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Abstract 
Mesospheric clouds have been observed on Mars for 
about 15 years. Microphysical modeling studies have 
provided evidence that an exogenous Ice Nucleus (IN) 
source is needed to form these clouds. These IN are 
probably Meteor Smoke Particles (MSPs) as in the 
Earth’s mesosphere. Recent studies have provided 
new information on the properties of the MSPs and 
of CO2 ice: we are presenting here updated results 
using these new parameters.  

1. Introduction 
Martian mesospheric CO2 clouds were detected and 
imaged in 2007 by [1], after first hints of their actual 
existence from infrared spectroscopy [2]. Several 
observational datasets on mesospheric clouds have 
been accumulated over the years (with and without 
composition retrieval) [3-9] and a long climatology 
can be established. Global Climate Modeling has 
shown that the mesospheric clouds form in the 
temperature minima of migrating and non-migrating 
tides, but they are not sufficient to cool the 
atmosphere below the condensation temperature of 
CO2 [10]. It was shown [11] that mesospheric cloud 
observations correlate with the privileged zones of 
gravity wave propagation to the mesosphere, giving 
strong evidence of a link between the two 
phenomena. Subsequent microphysical modeling 
[12-13] in one dimension showed that using 
temperature profiles accounting for the effects of 
thermal tides and gravity waves resulted in observed-
like clouds, if the profiles were cooled by some 
degrees and if a mesospheric IN source was added in 
the simulation. 

1.1 The microphysical model 

The microphysical model is based on the work by [14] 
and was adapted to Martian CO2 ice clouds by [12-
13]. This sectional cloud model describes the 

processes of cloud crystal formation by 
heterogeneous (deposition mode) nucleation onto IN, 
their condensational growth or evaporation, and 
sedimentation and vertical mixing by eddy diffusion.  

1.2 New parameters 

Recently published experimental results [15] show 
that the contact parameter (m) of CO2 ice that was 
previously used in the models is too favorable for 
nucleation of CO2 ice on dust. The previously 
measured value for this parameter (m=0.952) came 
from [16], who studied CO2 ice nucleation on a flat 
water ice substrate. When [15] used nanometer-size 
MSP and Mars dust analogs as IN in their nucleation 
experiment, they found a much lower value of 
m=0.78. They also measured a new value for the 
desorption energy of CO2 on the IN. In another study 
[17] the CO2 ice density was measured at low 
temperatures showing a clear dependence on 
temperature. In this work, we are applying the 
updated values of the aforementioned parameters in 
our microphysical model [13] to quantify their effect 
on cloud formation. 

2. Results 
The new contact parameter has a large influence on 
the supersaturation necessary to activate the IN. 
Figure 1 shows the nucleation probability (giving the 
fraction of the activated IN) for CO2 ice as a function 
of saturation ratio and the corresponding temperature 
deviation below the condensation temperature. The 
results are shown for four IN radii at the conditions 
prevailing around 75 km (atmospheric pressure 0.01 
Pa). It is clearly seen that the new contact parameter 
[15] has a profound effect on nucleation: for all 
studied particle sizes, the saturation ratios required to 
activate the IN increase by one order of magnitude 
compared to the contact parameter of [16]. 
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Figure 1: Nucleation probability for four IN radii as a 
function of the saturation ratio and the corresponding 
deviation below the condensation temperature. The 

atmospheric pressure is 0.01 Pa (as around 75 km). The 
black lines show the results for contact parameter m=0.95 

and the red lines for m=0.78. 

Figure 2 shows the required temperature deviation 
below saturation as a function of the IN radius, and 
includes also the two other parameters, CO2 ice 
density and desorption energy of CO2. For IN of 10 
nm radius, the temperatures need to be decreased by 
6 K to activate them compared to the old value of m. 
It can be seen that the other parameters have a minor 
role on the activation temperature deviation. 

 

Figure 2: The temperature deviation below saturation 
required for IN activation as a function of the IN radius. 
The atmospheric pressure is 0.01 Pa (75 km). The blue 

lines show the results for contact parameter m=0.95 and the 
black lines for m=0.78. The legend shows the variation of 

the different parameters: 0=old value, 1=new value. 

We have also looked at the 1D results for the clouds. 
We chose a good simulation of a daytime cloud from 
[13] and rerun it with the new parameters. The IN 
profile of the simulation includes the climatological 

dust profile and a MSP source in the mesosphere. 
Figure 3 shows the results of the simulation with the 
old contact parameter and two simulations with the 
new one. 

 

Figure 3: Effective radius (color) and opacity (lines: solid 
at 1 µm, dashed at 500 nm) of the cloud as a function of 

pressure and time from the start of the simulation. The IN 
are injected at the supersaturated region (dashed) and are of 

10 nm radius. Upper panel: m=0.95; middle and lower 
panel: m=0.78. Scrit indicates the saturation ratio required 

for activation of the IN, and Smax the maximum 
supersaturation reached during the simulation. 

The upper panel reproduces the results of [13] and 
shows the formation of a cloud within the 
supersaturated pocket for a critical saturation ratio of 
three (Scrit=3) with the old value of m. The middle 
panel shows that for the same saturation conditions 
(Smax=15) the formed cloud is much thinner 
(opacity<10-6). This indicates that the small IN are 
actually not activated, since the reached saturation 
ratios (Smax=15) are only enough to activate the 
larger particles of the dust lifted from the surface, 
which is present in very small concentrations (as 
constrained by the Mars Climate Database [18]). The 
small number concentration of the activated IN leads 
to the very small opacity. The lower panel shows that 
a realistic cloud can be simulated if the cooling is 
increased (Smax=21) so that the new critical saturation 
ratio (Scrit=20) can be reached: in this case, the MSP 
particles can also be activated as IN (at Scrit=20) and 
the observed cloud opacities are attained. 



3. Summary and Conclusions 
In the light of new measurements on CO2 ice 
properties, modeling results show that the martian 
mesospheric CO2 ice clouds are very difficult to form, 
requiring very high saturation ratios (and thus very 
low temperatures). The critical saturation ratios 
increase by an order of magnitude when using the 
new contact parameter to activate the available IN 
and to form clouds with observed properties. The 
first results suggest that the clouds would strongly 
rely on the maximum saturation ratio reached within 
the cold pocket, leading to threshold effects making 
those clouds even more difficult to form. We are 
currently implementing the microphysics into the 
LMD GCM [19-20]. 
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