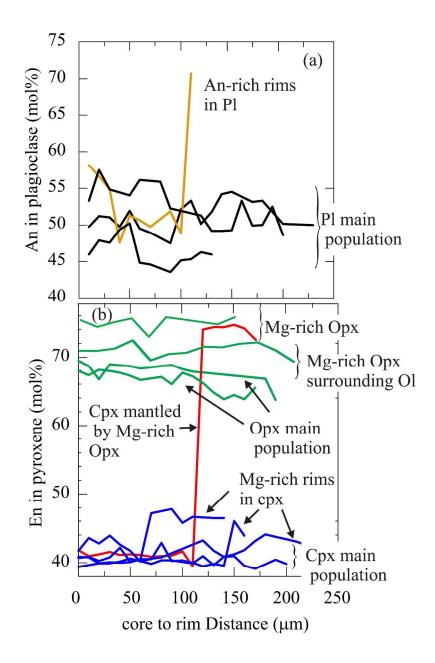
Figure 9. Experimental glass compositional variations of major and minor oxides versus water

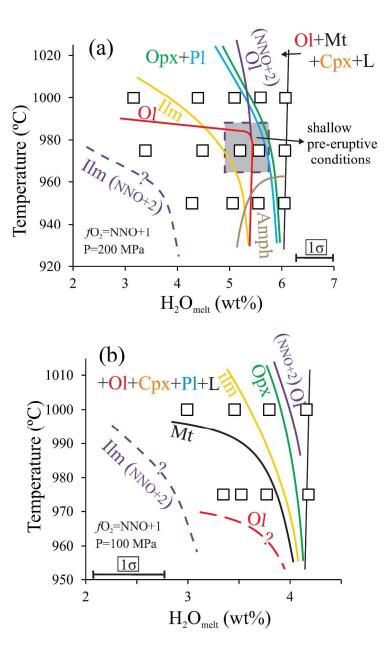
content in the melt. Grey horizontal bar shows the natural melt composition (Table 1). Legend

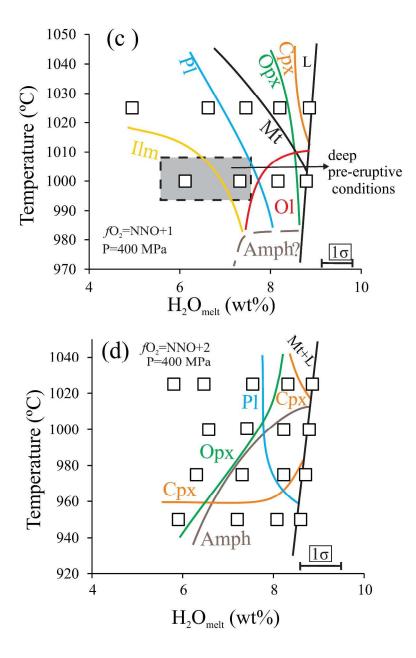
as in previous figures.

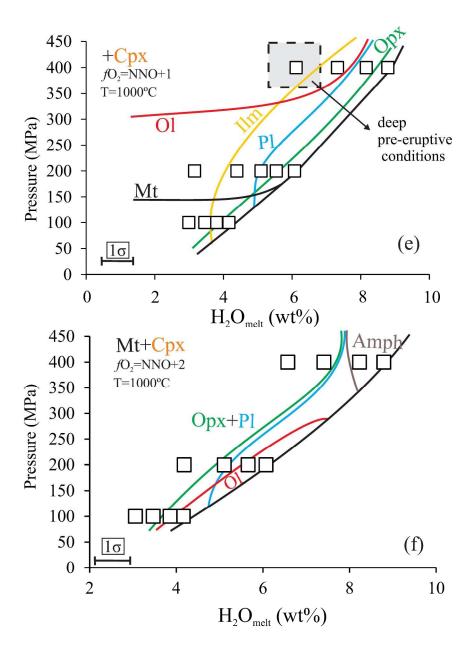
Downloaded from https://academic.oup.com/petrology/article-abstract/doi/10.1093/petrology/egx054/4096628/Structure-of-the-plumbing-system-at-Tungurahua by CNRS - ISTO user on 08 September 2017

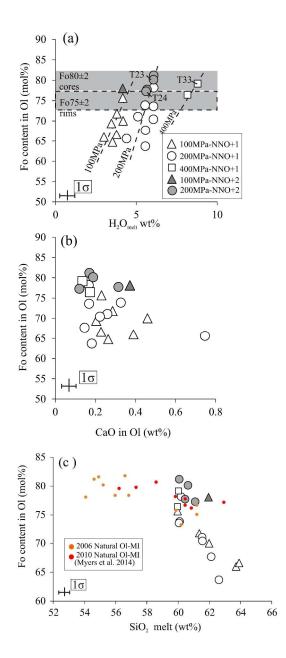
Figure 10. Schematic cartoon summarizing the processes proposed to have occurred prior the August 2006 eruption. (1) ponding at 400 MPa of the andesitic magma and crystallization of the main mineral assemblage, (2) injection of new magma into the 400 MPa reservoir?, (3) magma rising from 400 to 200 MPa level, (4) cooling down, formation of Mg-Ca-rich rims and outgassing of the system, (5) over-pressurization and eruption (July 2006), (6) input of a new magma batch into the 200 MPa reservoir, mixing and (7) eruption in August 2006.

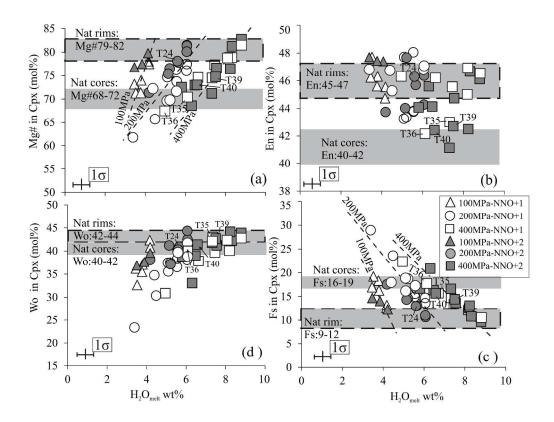




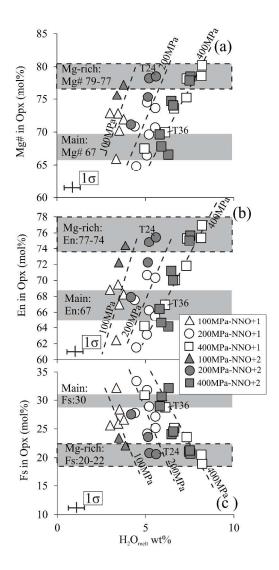

Fig. 1a,b 256x308mm (300 x 300 DPI)

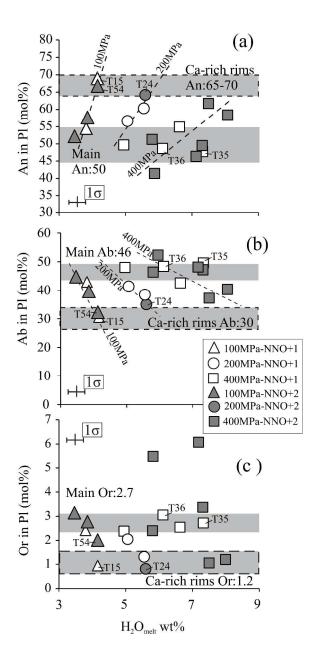

279x356mm (300 x 300 DPI)

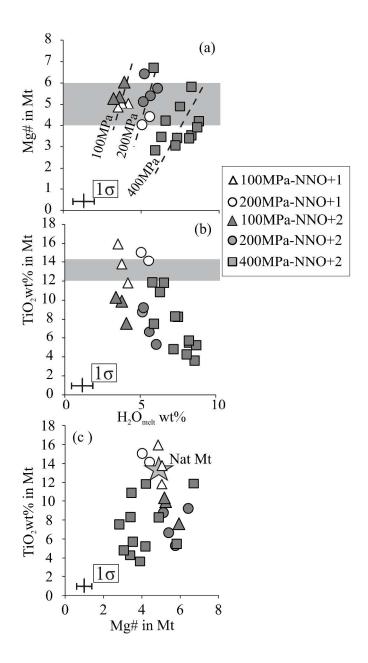

282x433mm (300 x 300 DPI)

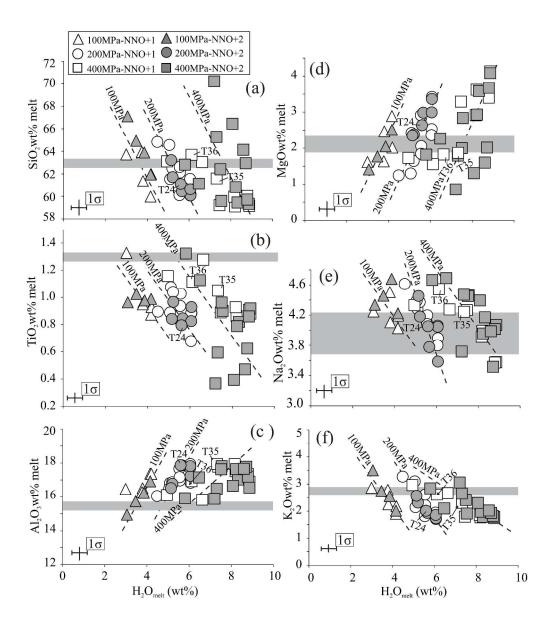

264x435mm (300 x 300 DPI)

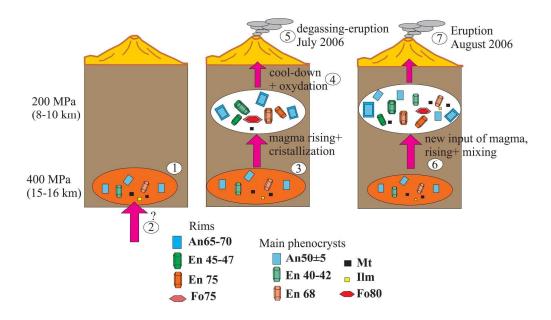

250x391mm (300 x 300 DPI)


248x347mm (300 x 300 DPI)


484x1121mm (300 x 300 DPI)


280x212mm (300 x 300 DPI)


455x765mm (300 x 300 DPI)


438x920mm (300 x 300 DPI)

343x626mm (300 x 300 DPI)

450x509mm (300 x 300 DPI)

199x114mm (300 x 300 DPI)

Table 1: Representative compositions of the natural sample (bulk-rock and phenocrysts) and starting material

	Bulk	Startin	ıg										
	rock	materi	al	P1		Cpx		Opx		Mt		glass	
n		10	sd	20	sd	15	sd	17	sd	10		10	sd
SiO_2	58.00	58.51	0.34	55.29	1.11	50.55	1.22	52.90	1.56	0.13	0.05	62.83	0.41
TiO_2	0.88	0.89	0.10	0.06	0.05	0.62	0.11	0.27	0.10	12.90	0.28	1.27	0.12
Al_2O_3	16.60	16.74	0.16	27.22	0.70	2.17	0.30	1.27	0.15	4.09	0.42	15.54	0.20
FeO*	6.74	6.84	0.32	0.57	0.11	10.99	0.91	18.87	0.69	78.73	0.83	6.23	0.43
MnO	0.12	0.15	0.10	0.03	0.04	0.28	0.09	0.49	0.14	0.34	0.06	0.05	0.04
MgO	4.45	4.18	0.08	0.06	0.02	14.28	0.45	23.96	0.85	3.78	0.52	2.25	0.16
CaO	6.80	7.20	0.07	10.35	0.70	19.90	0.45	1.57	0.16	0.02	0.02	4.81	0.27
Na_2O	3.90	3.53	0.06	5.15	0.42	0.44	0.04	0.04	0.03	0.01	0.01	4.00	0.27
K_2O	1.71	1.76	0.07	0.45	0.09	0.01	0.02	0.01	0.01	0.01	0.01	2.74	0.18
P_2O_5	0.24	0.21	0.10									0.28	0.07
Sum	99.44	100.0		99.17	1.05	99.25	1.44	99.38	1.12	100.00	0.79	96.95	1.10
(ppm)													
Sr	570												
La	18												
Y	17												

Yb 1.48

La/Yb 12

Mineral end-members

An 51.26 3.57

Ab 46.08 3.31

Or 2.67 0.53

En 41.19 1.11 67.41 1.11 0.31

Fs 17.55 1.38 29.41 0.89 2.77

Wo 41.25 0.99 3.18 0.35

Mg# 39.77 69.86 2.14 69.33 1.05 4.6

 $\Sigma {
m r}^2$

phase proportions (wt%) 28.00 7.10 7.50 1.10 56.00 0.10

Bulk-rock composition and traces from Samaniego et al. (2011)

En. Fs. Wo: calculated as in Morimoto (1989)

An= 100[Ca/(Ca+Na+K)]; Ab= 100[Na/(Ca+Na+K)]; Or=[100K/(Ca+Na+K)]. End members calculated as in Deer et al. (1972).

Mg# of Cpx, OPx = Mg# = 100[Mg/(Mg+Fe*)]

Mg# of Mt=100*(MgO/FeO*+MgO)

Table 2: experimental conditions and phase proportions (wt%)

Run XH₂O_{in} H₂O_{bdf} H₂O_{calc} fH₂O log fO₂ ΔNNO

(wt%) (wt%) (bar) (bar)

								Ol	Cpx	Opx	Pl	Mt	Ilm	Amph	% Crys	stal	Σr^2
1000	°C/100M	Pa.97.5	h:4.16	940	-9.7	0.63	<i>f</i> H₂: 3	.47 bar									
T15	1.00	5.45	4.16	967	-9.7	0.64		2.80	5.00		4.32				12.12		0.20
T16	0.83	6.34	3.80	801	-9.8	0.48		4.10	6.70	trace	16.40				27.20		0.33
T17	0.68		3.46	660	-10.0	0.31		X	X	X	X		X				
T18	0.51	3.99	2.99	490	-10.3	0.05		X	X	X	X						
975°(C/100MP	a.94.5h	: 4.18	931	-10.1	0.62	$fH_2:3$.56 bar									
T19	1.00	7.08	4.18	977	-10.1	0.61		3.20	9.60		13.11	1.25			27.16		0.15
T20	0.81	6.96	3.77	790	-10.3	0.43		X	X	X	X	X	X				
T21	0.70		3.52	686	-10.4	0.31		X	X	X	X	X	X				
T22	0.63		3.35	617	-10.5	0.21			X	X	X	X	X				
1000	°C/200M	Pa.77.5	h :6.07	1864	-9.4	0.89	$fH_2:5$.79 bar									
T10	1.00	7.55	6.07	2107	-9.4	0.86		0.60	3.10			1.44			5.14		0.80
T11	0.83	5.36	5.54	1745	-9.6	0.69		0.30	7.80			1.08			9.18	0.32	
T12	0.70	5.76	5.10	1469	-9.8	0.54		0.50	6.80	4.03	12.60	1.10			25.03	0.08	

http://www.petrology.oupjournals.org/

T13	0.51		4.39	1082	-10.0	0.28		X	X	X	X	X				
T14	0.26		3.16	548	-10.6	-0.31		X	X	X	X	X	X			
975°C	2/200MP	a. 117h:	6.06	1833	-9.5	1.25	$fH_2:3$	3.65 bar								
T1	1.00	6.94	6.06	2100	-9.5	1.22		1.20	7.80			0.67			9.67	0.30
T2	0.84	6.41	5.56	1760	-9.6	1.06		2.90	8.30	1.50	13.12	0.70			26.52	0.04
T3	0.73	6.22	5.20	1532	-9.7	0.94			8.60	7.40	17.06	0.67			33.73	0.07
T4	0.54	5.56	4.48	1128	-10.0	0.68			X	X	X	X	X			
T5	0.30		3.38	632	-10.5	0.17			X	X	X	X	X			
950°C	2/200MP	ea. 95 h:	6.05	1812	-10.1	1.02	fH ₂ : 4	1.54 bar								
T6	1.00	7.62	6.05	2093	-10.1	0.99		0.90	1.30			0.60		14.90	17.70	0.38
T7	0.84	6.35	5.55	1754	-10.2	0.84		1.80	10.30	2.71	18.36	0.98		1.10	35.25	0.02
Т8	0.69	5.54	5.06	1447	-10.4	0.67			4.90	13.90	31.06	0.21	1.40		51.47	0.70
Т9	0.49		4.28	1026	-10.7	0.37			X	X	X		X			
1025°	C/400 N	IPa. 92 l	h :8.86	4129	-9.7	0.26	fH ₂ : 2	26.92 ba	r							
T28	1.00	12.31	8.86	4596	-9.7	0.19									0.00	
T29	0.85	8.12	8.20	3922	-9.8	0.06			5.40	0.20					5.60	0.34
T30	0.70	7.49	7.46	3221	-10.0	-0.11			7.10	1.10					8.20	0.55
T31	0.55	5.45	6.63	2525	-10.2	-0.33			8.10	6.50	25.60	1.20			41.40	0.26
T32	0.30	4.90	4.95	1383	-10.7	-0.85			12.80	4.80	26.80	0.87			45.27	0.29
1000°	C/400M	Pa. 69.5	h: 8.79	4079	-9.5	0.85	$fH_2:1$	12.96 ba	r							

T33	1.00	9.88	8.79	4521	-9.5	0.78	0.10	4.90			1.30		6.30	0.31
T34	0.86	7.32	8.16	3881	-9.6	0.65	0.30	8.80	trace		0.78		9.88	0.11
T35	0.69	5.53	7.32	3103	-9.8	0.45		11.20	4.80	11.90	1.33		29.23	0.16
T36	0.47	4.89	6.12	2142	-10.1	0.13		13.00	6.50	24.85	1.38	traces	45.73	0.16

1000°C	C/100M	Pa. 70 h	: 4.16	940	-8.8	1.53	$fH_2: 1.24 \text{ bar}$						
T54	1.00	5.31	4.16	967	-8.8	1.51	2.60	6.40		12.90	1.99	23.89	0.07
T55	0.86	4.92	3.86	827	-8.9	1.40		8.40	5.00	25.50	2.70	41.60	0.18
T56	0.69	4.36	3.47	664	-9.1	1.21		8.00	6.10	33.30	3.00	50.40	0.24
T57	0.53	3.10	3.06	512	-9.3	0.98		X	X	X	X		
1000°C	C/ 200M	Pa. 101	h : 6.07	1864	-8.5	1.84	<i>f</i> H ₂ : 1.94 bar						
T45b	1.00	7.52	6.07	2107	-8.5	1.81	0.40	4.60			1.20	6.20	0.38
T46b	0.86	6.64	5.66	1823	-8.6	1.68	0.20	8.20			1.42	9.82	0.14
T47b	0.73	6.06	5.21	1539	-8.8	1.53		7.50	3.70	12.60	1.51	25.31	0.02
T48b	0.46		4.18	978	-9.2	1.14		X	X	X	X		
975°C	/200MP	a. 117h	: 6.06	1833	-8.9	1.84	$fH_2: 1.85 \text{ bar}$						
T23	1.00	7.88	6.06	2100	-8.9	1.81	0.40	7.40			1.90	9.70	0.18

T24	0.85	6.60	5.60	1783	-9.0	1.66	0.20	9.60	0.88	5.20	1.60		17.48	0.01
T25	0.71	6.17	5.14	1497	-9.2	1.51		9.40	3.60	16.30	2.40		31.70	0.14
T26	0.51		4.39	1078	-9.4	1.23		X	X	X	X			
T27	0.36		3.68	751	-9.5	1.12								
1025°C	C/400M	Pa. 97.5	h: 8.86	4129	-8.2	1.77	fH ₂ : 4.77 bar							
T49	1.00	10.40	8.86	4596	-8.2	1.70					1.30		1.30	0.47
T50	0.88	6.99	8.32	4034	-8.3	1.58		4.30			0.90		5.20	0.46
T51	0.72	5.12	7.55	3300	-8.5	1.41		7.90	1.30		0.60		9.80	0.38
T52	0.52	4.57	6.47	2403	-8.8	1.13		9.70	4.22	13.83	1.30		29.05	0.52
T53	0.42	4.13	5.80	1921	-9.0	0.94		8.10	8.50	27.00	1.40		44.9	0.46
1000°C	C/400M	Pa. 91 h	:8.79	4079	-8.4	1.88	$fH_2: 3.94 \text{ bar}$							
1000°C	C/ 400M 1.00	Pa. 91 h 9.72	:8.79 8.79	4079 4521	-8.4 - 8.4	1.88 1.82	fH ₂ : 3.94 bar	4.70			1.20	traces	5.90	0.3
							fH ₂ : 3.94 bar	4.70 6.40			1.20 1.40	traces	5.90 12.00	
T37	1.00	9.72	8.79	4521	-8.4	1.82	fH ₂ : 3.94 bar		4.10	13.00				0.15
T37 T38	1.00 0.87	9.72 7.80	8.79 8.23	4521 3947	-8.4 -8.6	1.82 1.70	fH ₂ : 3.94 bar	6.40	4.10 X	13.00 X	1.40		12.00	0.15
T37 T38 T39 T40	1.00 0.87 0.72 0.55	9.72 7.80	8.79 8.23 7.50 6.57	4521 3947 3259	-8.4 -8.6 -8.7	1.82 1.70 1.53	$f\mathrm{H}_2$: 3.94 bar $f\mathrm{H}_2$:4.10 bar	6.40 10.60			1.40 2.60		12.00	0.15
T37 T38 T39 T40	1.00 0.87 0.72 0.55	9.72 7.80 6.50	8.79 8.23 7.50 6.57	4521 3947 3259 2485	-8.4 -8.6 -8.7 -9.0	1.82 1.70 1.53 1.29		6.40 10.60			1.40 2.60		12.00	0.15
T37 T38 T39 T40 975°C	1.00 0.87 0.72 0.55 /400MP	9.72 7.80 6.50 a. 92h :	8.79 8.23 7.50 6.57 8.71	4521 3947 3259 2485 4004	-8.4 -8.6 -8.7 -9.0 - 8.9	1.82 1.70 1.53 1.29 1.80		6.40 10.60			1.40 2.60 X	4.20	12.00	0.15
T37 T38 T39 T40 975°C T41	1.00 0.87 0.72 0.55 /400MP	9.72 7.80 6.50 a. 92h :	8.79 8.23 7.50 6.57 8.71 8.71	4521 3947 3259 2485 4004 4437	-8.4 -8.6 -8.7 -9.0 - 8.9 -8.9	1.82 1.70 1.53 1.29 1.80 1.73		6.40 10.60 X			1.40 2.60 X	4.20 X	12.00	0.15 0.10

950°C	/400MP	a.93.5h	: 8.60	3948	-8.8	2.27	$fH_2: 2.23 \text{ bar}$						
T45	1.00	9.28	8.60	4322	-8.8	2.20				1.80	20.50	22.30	0.51
T46	0.88	7.40	8.08	3797	-8.9	2.09			10.80	2.10	22.50	35.40	0.33
T47	0.69	5.53	7.21	3001	-9.2	1.88			21.11	2.90	24.60	48.61	0.38
T48	0.46		5.91	1991	-9.5	1.53		X	X	X	X		

XH₂O_{in}:initial H2O/(H2O+CO2) in the charge (in moles)

 H_2O_{calc} : water content in the melt a:determined by the solubility model of Papale *et al.* (2006) and using the methodlogy of Scaillet & Macdonald (2006) H_2O_{bdf} :determined by difference method (see text for details)

fH₂(bar):hydrogen fugacity of the experiment. determined by using NiPd alloy sensors. (see text for details)

 $\log fO_2(bar)$: logarithm of the oxygen fugacity calculated from the experimental fH_2

 Δ NNO: $\log fO_2$ - $\log fO_2$ of the NNO buffer calculated at P and T (NNO: Pownceby & O'Neill.1994)

X: mineral phase identified by SEM but. its abundance could not be calculated

% Crystal: numbers indicate the phase abundance in the charge in weight %

Gl:glass. Ol: olivine. Cpx:clinopyroxene. Mt:magnetite.Pl:plagioclase.Opx:orthopyroxene. Ilm:ilmenite.Amph:amphibole

Trace: phase with a modal abundance < 0.1 wt%

Table 3: experimental olivines

n

T															
50 T 50 T 50 T 50 T 50 T 50 T 50	1000°C	C/100MF	Pa SiO ₂	TiO_2	Al_2O_3	MgO	CaO	MnO	FeO*	Na ₂ O	K_2O	Sum	Fo	Kd^{Fe^*-Mg}	KdFe ²⁺
T	Γ15	3	38.61	0.00	0.05	38.89	0.23	0.36	22.30	0.01	0.00	100.44	75.66	0.26	0.37
sc T	sd		0.40	0.00	0.01	0.20	0.05	0.14	0.61	0.01	0.00	0.47	0.60		
T	Г16	3	38.71	0.07	0.22	35.41	0.29	0.34	24.79	0.02	0.04	99.88	71.80	0.28	0.38
50 T 9' T 50 T	sd		0.39	0.05	0.09	0.76	0.04	0.04	0.37	0.03	0.04	0.81	0.38		
T 9' T sc T	Γ17	2	37.84	0.00	0.09	34.40	0.20	0.34	27.07	0.02	0.02	99.97	69.37		
9° T sc T T T	sd		0.20	0.00	0.04	0.30	0.03	0.00	0.02	0.01	0.03	0.11	0.20		
T so	Γ18	1	37.23	0.10	0.10	31.72	0.39	0.43	29.14	0.01	0.05	99.18	65.99	0.30	0.39
so T so T	975°C/	100MPa	a												
T so T	Γ19	2	37.39	0.02	0.38	33.40	0.46	0.33	25.51	0.06	0.04	97.58	70.01	0.27	0.38
so T	sd		0.46	0.02	0.49	0.56	0.37	0.10	0.36	0.05	0.05	0.26	0.05		
T	Γ20	2	37.97	0.00	0.04	31.73	0.23	0.51	28.34	0.00	0.01	98.81	66.62	0.28	0.38
	sd		0.25	0.00	0.04	0.38	0.00	0.01	0.37	0.00	0.01	0.20	0.56		
	Γ21	2	37.14	0.01	0.03	31.34	0.26	0.46	30.39	0.03	0.04	99.69	64.76		
SC	sd		0.12	0.01	0.03	0.33	0.02	0.03	0.03	0.00	0.03	0.27	0.22		

$\Gamma \gamma$	-
-	

1000°C/400MPa

1000°	C/200M	Pa												
T10	3	38.72	0.01	0.03	40.72	0.17	0.38	20.26	0.01	0.02	100.31	78.18	0.28	0.40
sd		0.13	0.02	0.03	0.86	0.06	0.10	0.47	0.01	0.02	0.84	0.53		
T11	4	39.29	0.01	0.18	36.92	0.33	0.36	23.26	0.02	0.01	100.37	73.87	0.31	0.43
sd		1.42	0.01	0.17	1.48	0.18	0.06	0.66	0.01	0.01	0.64	0.71		
T12	4	37.92	0.05	0.04	35.75	0.26	0.35	25.95	0.01	0.02	100.35	71.06	0.30	0.41
sd		0.58	0.05	0.03	0.72	0.07	0.14	0.75	0.01	0.02	0.88	0.46		
T13	3	37.17	0.05	0.14	31.52	0.75	0.37	29.45	0.03	0.00	99.48	65.61		
sd		0.34	0.07	0.13	0.76	0.51	0.04	1.14	0.03	0.01	1.22	0.49		
975°C	2/200MP	'a												
TD 1														
T1	3	38.32	0.08	0.06	37.78	0.17	0.34	24.14	0.01	0.00	100.89	73.61	0.26	0.40
sd	3	38.32 0.17	0.08	0.06	37.78 0.47	0.17	0.34	24.14 0.38	0.01	0.00	100.89 0.17	73.61 0.53	0.26	0.40
	2												0.26	0.40
sd		0.17	0.07	0.04	0.47	0.02	0.08	0.38	0.01	0.00	0.17	0.53		
sd T2 sd		0.17 36.94 0.05	0.07 0.01	0.04 0.00	0.47 33.61	0.02 0.15	0.08 0.50	0.38 28.60	0.01 0.00	0.00 0.04	0.17 99.85	0.53 67.68		
sd T2 sd	2	0.17 36.94 0.05	0.07 0.01	0.04 0.00	0.47 33.61	0.02 0.15	0.08 0.50	0.38 28.60	0.01 0.00	0.00 0.04	0.17 99.85	0.53 67.68		
sd T2 sd 950°C	2 2/ 200MP	0.17 36.94 0.05	0.07 0.01 0.01	0.04 0.00 0.00	0.47 33.61 0.11	0.02 0.15 0.05	0.08 0.50 0.06	0.38 28.60 0.14	0.01 0.00 0.00	0.00 0.04 0.03	0.1799.850.27	0.5367.680.03		

http://www.petrology.oupjournals.org/

T33	4	39.00	0.03	0.01	40.85	0.14	0.25	19.16	0.00	0.02	99.46	79.17	0.26	0.37
sd		0.44	0.05	0.01	0.27	0.01	0.02	0.42	0.00	0.02	0.46	0.41		
T34	3	38.91	0.04	0.02	39.02	0.17	0.28	21.43	0.01	0.00	99.87	76.44	0.25	0.35
sd		0.44	0.05	0.02	0.91	0.03	0.01	0.16	0.01	0.00	1.53	0.28		

1000°C/100MPa

975°C/200MPa

38.82 0.00

38.86 0.00

0.35

0.00

0.01

0.01

0.00

42.93

0.36

40.74

0.19

0.04

0.12

0.44

0.15

0.31

18.97 0.02

0.01

0.02

0.00

21.33

T23

sd

T24

T54	3	39.84	0.01	0.36	39.40	0.37	0.28	19.71	0.03	0.01	100.02	78.08		
		0.21	0.02	0.38	0.68	0.21	0.10	0.15	0.03	0.02	0.18	0.29		
1000°C	C/200MF	Pa												
T45b	3	39.67	0.01	0.02	42.45	0.17	0.20	17.52	0.01	0.02	100.07	81.20	0.22	0.37
sd		0.90	0.01	0.01	0.95	0.02	0.14	0.58	0.01	0.04	0.58	0.66		
T46b	3	39.25	0.01	0.06	40.19	0.32	0.23	20.50	0.02	0.00	100.57	77.74	0.26	0.43
sd		0.87	0.02	0.05	0.76	0.33	0.06	0.33	0.02	0.01	0.22	0.19		

0.02

0.00

0.00

0.21

101.40 80.14 0.24

0.14

101.37 77.30 0.25

0.42

0.40

n: number of analysis

sd: standard deviation

FeO*: Total iron reported as Fe2+

Fo mol(%)=100 Mg/(Mg+ Fe*) in olivine

KdFe*-Mg =(Fe/Mg in ol)/(Fe/Mg in melt).

KdFe2+=Fe/Mg in ol)/(Fe2+/Mg in melt) after Kress & Carmichael (1991).

Table 4. Composition of experimental clinopyroxenes (wt%)

n

1000°	C/100M	Pa SiO ₂	TiO ₂	Al_2O_3	MgO	CaO	MnO	FeO*	Na ₂ O	K ₂ O	Sum	En	Fs	Wo	Mg#	KdFe*-Mg
T15	2	52.06	0.83	3.98	15.44	20.33	0.22	7.72	0.35	0.06	100.99	44.74	12.55	42.34	78.09	0.23
sd		0.17	0.08	0.66	0.27	0.04	0.05	0.12	0.07	0.00	0.47	0.52	0.27	0.33	0.57	
T16	3	50.74	0.81	3.47	16.28	18.12	0.21	10.20	0.29	0.02	100.14	46.31	16.28	37.07	74.00	0.25
sd		0.46	0.15	0.09	0.50	0.56	0.03	0.67	0.00	0.02	0.27	0.78	0.84	1.66	0.67	
T17	2	51.27	0.57	2.77	15.91	17.33	0.36	10.40	0.25	0.06	98.92	46.24	16.96	36.20	73.16	
sd		0.66	0.09	0.64	0.60	0.17	0.05	0.16	0.08	0.02	0.65	0.86	0.59	0.33	1.04	
975°C	/100MP	a														
T19	2	51.25	0.74	3.92	15.34	19.12	0.25	7.94	0.37	0.11	99.04	45.55	13.22	40.81	77.50	0.19
sd		0.31	0.04	0.42	0.35	0.05	0.05	0.28	0.07	0.04	0.36	0.44	0.29	0.63	0.22	
T20	1	50.45	0.94	2.75	15.88	17.17	0.37	11.38	0.30	0.06	99.29	45.61	18.33	35.46	71.33	0.22
T21	2	51.72	0.89	2.67	16.36	15.57	0.26	11.75	0.23	0.16	99.60	47.71	19.22	32.63	71.28	
sd		0.54	0.33	0.07	0.01	0.60	0.14	0.02	0.01	0.11	0.34	0.74	0.25	0.76	0.05	
1000°	C/200M	Pa														
T10	5	52.10	0.51	2.57	16.52	20.39	0.23	6.69	0.27	0.04	99.32	47.11	10.71	41.81	81.48	0.23
sd		0.53	0.16	0.46	0.29	0.26	0.15	0.07	0.06	0.04	0.18	0.50	0.18	0.52	0.38	

T11	2	51.44	0.76	3.57	16.72	17.70	0.26	9.29	0.25	0.05	100.01	48.06	14.97	36.56	76.26	0.27
sd		0.04	0.08	0.28	0.31	0.30	0.09	1.01	0.03	0.00	0.68	1.02	1.59	0.72	2.31	
T12	5	51.33	0.67	3.52	16.34	16.94	0.32	9.88	0.38	0.06	99.43	47.72	16.18	35.57	74.68	0.25
sd		0.15	0.05	0.91	0.66	0.35	0.09	0.46	0.10	0.02	0.34	0.86	0.34	1.05	0.27	
T13	1	51.15	0.79	2.96	15.74	16.28	0.30	10.79	0.25	0.05	98.31	46.75	17.98	34.76	72.22	
975°C	/200MP	a														
T1	3	51.91	0.41	1.89	16.59	19.21	0.33	8.59	0.17	0.02	99.12	46.85	13.61	39.01	77.49	0.21
sd		0.58	0.11	0.57	0.50	0.24	0.03	0.35	0.08	0.03	0.44	0.70	0.34	1.09	0.18	
T2	4	50.06	0.85	4.02	14.92	18.97	0.30	9.47	0.33	0.04	98.96	43.82	15.60	40.08	73.74	0.22
sd		0.21	0.18	0.03	0.37	0.21	0.12	0.22	0.03	0.05	0.14	0.85	0.34	0.68	0.63	
T3	2	49.74	0.89	3.41	14.65	17.63	0.26	11.29	0.32	0.04	98.23	43.35	18.73	37.49	69.82	0.22
sd		0.10	0.01	0.15	0.22	0.59	0.10	0.44	0.05	0.01	0.78	1.16	0.51	0.82	1.14	
T4	1	50.94	0.67	2.60	15.19	14.17	0.45	14.13	0.32	0.10	98.56	45.26	23.62	30.35	65.71	0.24
T5	1	51.20	0.62	3.06	15.52	10.78	0.49	17.11	0.57	0.10	99.44	46.81	28.96	23.38	61.78	
950°C	/200MP	a														
T6	1	52.50	0.29	1.72	16.04	18.16	0.24	9.01	0.23	0.00	98.17	46.78	14.74	38.07	76.04	0.23
T7	1	50.28	1.05	3.46	14.51	17.66	0.36	10.22	0.35	0.13	98.00	43.78	17.30	38.31	71.67	0.22
T8	2	51.00	0.68	2.83	14.69	17.66	0.24	11.44	0.33	0.12	98.98	43.26	18.89	37.44	69.60	0.20
sd		0.67	0.23	0.84	0.95	0.53	0.09	0.79	0.07	0.11	0.53	1.59	0.76	2.18	0.08	

1025°C/400 MPa

T29	1	51.21	0.77	3.53	16.27	19.36	0.24	7.75	0.35	0.06	99.55	46.92	12.54	40.14	78.91	0.27
T30	3	51.83	0.62	4.10	15.48	19.22	0.24	8.10	0.39	0.16	100.13	45.58	13.38	40.64	77.32	0.28
		0.11	0.03	0.71	0.35	1.36	0.08	0.11	0.08	0.14	1.11	0.90	0.38	1.15	0.15	
T31	1	52.38	0.48	2.90	15.65	17.88	0.23	9.49	0.44	0.16	99.59	46.10	15.67	37.85	74.63	0.17
T32	1	50.48	0.92	2.87	15.93	14.78	0.28	13.71	0.35	0.04	99.38	46.30	22.36	30.87	67.43	0.26
1000°	C/ 400M	Pa														
T33	3	51.84	0.40	2.23	16.36	20.97	0.07	6.56	0.27	0.01	98.72	46.54	10.47	42.88	81.64	0.22
sd		1.07	0.06	0.82	0.38	0.30	0.05	0.38	0.04	0.01	0.82	0.90	0.62	0.78	1.08	
T34	3	51.14	0.71	3.64	15.50	20.28	0.29	7.44	0.41	0.04	99.44	45.03	12.12	42.36	78.79	0.22
sd		0.75	0.10	0.32	0.26	0.10	0.09	0.16	0.08	0.01	0.35	0.55	0.31	0.39	0.63	
T35	1	49.27	0.78	4.56	14.30	19.51	0.04	8.72	0.36	0.06	97.60	43.01	14.72	42.19	74.50	0.21
T36	2	50.63	0.93	5.25	13.63	17.83	0.24	10.23	0.57	0.15	99.47	42.17	17.76	39.64	70.38	0.20
sd		0.30	0.04	0.67	0.01	0.82	0.14	0.33	0.13	0.07	0.88	0.44	0.75	1.44	0.66	

1000°C/100MPa

T54	2	52.27	0.59	2.91	16.54	19.42	0.26	7.68	0.28	0.02	99.96	47.32	12.32	39.94	79.35	0.22
sd		0.49	0.19	0.15	0.26	0.62	0.00	0.45	0.02	0.02	0.19	0.66	0.70	1.35	0.70	

T55	2	52.25	0.76	2.82	16.42	18.31	0.31	8.77	0.31	0.05	99.99	47.35	14.19	37.96	76.95	0.23
sd		0.36	0.28	0.65	0.33	0.51	0.05	0.06	0.01	0.07	0.34	0.00	0.39	0.32	0.48	
T56	3	52.32	0.71	2.35	16.55	17.97	0.25	9.18	0.27	0.05	99.65	47.61	14.83	37.16	76.26	0.21
sd		0.01	0.03	0.01	0.16	0.33	0.05	0.02	0.04	0.04	0.49	0.10	0.21	0.25	0.22	
1000°C	C/200MI	Pa														
T45b	2	50.52	0.56	3.02	15.69	20.02	0.27	6.42	0.27	0.09	96.88	46.37	10.64	42.53	81.34	0.22
sd		0.57	0.16	0.02	0.13	0.10	0.05	0.47	0.02	0.00	0.09	0.09	0.66	0.66	0.98	
T46b	1	50.44	0.77	4.53	15.77	19.66	0.19	8.02	0.38	0.09	99.84	45.70	13.04	40.95	77.80	0.26
T47b	4	50.85	0.80	3.50	16.80	18.22	0.34	9.19	0.30	0.04	100.05	47.67	14.63	37.15	76.53	0.22
sd		0.35	0.08	0.47	0.22	0.62	0.08	0.47	0.05	0.04	0.84	0.55	0.75	1.27	0.80	
T48b	1	52.23	0.99	3.29	15.02	18.19	0.37	10.75	0.31	0.16	101.31	43.75	17.56	38.09	71.36	
975°C	/200MP	a														
T23	1	50.91	0.68	3.38	15.65	21.80	0.23	6.92	0.29	0.05	99.90	44.28	10.99	44.35	80.12	0.24
sd																
T24	1	50.06	0.65	3.86	16.53	20.03	0.26	8.26	0.36	0.05	100.05	46.30	12.98	40.31	78.11	0.23
T25	1	50.17	0.87	4.28	15.17	19.76	0.25	8.82	0.46	0.04	99.82	44.03	14.35	41.21	75.42	0.27
1025°C	C/ 400M I	Pa														
T50	5	51.34	0.58	3.58	15.91	20.04	0.16	6.55	0.39	0.10	98.65	46.68	10.80	42.26	81.24	0.24
sd		0.87	0.19	0.69	0.55	0.71	0.09	0.80	0.06	0.07	0.33	0.67	1.50	0.78	2.32	
T51	2	50.13	0.75	4.81	15.21	19.50	0.23	8.28	0.42	0.04	99.38	44.74	13.66	41.22	76.61	0.26

sd		0.00	0.06	0.41	0.20	0.38	0.32	0.16	0.01	0.05	0.86	0.81	0.33	0.61	0.11	
T5	2 3	51.48	0.81	4.75	14.68	18.04	0.29	9.69	0.50	0.16	100.40	44.14	16.35	39.00	72.97	0.26
sd		0.46	0.17	0.62	0.33	0.29	0.00	0.37	0.03	0.04	0.58	0.12	0.28	0.24	0.37	
T5	3	51.51	0.83	3.46	14.56	17.80	0.29	9.83	0.48	0.10	98.87	44.08	16.69	38.72	72.53	0.21
10	00°C/400N	MPa														
Т3	7 2	51.89	0.55	2.67	16.13	21.37	0.21	5.99	0.35	0.05	99.21	46.12	9.62	43.93	82.74	0.22
sd		0.75	0.27	0.35	0.49	0.13	0.11	0.20	0.02	0.02	0.42	0.86	0.43	0.25	0.90	
Т3	8 2	49.80	0.85	5.29	14.14	20.45	0.15	7.76	0.43	0.10	98.97	42.50	13.09	44.16	76.45	0.29
sd		0.18	0.05	0.59	0.15	0.56	0.04	0.06	0.07	0.07	0.23	0.28	0.12	0.47	0.05	
Т3	9 3	49.77	0.90	5.24	14.15	19.70	0.07	8.53	0.52	0.09	98.99	42.72	14.44	42.72	74.74	0.25
sd		0.71	0.09	0.44	0.36	0.89	0.06	0.48	0.13	0.10	0.87	0.61	0.29	0.30	0.64	
T4	0 1	50.48	0.80	4.62	13.91	18.87	0.29	9.16	0.54	0.02	98.70	42.43	15.68	41.39	73.01	
97	5°C/400M	Pa														
T4	3 1	51.93	0.60	4.49	13.66	19.31	0.25	9.84	0.53	0.09	100.69	41.14	16.63	41.80	71.21	0.32
T4	4 1	50.67	0.65	3.62	15.34	15.47	0.25	12.53	0.46	0.10	99.09	45.61	20.90	33.06	68.58	

n: number of analyses; sd: standard deviation; FeO*: Total Iron reported as FeO

En. Fs. Wo: calculated as in Morimoto (1989); Mg# = 100[Mg/(Mg+Fe*)]

KdFe*-Mg= (Fe*/Mg in clinopyroxene)/(Fe*/Mg in melt)

Table 5: Composition of experimental orthopyroxenes (wt%).

n

1000°C	C/100MI	Pa SiO ₂	TiO_2	Al_2O_3	MgO	CaO	MnO	FeO*	Na ₂ O	K_2O	Total	En	Fs	Wo	Mg#	Kd ^{Fe*-Mg}
T17	1	53.40	0.47	1.77	24.89	1.97	0.40	16.55	0.08	0.06	99.58	69.49	25.92	3.95	72.83	
T18	1	54.00	0.60	1.54	24.62	2.50	0.33	16.33	0.04	0.00	99.96	68.83	25.62	5.03	72.87	0.22
975°C	/100MPa	ı														
T19																
T20	3	53.79	0.45	1.89	23.71	2.19	0.37	16.49	0.08	0.02	98.97	68.24	26.62	4.53	71.93	0.22
sd		1.33	0.24	0.35	0.38	0.34	0.14	0.20	0.06	0.01	0.65	0.60	0.12	0.74	0.09	
T21	2	52.95	0.52	1.66	23.44	2.06	0.24	17.70	0.03	0.00	98.60	67.00	28.39	4.23	70.23	
sd		0.65	0.15	0.31	0.27	0.56	0.09	0.06	0.00	0.00	0.63	0.87	0.13	1.15	0.18	
T22	1	52.57	0.42	1.28	22.76	2.36	0.42	20.95	0.06	0.05	100.87	62.44	32.25	4.66	65.94	
1000°C	C/200MI	Pa														
T12	4	53.56	0.30	2.49	25.51	2.27	0.39	15.56	0.07	0.03	100.17	70.66	24.19	4.53	74.50	0.25
sd		0.55	0.12	1.05	0.68	0.22	0.11	0.11	0.07	0.02	0.12	0.81	0.39	0.50	0.52	
T13	3	53.24	0.38	1.70	24.23	1.95	0.49	17.76	0.02	0.02	99.79	67.55	27.78	3.90	70.86	
sd		0.35	0.08	0.66	0.50	0.17	0.08	0.29	0.01	0.03	0.41	0.07	0.42	0.28	0.51	

975°C/200MPa

T1																
T2	1	52.42	0.37	3.59	25.58	2.02	0.33	16.31	0.09	0.02	100.72	70.33	25.16	3.99	73.65	0.22
Т3	4	51.60	0.45	2.43	23.06	2.09	0.32	17.94	0.03	0.02	97.93	66.26	28.90	4.31	69.63	0.22
sd		0.26	0.12	0.24	0.09	0.09	0.09	0.40	0.01	0.02	0.45	0.43	0.52	0.20	0.52	
T4	4	51.66	0.33	1.54	21.19	2.07	0.45	20.52	0.04	0.03	97.83	61.53	33.42	4.31	64.81	0.25
sd		0.19	0.07	0.20	0.22	0.23	0.10	0.68	0.03	0.03	0.74	0.39	0.75	0.53	0.59	
T5																
950°C	/200MP	a														
T7	1	52.02	0.41	3.01	22.03	3.22	0.28	16.28	0.20	0.07	97.50	65.50	27.16	6.87	70.69	0.23
sd																
T8	4	51.31	0.38	1.98	22.46	2.24	0.28	20.20	0.06	0.03	98.94	63.15	31.87	4.55	66.46	0.23
sd		0.60	0.06	0.70	0.70	0.52	0.11	0.62	0.06	0.03	0.58	0.67	0.45	1.14	0.25	
1025°C	C/400 M	Pa														
T28																
T29	3	54.05	0.22	2.45	28.02	1.84	0.30	12.32	0.03	0.02	99.25	76.94	18.97	3.63	80.22	0.25
sd		0.79	0.08	0.46	0.12	0.25	0.08	0.35	0.02	0.02	0.96	0.27	0.48	0.49	0.43	
T30	3	54.95	0.20	1.94	27.41	1.68	0.19	13.66	0.06	0.04	100.14	75.32	21.07	3.31	78.14	0.27
sd		0.80	0.05	0.98	0.81	0.24	0.05	0.18	0.00	0.00	0.68	0.35	0.80	0.38	0.73	
T31	3	52.10	0.37	3.26	24.94	2.14	0.27	15.95	0.03	0.02	99.08	70.09	25.15	4.32	73.59	0.18
sd		0.57	0.04	0.82	0.20	0.27	0.07	0.30	0.03	0.02	0.35	0.77	0.36	0.53	0.48	

T32	3	52.14	0.55	1.91	22.73	2.11	0.35	19.51	0.08	0.03	99.41	64.23	30.92	4.29	67.50	0.26
sd		0.23	0.11	0.29	0.18	0.21	0.17	0.15	0.03	0.03	0.29	0.58	0.29	0.41	0.33	
1000°C	C/400MI	Pa														
T34	1	54.10	0.17	1.78	27.60	1.86	0.28	13.40	0.02	0.00	99.21	75.39	20.53	3.65	78.60	0.23
sd																
T35	3	52.84	0.27	3.28	24.31	1.92	0.34	15.53	0.07	0.03	98.58	71.82	23.58	4.09	75.28	0.22
sd		0.53	0.12	0.98	0.84	0.08	0.06	2.11	0.04	0.06	0.59	0.04	0.23	0.09	0.19	
T36	2	51.65	0.46	3.01	23.29	1.78	0.38	17.83	0.04	0.06	98.50	66.94	28.75	3.68	69.96	0.20
sd		0.61	0.06	0.08	0.14	0.08	0.05	0.13	0.02	0.00	0.51	0.33	0.23	0.18	0.28	

1000°C/100MPa	100MPa
---------------	--------

T55	3	54.35	0.30	1.87	27.12	1.64	0.25	14.45	0.01	0.03	100.02	74.21	22.18	3.23	76.99	0.23
sd		0.43	0.11	0.32	0.10	0.09	0.16	0.40	0.02	0.04	0.92	0.46	0.50	0.17	0.48	
T56	3	54.08	0.34	1.99	26.02	1.96	0.34	15.16	0.04	0.01	99.95	72.03	23.54	3.90	75.37	0.22
sd		0.35	0.10	0.12	0.14	0.28	0.16	0.67	0.03	0.02	0.49	0.35	0.88	0.59	0.74	
1000°C	C/ 200M	Pa														
T47b	2	54.30	0.42	2.67	27.46	2.05	0.23	13.61	0.06	0.03	100.82	74.83	20.80	4.01	78.25	0.20

sd		0.33	0.09	0.60	0.38	0.20	0.06	0.93	0.00	0.05	0.10	1.11	1.40	0.39	1.40	
T48b	4	53.29	0.45	2.02	24.51	2.03	0.33	17.71	0.05	0.01	100.39	67.92	27.53	4.04	71.15	
sd		0.07	0.06	0.07	0.03	0.21	0.16	0.26	0.06	0.01	0.54	0.71	0.09	0.37	0.28	
975°C	/200MP	'a														
T24	1	53.58	0.40	3.09	28.00	1.80	0.30	13.64	0.03	0.04	100.86	75.45	20.62	3.48	78.53	0.23
T25	1	53.28	0.41	2.04	27.12	1.87	0.37	15.80	0.03	0.04	100.96	72.25	23.61	3.59	75.37	0.28
1025/	400MPa															
T51	3	53.65	0.26	3.15	27.36	1.71	0.14	13.34	0.07	0.00	99.67	75.67	20.71	3.40	78.51	0.23
sd		0.29	0.07	0.13	0.29	0.10	0.09	0.26	0.04	0.00	0.64	0.47	0.42	0.22	0.45	0.24
T52	4	53.47	0.33	2.74	25.09	2.06	0.31	15.13	0.10	0.05	99.29	71.19	24.09	4.21	74.72	0.25
sd		0.73	0.08	1.01	0.19	0.31	0.09	0.35	0.07	0.04	0.47	0.19	0.43	0.64	0.31	
T53	3	52.92	0.47	1.95	22.32	3.79	0.39	17.34	0.08	0.05	99.31	66.43	28.95	4.04	69.65	
sd		0.80	0.21	0.41	2.09	3.13	0.07	1.62	0.09	0.04	0.57	0.23	0.02	0.35	0.06	
1000/	400MPa															
T39	2	53.17	0.29	3.40	26.66	1.53	0.38	13.47	0.04	0.07	99.00	75.03	21.27	3.09	77.91	0.21
sd		0.73	0.06	0.56	0.05	0.12	0.10	0.23	0.00	0.04	0.50	0.31	0.24	0.23	0.26	
T40	1	53.75	0.46	3.33	24.76	2.39	0.37	15.47	0.08	0.06	100.68	70.01	24.54	4.86	74.04	
975°C	/400MP	'a														
T44	1	53.43	0.26	1.61	22.81	1.39	0.53	20.41	0.03	0.05	100.53	64.15	32.20	2.81	66.58	
950/40	00MPa															

T48 1 50.58 1.62 2.15 23.48 2.07 0.34 19.86 0.07 0.00 100.16 64.68 30.70 4.09 67.81

n: number of analyses

sd: Standard deviation

FeO*: Total Iron reported as FeO

En. Fs. Wo: calculated as in Morimoto (1989)

Mg# = 100[Mg/(Mg+Fe*)]

KdFe*-Mg= (Fe*/Mg in clinopyroxene)/(Fe*/Mg in melt)

Table 6: representative composition of experimental plagioclase.

sample	n	SiO_2	TiO_2	Al_2O_3	MgO	CaO	MnO	FeO*	Na_2O	K_2O	Sum	An	Ab	Or	$Kd^{\text{Ca-Na}}$
T15	2	51.70	0.03	29.58	0.18	13.84	0.00	0.66	3.42	0.16	99.56	68.48	30.58	0.94	1.76
sd		0.28	0.04	0.13	0.04	0.14	0.00	0.03	0.05	0.02	0.28	0.01	0.11	0.13	
T16	1	54.13	0.16	26.58	0.33	10.69	0.00	0.97	4.64	0.40	97.88	54.65	42.93	2.42	1.15
T24	1	52.01	0.02	29.10	0.23	12.96	0.10	0.75	3.91	0.14	99.20	64.18	35.02	0.81	1.56
T31	2	53.66	0.13	26.37	0.39	10.79	0.01	0.98	4.63	0.42	97.39	54.90	42.56	2.54	1.40
sd		1.55	0.04	1.13	0.31	0.05	0.01	0.19	0.22	0.02	2.49	1.07	1.04	0.03	
T32	1	55.27	0.13	26.90	0.10	9.97	0.00	0.54	5.33	0.40	98.64	49.64	47.97	2.38	1.16
T35	1	56.31	0.09	26.75	0.11	9.63	0.11	0.65	5.52	0.46	99.63	47.73	49.55	2.72	0.94
T36	1	56.59	0.10	26.60	0.15	9.62	0.03	1.01	5.29	0.51	99.90	48.62	48.33	3.05	1.23
T53	1	55.58	0.17	26.82	0.11	10.49	0.06	0.56	5.24	0.41	99.44	51.28	46.33	2.40	1.36
T39	1	56.67	0.00	26.95	0.39	11.15	0.00	0.97	3.72	0.16	100.02	61.70	37.25	1.05	1.95
T43	1	57.52	0.00	26.53	0.17	9.64	0.00	0.90	5.08	0.55	100.39	49.48	47.14	3.37	1.31
T7		55.66	0.00	27.25	0.47	11.86	0.00	0.55	4.18	0.22	100.18	60.28	38.42	1.31	1.56
T8	2	56.89	0.08	26.44	0.39	10.81	0.11	0.63	4.36	0.33	100.02	56.62	41.33	2.05	1.76
sd		1.31	0.11	0.94	0.33	0.55	0.15	0.10	0.23	0.11	0.03	0.37	0.19	0.56	

T46	1	53.79	0.07	27.95	0.09	11.94	0.10	0.64	4.59	0.18	99.36	58.34	40.59	1.07	1.57
T47	1	58.47	0.05	24.03	0.36	8.32	0.00	0.97	4.69	0.91	97.80	46.48	47.46	6.06	1.29
T48	1	58.10	0.18	24.84	0.16	8.21	0.04	1.00	5.72	0.91	99.15	41.81	52.66	5.53	
T54	1	53.51	0.06	27.09	0.49	12.64	0.14	1.06	3.27	0.32	98.57	66.76	31.23	2.01	2.08
T55	1	54.87	0.15	26.26	0.34	11.23	0.07	1.11	4.27	0.45	98.76	57.63	39.59	2.77	1.87
T56	1	56.17	0.15	25.03	0.55	10.27	0.02	1.13	4.87	0.52	98.71	52.14	44.72	3.14	1.43

An= 100[Ca/(Ca+Na+K)]; Ab= 100[Na/(Ca+Na+K)]; Or=[100K/(Ca+Na+K)]. End-members calculated as in Deer et al. (1972).

Kd^{Ca-Na} = (Ca/Na in plagioclase)/(Ca/Na in melt)

Table 7: Representative compositions of experimental Fe-Ti oxides

	n	SiO_2	TiO_2	Al_2O_3	MgO	CaO	MnO	FeO*	Na_2O	K_2O	Cr_2O_3	Sum	Mg#
T19	1	0.18	11.80	4.12	3.65	0.22	0.29	68.75	0.00	0.09	-	89.09	5.04
T20	1	3.51	13.78	4.33	3.59	0.37	0.29	67.50	0.46	0.20	-	94.01	5.05
T21	1	0.19	15.94	3.35	3.49	0.15	0.17	68.46	0.00	0.05	-	91.80	4.85
T22	1	2.27	43.94	0.46	5.22	0.42	0.41	43.41	0.00	0.09	-	96.23	
T23	1	0.24	5.30	5.02	4.67	0.22	0.37	76.47	0.01	0.02		92.31	5.75
T24	1	0.33	7.22	5.5	4.65	0.46	0.21	75.03	0.05	0.88	0.64	100.64	5.4
T25	1	1.44	8.77	4.46	4.01	0.29	0.37	74.15	0.21	0.09		93.78	5.13
T4	1	4.01	43.79	1.36	3.81	0.40	0.26	41.13	0.46	0.18		95.41	
T47b	2	1.29	9.21	5.89	4.50	0.37	0.36	65.52	0.10	0.02	5.35	92.62	6.42
sd		0.83	0.08	0.24	0.31	0.17	0.02	0.81	0.04	0.02	0.04	0.66	
T53	2	3.15	11.85	7.05	3.90	0.38	0.33	54.25	0.30	0.21	11.89	93.31	6.71
sd		0.14	0.47	0.86	0.21	0.01	0.00	0.50	0.10	0.11	0.02	0.24	
T38	1	1.67	5.48	6.53	4.23	0.26	0.14	68.46	0.09	0.09	3.62	90.56	5.82
T40	1	1.30	11.81	4.67	3.00	0.32	0.24	68.22	0.07	0.04	1.26	90.95	4.21
T39	1	0.35	8.26	5.42	3.52	0.26	0.33	68.45	0.00	0.01	1.12	87.70	4.89
T41	1	0.15	5.21	4.23	3.35	0.18	0.21	76.61	0.04	0.04	1.20	91.22	4.18
T42	2	0.13	5.71	4.89	2.73	0.23	0.25	74.61	0.00	0.03	1.32	89.90	3.53

sd		0.02	0.20	0.06	0.01	0.11	0.03	1.21	0.00	0.03	0.11	1.44	
T43	1	0.14	8.29	4.51	2.61	0.21	0.25	73.81	0.00	0.11	0.79	90.71	3.41
T44	1	0.16	10.85	3.47	2.59	0.22	0.14	72.21	0.02	0.00	1.41	91.05	3.46
T45	1	0.16	3.60	3.88	3.10	0.09	0.46	76.15	0.05	0.05	2.47	90.01	3.91
T46	1	0.51	4.08	4.73	2.97	0.13	0.48	87.13	0.00	0.05	-	100.00	3.30
T8	1	0.38	15.05	3.49	2.97	0.29	0.35	70.76	0.02	0.05	1.52	94.88	4.02
T8	1	1.07	44.20	0.80	3.83	0.50	0.38	44.50	0.15	0.04	0.22	95.67	7.92
T7	1	0.88	14.13	4.28	3.27	0.28	0.00	71.03	0.05	0.15	1.03	94.07	4.40
T46	1	0.16	4.25	3.92	2.81	0.12	0.15	80.01	0.03	0.08	1.50	91.54	3.39
T47	1	0.31	4.80	3.60	2.46	0.21	0.30	77.91	0.00	0.00	1.86	89.59	3.06
T48	1	0.42	7.53	3.16	2.27	0.23	0.19	77.91	0.04	0.08	1.23	91.84	2.83
T54	2	0.25	7.60	5.20	5.00	0.18	0.30	79.13	0.02	0.05	2.25	100.00	5.94
sd		0.02	0.13	0.24	0.10	0.03	0.05	0.15	0.00	0.03	0.09	0.00	
T55	2	0.15	9.92	4.50	4.39	0.16	0.22	79.25	0.01	0.00	1.40	100.00	5.25
sd		0.09	0.01	0.09	0.09	0.12	0.05	0.40	0.01	0.00	0.55	0.00	
T56	2	0.17	10.32	4.07	4.27	0.10	0.36	78.10	0.00	0.03	2.58	100.00	5.18
sd		0.08	0.49	0.13	0.09	0.07	0.04	0.64	0.00	0.03	1.22	0.00	

n: number of analyses sd: standard deviation

Mg#=100*(MgO/MgO+FeO*)

Table 8: Composition of experimental amphiboles

sample	T6	sd	T7	T38	sd	T41	sd	T42	sd	T43	T45	sd	T46	T47
n	3		1	3		3		2		1	3		1	2
SiO_2	43.23	0.80	41.74	42.99	0.40	43.41	0.19	42.29	0.27	42.60	42.98	0.54	42.35	44.01
TiO_2	2.39	0.13	3.91	2.26	0.05	1.96	0.29	2.30	0.09	2.87	1.82	0.16	2.31	2.23
Al_2O_3	11.23	0.17	11.53	11.80	0.31	11.74	0.22	12.19	0.02	11.66	11.93	0.18	12.28	10.64
MgO	14.69	0.08	13.13	15.28	0.11	15.22	0.43	14.18	0.14	14.22	14.88	0.35	14.20	14.90
CaO	11.16	0.28	10.98	11.40	0.18	11.53	0.34	11.36	0.08	11.38	11.83	0.15	11.93	10.89
MnO	0.11	0.07	0.08	0.10	0.12	0.17	0.10	0.13	0.05	0.07	0.20	0.04	0.05	0.26
FeO*	10.63	0.73	11.56	9.84	0.37	10.48	0.65	11.96	0.30	11.97	10.71	0.59	11.08	11.26
Na_2O	2.17	0.13	2.25	2.21	0.08	2.10	0.03	2.18	0.09	2.21	2.05	0.04	2.14	2.00
K_2O	0.48	0.07	0.57	0.57	0.07	0.56	0.06	0.56	0.04	0.67	0.60	0.03	0.76	0.56
Sum	96.09	1.33	95.75	96.46	0.32	97.18	0.62	97.15	0.11	97.65	97.00	0.81	97.09	96.75
Si	6.31		6.19	6.23		6.25		6.13		6.17	6.23		6.18	6.35
Ti	0.26		0.44	0.25		0.21		0.25		0.31	0.20		0.25	0.24
Al	1.93		2.02	2.02		1.99		2.08		1.99	2.04		2.11	1.81
Fe+3	0.74		0.47	0.76		0.84		0.90		0.77	0.75		0.53	0.97
Fe+2	0.55		0.96	0.43		0.42		0.55		0.68	0.55		0.82	0.39
Mn	0.01		0.01	0.01		0.02		0.02		0.01	0.02		0.01	0.03

Mg	3.19	2.91	3.30	3.27	3.07	3.07	3.21	3.09	3.21
Ca	1.74	1.75	1.77	1.78	1.76	1.77	1.84	1.87	1.68
Na	0.61	0.65	0.62	0.59	0.61	0.62	0.58	0.61	0.56
K	0.09	0.11	0.11	0.10	0.10	0.12	0.11	0.14	0.10
Н	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
P *(MP	Pa): 386.32	396.32	444.29	439.93	481.37	406.34	437.39	419.22	386.77
T*(°C):	867.34	865.36	885.78	886.26	900.18	882.06	866.52	826.32	910.84
ΔΝΝΟ;	*:3.03	0.76	3.95	4.13	3.42	2.75	4.08	3.25	3.74
H_2O_{melt}	*:4.43	3.86	4.58	4.71	4.58	4.18	5.33	5.90	3.61

n: number of analysis

sd: standard deviation

^{*}pamameters calculated using the Ridolfi &Renzulli (2012) equations

Table 9: Average composition of experimental glasses

NNO+1 experiments

n

1000°C	C/100MI	Pa SiO ₂	TiO_2	Al_2O_3	FeO*	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	Total	Sum
T15	11	59.97	0.87	17.37	6.27	0.13	2.89	6.30	4.03	1.90	0.27	100.00	94.55
sd		0.27	0.09	0.24	0.28	0.08	0.10	0.13	0.10	0.12	0.06	0.00	0.74
T16	1	61.36	0.96	16.51	6.26	0.12	2.46	5.62	4.11	2.25	0.34	100.00	93.66
T18	4	63.72	1.33	16.47	4.93	0.09	1.61	4.30	4.25	2.86	0.45	100.00	96.01
sd		0.59	0.15	0.80	0.38	0.05	0.09	0.53	0.12	0.28	0.10	0.00	0.66
975°C	/100MPa	ı											
T19	4	61.99	0.93	17.35	5.65	0.07	2.02	5.26	4.21	2.18	0.36	100.00	92.92
sd		0.22	0.12	0.27	0.24	0.09	0.07	0.22	0.11	0.07	0.14	0.00	0.55
T20	7	63.91	0.95	16.28	5.22	0.09	1.63	4.22	4.50	2.78	0.40	100.00	93.04
sd		0.45	0.10	0.43	0.18	0.11	0.07	0.21	0.06	0.08	0.11	0.00	0.57
1000°C	C/200MI	Pa											
T10	15	60.19	0.88	16.84	6.08	0.14	3.42	6.71	3.89	1.71	0.13	100.00	92.45
sd		0.44	0.06	0.17	0.22	0.09	0.08	0.11	0.16	0.12	0.09	0.00	0.43
T11	15	60.10	0.94	17.66	5.94	0.13	2.91	6.25	4.10	1.82	0.16	100.00	94.64
sd		0.47	0.08	0.61	0.28	0.10	0.33	0.39	0.15	0.13	0.09	0.00	0.60

T12	7	61.54	1.08	16.81	5.95	0.03	2.42	5.57	4.28	2.15	0.17	100.00	94.24
sd		0.43	0.03	0.16	0.21	0.02	0.05	0.30	0.08	0.09	0.09	0.00	0.19
975°C	/200MPa	a											
T1	6	60.06	0.88	17.93	6.15	0.08	2.53	6.13	4.06	1.85	0.31	100.00	93.06
sd		0.29	0.08	0.27	0.24	0.08	0.04	0.10	0.11	0.06	0.10	0.00	0.36
T2	6	62.12	1.03	16.97	5.93	0.03	2.06	5.24	4.20	2.22	0.21	100.00	93.59
sd		0.25	0.10	0.11	0.23	0.05	0.02	0.12	0.07	0.09	0.08	0.00	0.69
Т3	2	62.50	1.04	16.86	5.87	0.11	1.65	4.88	4.37	2.37	0.36	100.00	
sd	_	0.12	0.08	0.21	0.08	0.14	0.00	0.24	0.35	0.10	0.02	0.00	0.39
T4	5	64.83	0.90	16.05	4.91	0.14	1.25	3.66	4.61	3.27	0.42	100.00	
	3												
sd		0.18	0.06	0.08	0.18	0.10	0.04	0.05	0.11	0.06	0.11	0.00	0.22
950°C	/200MPa	a											
T6	10	61.56	0.68	17.70	5.87	0.11	2.36	5.75	3.80	1.94	0.23	100.00	92.38
sd		0.26	0.09	0.08	0.27	0.07	0.07	0.13	0.10	0.11	0.13	0.00	0.52
T7	1	62.62	0.83	17.17	5.91	0.18	1.84	4.55	4.08	2.61	0.21	100.00	93.65
T8	3	64.56	0.89	16.48	5.14	0.01	1.30	3.91	4.39	3.10	0.23	100.00	94.46
sd		0.21	0.10	0.36	0.13	0.01	0.05	0.14	0.06	0.12	0.06	0.00	0.08
1025°C	C/400 M	Pa											
T28	12	59.27	0.88	16.89	6.22	0.09	4.13	6.98	3.58	1.74	0.23	100.00	12.31
sd		0.28	0.11	0.20	0.22	0.08	0.21	0.24	0.11	0.23	0.11	0.00	0.60

T29	6	59.10	0.86	17.51	6.29	0.12	3.62	6.53	3.98	1.77	0.21	100.00	8.12
sd		0.47	0.05	0.38	0.34	0.05	0.36	0.40	0.15	0.04	0.12	0.00	0.26
T30	8	59.21	0.89	17.87	6.08	0.04	3.29	6.36	4.27	1.79	0.20	100.00	7.49
sd		0.37	0.11	0.11	0.25	0.06	0.03	0.15	0.07	0.06	0.11	0.00	0.37
T31	1	63.04	1.28	15.83	6.39	0.01	1.82	4.58	4.28	2.66	0.10	100.00	5.83
T32	4	63.11	1.16	16.11	5.78	0.17	1.73	4.35	4.33	2.96	0.31	100.00	95.10
sd		0.19	0.08	0.13	0.16	0.12	0.04	0.14	0.04	0.07	0.05	0.00	0.45
1000°C	C/400MI	Pa											
T33	10	60.03	0.91	17.35	6.14	0.07	3.40	6.43	3.57	1.80	0.30	100.00	9.88
sd		0.31	0.10	0.16	0.28	0.06	0.07	0.12	0.16	0.10	0.11	0.00	0.61
T34	2	59.96	0.93	17.93	6.23	0.05	2.91	5.93	3.91	1.85	0.30	100.00	6.93
sd		0.39	0.06	0.34	0.44	0.09	0.13	0.03	0.10	0.02	0.02	0.00	0.00
T35	2	61.60	1.05	17.94	5.46	0.05	1.87	5.15	4.24	2.31	0.33	100.00	5.53
sd		0.32	0.02	0.37	0.14	0.07	0.08	0.34	0.17	0.42	0.26	0.00	0.18
T36	3	63.69	1.12	16.93	5.92	0.09	1.56	4.45	4.54	2.61	0.33	100.00	4.89
sd		0.50	0.11	0.16	0.20	0.05	0.07	0.16	0.08	0.16	0.12	0.00	0.80
NNO)+2 ex	perim	ents										
1000°C	C/100MI	Pa											
T54	4	61.95	0.99	16.92	5.33	0.20	2.51	5.61	4.22	2.01	0.25	100.00	94.69

sd		0.84	0.04	0.36	0.09	0.14	0.04	0.23	0.11	0.05	0.05	0.00	0.45
T55	7	63.88	0.98	16.24	4.85	0.10	2.05	4.51	4.68	2.55	0.17	100.00	95.08
sd		0.32	0.14	0.21	0.38	0.09	0.03	0.12	0.11	0.17	0.07	0.00	0.50
T56	5	64.93	1.02	15.73	4.67	0.14	1.77	4.24	4.46	2.74	0.30	100.00	95.64
sd		0.34	0.11	0.28	0.14	0.10	0.05	0.13	0.08	0.08	0.12	0.00	0.70
T57	2	67.10	0.96	14.95	4.30	0.08	1.41	3.21	4.34	3.50	0.14	100.00	96.90
sd		0.56	0.10	0.14	0.07	0.04	0.22	0.07	0.06	0.12	0.06	0.00	0.58
1000°C	C/200MF	Pa											
T45b	2	60.07	0.93	17.24	6.17	0.13	3.36	6.53	3.58	1.73	0.25	100.00	92.48
sd		0.23	0.15	0.03	0.25	0.06	0.07	0.00	0.01	0.11	0.08	0.00	0.02
T46b	3	60.45	0.85	17.86	5.79	0.14	2.98	6.11	3.78	1.94	0.11	100.00	93.36
sd		0.52	0.07	0.21	0.45	0.07	0.09	0.01	0.03	0.02	0.09	0.00	0.53
T47b	5	61.71	0.97	16.77	6.02	0.13	2.38	5.30	4.18	2.31	0.22	100.00	93.94
sd		0.34	0.04	0.20	0.34	0.07	0.05	0.13	0.12	0.10	0.07	0.00	0.80
975°C/	200MPa	ı											
T23	11	60.64	0.83	17.81	5.43	0.09	2.99	6.08	4.05	1.86	0.22	100.00	92.12
sd		0.29	0.09	0.18	0.29	0.08	0.06	0.10	0.14	0.07	0.07	0.00	0.62
T24	6	61.09	0.80	17.86	5.63	0.12	2.64	5.53	4.05	2.01	0.26	100.00	93.40
sd		0.21	0.11	0.15	0.22	0.08	0.06	0.04	0.11	0.12	0.16	0.00	0.62

T25	1	63.22	0.84	16.52	4.96	0.00	2.35	4.45	4.45	2.57	0.39	100.00 2.11
1025/4	l00MPa											
T49	4	59.33	0.92	16.55	5.91	0.20	4.08	6.99	4.07	1.79	0.16	100.00 89.60
sd		0.43	0.10	0.17	0.38	0.11	0.06	0.12	0.25	0.17	0.13	0.00
T50	10	59.45	0.82	17.02	6.21	0.17	3.58	6.49	4.17	1.79	0.30	100.00 93.01
sd		0.38	0.08	0.21	0.35	0.12	0.09	0.10	0.09	0.08	0.10	0.00
T51	8	59.58	0.90	17.81	5.99	0.13	2.83	6.15	4.46	1.91	0.24	100.00 94.88
sd		0.40	0.10	0.25	0.32	0.09	0.15	0.15	0.10	0.07	0.13	0.00
T52	2	61.12	1.13	17.15	5.67	0.13	2.27	5.36	4.69	2.10	0.38	100.00 95.43
sd		0.14	0.03	0.30	0.36	0.13	0.02	0.00	0.08	0.08	0.13	0.00
T53	4	62.82	1.32	15.92	5.73	0.07	1.82	4.42	4.67	2.84	0.40	100.00 95.87
sd		0.24	0.06	0.25	0.12	0.05	0.03	0.09	0.05	0.10	0.10	0.00
1000°C	C/400 M	Pa										
T37	10	59.70	0.86	17.20	6.10	0.12	3.67	6.28	4.02	1.82	0.22	100.00 90.28
sd		0.43	0.12	0.17	0.34	0.10	0.07	0.18	0.14	0.13	0.08	0.00
T38	10	60.83	0.79	17.64	5.57	0.13	2.93	5.89	3.96	1.98	0.30	100.00 92.20
sd		0.26	0.09	0.18	0.20	0.09	0.08	0.17	0.41	0.08	0.07	0.00
T39	1	62.41	0.96	17.65	4.78	0.08	2.00	4.98	4.45	2.41	0.27	100.00 93.50
975°C/	/400MPa	ı										
T41	3	62.94	0.62	17.78	4.89	0.04	2.01	5.92	3.51	1.94	0.33	100.00 89.91

sd		0.21	0.05	0.07	0.38	0.05	0.10	0.01	0.15	0.12	0.12	0.00
T43	3	65.27	0.59	16.48	4.06	0.06	1.79	4.27	4.47	2.65	0.36	100.00 93.85
sd		0.39	0.10	0.20	0.14	0.09	0.14	0.16	0.24	0.11	0.11	0.00
950°C	/400 MP	a										
T45	4	64.13	0.47	17.66	4.12	0.18	1.60	5.57	3.99	2.02	0.26	100.00 90.72
sd		0.28	0.12	0.20	0.28	0.04	0.05	0.05	0.15	0.06	0.06	0.00
T46	2	66.45	0.39	16.66	3.69	0.17	1.31	4.47	4.39	2.30	0.15	100.00 92.60
sd		0.10	0.08	0.02	0.28	0.04	0.00	0.06	0.23	0.03	0.12	0.00
T47	1	70.20	0.37	15.89	2.93	0.03	0.86	2.95	3.72	3.06	0.00	100.00 94.47

Legend as in previous Tables.