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Abstract	

The emergence of life on the Earth has required a prior organic chemistry leading to the 

formation of prebiotic molecules. The origin and the evolution of the organic matter on the 

early Earth is not yet firmly understood. Several hypotheses, possibly complementary, are 

considered. They can be divided in two categories: endogenous and exogenous sources. In 

this work we investigate the contribution of a specific endogenous source: the organic 

chemistry occurring in the ionosphere of the early Earth where the significant VUV 

contribution of the young Sun involved an efficient formation of reactive species. We address 

the issue whether this chemistry can lead to the formation of complex organic compounds 

with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by 

mimicking experimentally this type of chemistry using a low pressure plasma reactor. By 

analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, 

N2O and C2N2. The formation of a solid organic phase is also observed, confirming the 

possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The 

identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for 

an efficient ionospheric chemistry to provide prebiotic material on the early Earth. 
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1. Introduction	

Life is supposed to have appeared on Earth before 3.5 Ga during the Archean and maybe 

before the Late Heavy Bombardment (LHB) during the Hadean (Nisbet and Sleep, 2001). The 

presence of liquid water and organic matter is now widely accepted as conditions for the 

apparition of life (Cottin et al., 2015). Understanding the origins of these organic molecules, 

which are implicated in the apparition of life is of prime interest for astrobiology. Different 

origins are proposed for the organic matter on the early Earth at this period: exogenous 

delivery by meteorites and comets, or endogenous formation in hydrothermal vents or in the 

primitive atmosphere (Chyba and Sagan, 1992).  

Reduced atmospheres are known to be an important source of organic matter as pointed out 

by the observation of Titan the largest satellite of Saturn (Tomasko and West, 2010; Waite et 

al., 2010) or by experiments realized by Miller about the reactivity of the early Earth 

atmosphere (Miller, 1953). However, if the question of the degree of oxidation of the early 

Earth atmosphere and so its composition is not completely solved, there is evidence that the 

upper mantle of the Earth was at the present redox state since 3.9 Ga (Delano, 2001) and 

probably 4.4 Ga (Trail, 2011) resulting in a relatively oxidant primitive atmosphere 

dominated by molecular nitrogen N2 and carbon dioxide CO2 (Kasting, 1993). The 

composition of the early Earth’s atmosphere is an important parameter to consider for the 

production of organic matter. Different experiments highlighting the fact that chemistry in 

oxidant atmospheres produces less organic compounds than in reduced atmospheres 

(Schlesinger and Miller, 1983a, b).  

Recent experimental works showed that organic aerosols can be produced in an atmosphere 

dominated by CO2 with a minor amount of methane CH4 (Trainer et al., 2004; Trainer et al., 

2006). But it remains uncertain whether CH4 was present in the primitive atmosphere of the 
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Earth. Indeed, today 70% of the methane emissions have biogenic sources and for an 

important part from ecosystems, which do not exist during the Hadean and the Archean eons 

(Denman et al., 2007). The two principal abiotic sources of methane considered for the early 

Earth are delivery by meteoritic and cometary impacts and production by serpentinization 

process (Kasting, 2005). These sources could be responsible for a methane amount of only 

few ppmv in the primitive atmosphere of the Earth (Emmanuel and Ague, 2007; Feulner, 

2012; Guzmán-Marmolejo et al., 2013; Kasting, 2005), which is much lower than the amount 

considered in experimental simulations (Trainer et al., 2006) or climate model (Charnay et al., 

2013). For these reasons, we have chosen to explore a potential organic chemistry in an early 

Earth’s atmosphere with only CO2 as source of carbon.  

Moreover, if CH4 concentration should be low in the early Earth’s atmosphere, molecular 

hydrogen H2 could be present in a larger amount. Indeed, assuming that the loss of hydrogen 

to space was limited by diffusion, a mixing ratio of 10-3 has been established for the early 

Earth’s atmosphere (Kasting, 1993). But, assuming a lower Jeans escape than today, Tian, 

2005 has proposed that H2 mixing ratio could be 100 times higher, reaching 10% and up to 

30%. According to the authors, this lower efficiency of the Jeans escape for H2 would be 

explained by a lower temperature of the exobase at this period. Indeed, in one hand the higher 

CO2 concentration at this period would result to a higher radiations backed to space and in the 

other hand, the lower oxygen concentration in the atmosphere (O2) would result to a lower 

heating of the exobase by the atomic oxygen UV absorbance (Martin et al., 2006; Tian et al., 

2005). This new calculation has been discussed since, notably because of the limited amount 

of CO2 present in the atmosphere to cool the exobase (Catling, 2006; Tian et al., 2006). A 

more recent model has determined a hydrogen mixing ratio of 1% at the homopause. It results 

that the exact concentration of H2 during the Hadean and the Archean remains difficult to 
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determine but could be important. For this reason, the influence of H2 on the primitive 

atmospheric reactivity needs to be studied. 

We present in this paper an experimental study of the organic growth occurring in an early 

Earth’s atmosphere made of N2, CO2 and H2. A first study performed in similar conditions 

highlighted an important formation of water vapor in the stratosphere and ionosphere of the 

early Earth (Fleury et al., 2015). We are now interested in investigating the concomitant 

formation of organic molecules, as both gaseous and solid products. The composition of the 

Earth atmosphere has evolved over geological time, notably CO2 whose concentration during 

the Hadean and the Archean is not precisely known (Feulner, 2012). For this reason, we also 

take into account the influence of the CO2 initial amount on the atmospheric chemistry of the 

early Earth simulated in our experiments.  

2. Experimental	setup	and	analytical	protocols			

2.1. 	Experimental	simulation	

We used here the PAMPRE experimental setup, which has been described in details in 

previous publication (Szopa et al., 2006). It is a Radio Frequency Capacitively Coupled 

Plasma (RF CCP) at low pressure. In this experiment, a discharge is generated between a 

polarized electrode and a cylindrical grid grounded electrode confining the plasma. Before 

each experiment, the reactor is heated and pumped down to 2 × 10-6 mbar. The gaseous flow 

is then injected continuously and pumped through a rotary vane vacuum pump. Three gas 

bottles are used in the experiments to generate the reactive gaseous mixture: one with high-

purity of N2 (99.999%), one containing a N2-H2 mixture with 5% of H2 and one with CO2 

(> 99.995%).  
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The generator RF power is set to 30 W and the total gas flow rate to 55 sccm resulting in a 

0.9 mbar pressure in the reactor. The modeling of the used plasma has been done in pure N2 

(Alves et al., 2012). The electrons energy distribution function (EEDF) presents a maximum 

at 2 eV and a relatively populated tail for electron energy above 4 eV and up to 14 eV 

mimicking the young solar spectrum, which presents a higher UV and X-ray emission flux 

and a lower visible and infrared emission flux than today (Claire et al., 2012). The electrons 

present in our plasma have sufficient energy to dissociate and ionize N2 and activate nitrogen 

chemistry as well as CO2 and H2. The PAMPRE experiment can be so used to simulate the 

reactivity of the upper layers (above the troposphere) of the early Earth, where N2, CO2 and 

H2 can be dissociated and ionized.  

The hydrogen mixing ratio is kept constant at 4% for all experiments. This concentration is 

chosen in agreement with recent modeling studies of the H2 mixing ratio, giving an upper 

limit about 1% for the Archean atmosphere (Kuramoto et al., 2013) and up to 30% (Tian et 

al., 2005). The gas flow is adjusted among N2 and CO2 from an experiment to another to 

introduce CO2 at different mixing ratios: 1%, 5% and 10%. 

2.2. 	Cryogenic	trapping	

In order to detect and identify gas species produced in low quantity, we have trapped the 

volatile species and accumulated them by cooling the plasma box. For that, a part of the 

experiments presented below is performed with a continuous injection of liquid nitrogen (LN2) 

inside the stainless-steel block supporting the grounded electrode. The plasma box is cooled 

by thermal conduction. The temperature is fixed at 173 K to prevent N2, H2 and CO2 

condensation. However, the trapping of CO2 has been observed in the results presented in the 

section 3.4. The trapping of the reactants is discussed in the same section and has been take 

into account for the interpretation of the results. Products are accumulated during 4 or 8 hours 
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of plasma duration. After plasma turning off, the reactor is pumped to eliminate N2, H2 and 

CO2. The reactor is isolated and the plasma box is warmed up to room temperature. Trapped 

gases are released and analyzed by mass spectrometry, infrared spectroscopy and by Gas 

Chromatography coupled to Mass Spectrometry (GC-MS). 

2.3. 	Mass	spectrometry	on	gaseous	phase	

Measurements of the gas phase trapped during a part of the experiments, as described in 

section 2.1, are achieved with a Pfeiffer QME 200 quadrupole mass spectrometer (QMS). In 

the spectrometer, neutral species are ionized by electron impact at 70 eV. Gases are 

transferred to the spectrometer through a capillary tube, which is long enough to keep the 

pressure below 10-5 mbar in the spectrometer when the pressure inside the reactor is 0.9 mbar. 

Its resolution is 100 at m/z 100 and it covers 1-100 u mass range. Gas trapped are analyzed 

with a long scanning acquisition of 1 s for each mass between m/z 1 and 60.  

2.4. 	Infrared	spectroscopy	on	gaseous	phase	

Trapped molecules are also analyzed with a Thermo Scientific Nicolet 6700 Fourier 

Transform Infrared (FTIR) spectrometer. A schema of the FTIR setup on the PAMPRE 

reactor, seen from above, is presented in Figure 1. The infrared beam is emitted by the FTIR 

source and passes through the reactor via two KBr windows. Then, the beam is collected by a 

Mercury Cadmium Telluride (MCT) detector cooled by liquid nitrogen.  
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Figure 1: Schema of the FTIR setup on the PAMPRE reactor.  

In the results presented below, IR spectra are recorded in the 650-4500 cm-1 range with a 

resolution of 1 cm-1 after a co-addition of 500 scans. With only one passage of the beam 

through the reactor, the corresponding path length is 50.8 ± 0.2 cm. 

2.5. 	GC-MS	analysis	of	the	gaseous	phase	

To analyze the gaseous phase ex situ by GC-MS, we transfer the trapped gases in the reactor 

into another external cold trap. It is a cylindrical glass coil immersed in liquid nitrogen and 

connected to the reactor. Before transferring gases, the cold trap is pumped down to 5 × 10-5 

mbar. Then, the valve isolating the trap from the reactor is opened and the gaseous species are 

transferred into the external cold trap. No formation of a solid residue is observed through the 

warming process here, contrarily to an experiment made in Titan-like conditions (Gautier et 

al., 2011). 

The GC-MS analyses of the gas trapped are achieved using a Thermo Scientific trace GC 

ultra with an ITQ Thermo Scientific mass spectrometer. Gases are injected through a six port 

gas valve. The mass spectrometer is composed by a quadrupole using a 70 eV electron 

ionization system. For the gas separation, the column is a MXT-QPLOT (Restek, 30m long, 

0.25 mm internal diameter and 10 µm stationary phase thickness). The column temperature is 

set at 40°C during 5 min, then the temperature is increased with a gradient of 5 °C/min up to 
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190°C and kept at this final temperature for 5 min. Helium is used as the carrier gas 

(>99.9995% purity) at a constant 1.5 ml/min flow rate. A blank is done before each sample 

analysis.  

2.6. 	Solid	phase	collection	and	infrared	analysis	of	thin	films	

CaF2 substrates are placed on the grounded electrode to collect thin films possibly produced 

during the experiments. These potential films are deposited at room temperature during 

40 hours of plasma duration. Then, they are analyzed by infrared spectroscopy (Attenuated 

Total Reflectance technique). Samples are placed on the surface of a prism with a high 

refraction index (ATR crystal). The infrared signal is collected by a Deuterium TriGlycine 

Sulfate (DTGS) detector in the 1200-4000 cm-1 range with a resolution of 4 cm-1 after a co-

addition of 500 scans.  
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3. Results	

3.1. 	CO2	and	H2	consumption	

The first aspect of the gas phase reactivity involves the consumption of the three initial 

species: N2, CO2 and H2. The N2 consumption is low, with a dissociation of about 4%, 

theoretically evaluated in (Alves et al., 2012). The consumptions of H2 and CO2 are more 

important and are monitored at room temperature by in situ mass spectrometry using the time-

tracking of CO2
+ at m/z 44 and H2

+ at m/z 2 at a time resolution of 0.5 s. The time-evolution of 

H2 is given on Figure 2, and the time-evolution of CO2 has been previously studied (Fleury et 

al., 2015).  

 
Figure 2: Evolution of the H2 mixing ratio in the gaseous reactive medium with the plasma 
duration. Origin of the time is set as the moment when the plasma is turned on. 

In (Fleury et al., 2015), the CO2 consumption efficiency eCO2 is defined according to the 

following equation (1): 

𝑒!"! =  ∆!"!
!"! !

=  !"! !! !"! !!
!"! !

 (1), 

where [CO2]0 and [CO2]ss represent the initial and steady-state concentrations of carbon 

dioxide and ΔCO2 represents the consumption of CO2.  
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Similarly we defined the hydrogen consumption efficiency eH2 with:  

𝑒!! =  ∆!!
!! !

=  !! !! !! !!
!! !

 (2), 

where [H2]0 and [H2]ss represent the initial and steady-state percentages of molecular 

hydrogen respectively and ΔH2 the consumption of H2. 

We defined also the elemental ratio in the fractions of gases consumed C/H: 

!
!
=  !!"!

!!!!
 (3), 

Where ΔCO2 represents the absolute consumption of CO2 and ΔH2 the absolute consumption of 

H2. 

Similarly we defined the elemental ratio in the fractions of gases consumed O/H: 

!
!
=  !!"!

!!!
 (4), 

Where ΔCO2 represents the absolute consumption of CO2 and ΔH2 the absolute consumption of 

H2. 

Table 1: Evolutions as a function of [CO2]0 of: ΔCO2, eCO2, ΔH2, and C/H and O/H ratios in the 
fraction of gases consumed. The uncertainties are given as 2σ (standard deviation) and are 
calculated from the standard fluctuation of the mass spectrometry measurements. 

[CO2]0 (%) ΔCO2 ΔH2 eCO2 (%) eH2 (%) C/H  O/H  

1 0.24 0.72 24 ± 2 18 ± 1 0.2 0.3 

5 1.2 1.3 24 ± 1 32 ± 1 0.5 0.9 

10 2 1.4 20 ± 1 36 ± 1 0.7 1.4 

Consumption efficiencies are reported in Table 1. A first important observation is that CO2 

and H2 are efficiently consumed whatever the experimental conditions with a relative 

decrease of about 20-30%. This first result is important meaning that new molecules are 
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produced in the discharge from the reactions of these two species, involving the formation of 

possible organic molecules. Organic growth seems possible even in the absence of methane, 

with CO2 as the sole carrier for organic chemistry.   

The consumption efficiencies of H2 and CO2 are moreover rather different according to the 

initial CO2 concentration. On the one hand the CO2 relative consumption is stable at about 

25%, so that when the initial CO2 amount is multiplied by a factor of 10, the CO2 consumed is 

multiplied by about the same factor. Considering the whole carbon balance among the 

reactants and the products in the discharge, we therefore expect a C-content similarly 

extended in the budget of the products. On the other hand the H2 consumption strongly 

increases with the initial CO2 concentration, but it does not compensate the larger absolute 

CO2 consumption. This leads to an important increase, from 0.2 up to 0.7, of the total C/H 

ratio provided to the product budget by the reactant consumption. We therefore expect a 

production of organic products whose hydrogenation rate will decrease when the CO2 initial 

concentration increases, limited by the constant 4 % H2 initial concentration in the gas 

mixture. To study this possible change of the chemistry as a function of the initial amount of 

CO2, we will now study the resulting products of this chemistry in a gaseous mixture made of 

N2, CO2 and H2. 

3.2. 	Solid	phase	production	

A solid thin film is only observed in experiments realized with 10% of CO2 on the CaF2 

substrates disposed on the grounded electrode. The film is organic as confirmed by its mid-IR 

signature presented in Figure 3.  
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Figure 3: Infrared absorption spectra of the films deposited on two substrates during the same 
experiments in a N2/CO2/H2 (86/10/4) plasma. The films were produced during 40 hours of 
plasma duration. 

Different absorption bands characteristic of solid organics are observed in the spectrum. 

First, two broad bands are observed at lower wavenumbers, centered at 1465 cm-1 and 1630 

cm-1. The 1465 cm-1 band can be a contribution of the asymmetric bending mode of -CH3 and 

a scissor in plane bending mode of -CH2. The second band at 1630 cm-1 corresponds to 

several possible functional groups as C=N and C=C double bonds, aliphatic and aromatic -

NH2 or aromatic and hetero-aromatic functions. 

Another small absorption band is visible at 2140 cm-1, which corresponds to nitrile bonds -

C≡N or isocyanides -N≡C. 

The 2860 cm-1 band is attributed to –CH2 symmetric stretching mode. The 2930 cm-1 and 

2960 cm-1 bands are attributed respectively to the -CH2 asymmetric stretching mode and the -

CH3 asymmetric stretching mode.  

Finally, a broad band is observed at 3380 cm-1. This band is consistent with N-H amine 

bonds.  
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No obvious C=O carbonyl bond can be detected at ≈1700 cm-1 in spite of the CO2 gas reactant 

used in the experiment. The incorporation of oxygen in the solid material is not possible to 

confirm by mid-IR spectroscopy. There may be some hydroxyl bonds but those are 

ambiguously overlapping with amine functions. Nitrogen-bearing chemical functions are 

present involving at least nitrile or isocyanide functions. The formation of a N-rich solid 

highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material 

on the early Earth.  

3.3. 	Identification	of	the	gas-phase	products	

We will now study the gaseous intermediate species formed during the experiments. In order 

to detect and identify gas species produced in low quantity, we have trapped the volatile 

species and accumulated them by cooling the plasma box as described in section 2.2. The 

plasma box is then warmed up to room temperature. A pressure increases is observed 

associated to the sublimation of the trapped species. 

Ammonia:	a	precursor	of	the	solid	phase	

The broad band observed at 3380 cm-1 suggests an important amine content in the solid phase 

produced with 10% of CO2. A possible precursor in the gas phase for this chemical signature 

could be ammonia. To confirm this, we realized an analysis of the gaseous phase by infrared 

spectroscopy. Figure 4 presents an infrared spectrum in the 700-1200 cm-1 range recorded at 

room temperature after the release of the trapped gases.  
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Figure 4: Infrared spectra in the 700-1200 cm-1 range recorded at 300 K after 4 hours of 
cryogenic trapping in a N2-CO2-H2 (91/5/4) plasma. 

This spectrum presents two strong absorption bands at 930 cm-1 and 967 cm1. They 

corresponds to the two Q branches of the υ2 vibrational transition of NH3. The existence of 

these two bands, characteristic of the ammonia molecule, is caused by the inversion of the 

molecule by quantum tunneling effect. This results in the splitting of the low energy levels in 

a pair with slightly different energy values. In addition, some rotational lines of the P and R 

branches are also observed on this spectrum.  Those bands allow its identification 

unambiguously. Since NH3 has absorption bands with no overlap over other species, it is 

possible to estimate its concentration using the Beer-Lambert law. The absorbance 𝐴 𝜆  at a 

given wavelength is defined by: 

𝐴 𝜆 = 𝜀 𝜆 ×𝑙× 𝐶  (5), 

where 𝜀 𝜆  is the absorption cross-section of the molecule at a given wavelength, l is the path 

length of the beam through the gas cell and 𝐶  is the concentration of absorbing molecules in 

the reactor. 

𝐶 = ! !
! ! ×!

 (6) 
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The ammonia absorption cross-sections have been calculated from the line by line parameters 

provided by the HITRAN 2012 database (Rothman et al., 2013), using the HITRAN 

Application Programming Interface (HAPI) (Kochanov et al., 2016). In order to overcome the 

difference of resolution between the database and laboratory data, we calculate the 

concentration from the area of the bands. For NH3, integration is performed both in the 920-

940 cm-1 and in the 950-970 cm-1 ranges.  

Knowing the volume of the reactor we calculate the number of molecules of ammonia NNH3 

trapped during four hours. Table 2 presents the evolution of NNH3 as a function of the CO2 

initial amount. A good agreement is found for NNH3 calculated with the two bands. 

Table 2: Evolution as a function of [CO2]0 of the number of NH3 molecules formed in 4 hours 
of plasma duration. The uncertainties are given as 2σ (standard deviation) and are calculated 
from the standard fluctuations of the infrared spectroscopy measurements. 

[CO2]0 (%) 
NNH3 (molecules)  

920-940 cm-1 

NNH3 (molecules)  

950-970 cm-1 

1 (5.3 ± 0.1) × 1016 (6.4 ± 0.5) × 1016 

5 (6.7 ± 0.4) × 1016 (6.9 ± 0.5) × 1016 

10 - (4.1 ± 0.2) × 1015 

The number of ammonia molecules trapped in the 1% and 5% conditions is similar, but this 

number decreases by one order of magnitude for the 10% case. This result comes in front of 

the solid organic phase production, which is observed in the only 10% case. So compared to 

the lower CO2 initial concentrations, in the 10% condition NH3 disappears from the gas phase 

whereas an N-H bond signature is observed in the solid. These observations suggest that in all 

likelihood ammonia is a precursor for the solid phase with 10% of CO2 and leads to the amine 

signature of the solid. 
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The formation of ammonia in our CO2-N2-H2 plasma requires similar pathways as discussed 

in (Carrasco et al., 2012) for the case of a N2-CH4 plasma. Those involve NH radicals reacting 

with molecular hydrogen (Carrasco et al., 2012): 

NH + H2 → NH3 (R1). 

NH radicals are produced at least through three pathways considering the literature and our 

gaseous mixture. The first one involves radical chemistry (Carrasco et al., 2012; Mutsukura, 

2001): 

N + H → NH (R2) 

The second one involves ion chemistry (Green and Caledonia, 1982): 

N2
+ + H2 → N2H+ + H (R3) 

N2H+ + e- → NH + N (R4) 

The last one involves radical chemistry (Dobrijevic et al., 2014) and is related to the 

production of water in the CO2-N2-H2 discharge (Fleury et al., 2015): 

N (2D) + H2O → NH + OH (R5) 

No other molecule than water and ammonia can be detected by IR spectroscopy by lack of 

sensitivity. We therefore complete the gas phase analysis, first with ex-situ GC-MS and 

secondly by MS analysis.  

Ex	situ	analysis	by	GC-MS	of	the	gaseous	products	after	cryogenic	trapping	

The cryogenic trapping is performed at 173 K for 8 hours of plasma duration. After the 

warming of the plasma box, the pressure in the reactor is about 4.1 mbar. Then the gases 

released are transferred into an external cold trap, resulting in a pressure of about 50 mbar in 
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the external trap before the injection in the GC-MS. The chromatogram obtained for an initial 

gaseous mixture containing 5% of CO2 is presented in the top of the Figure 5. All the peaks 

have been identified using their retention time and their mass spectra. Four species are 

detected. 

 
Figure 5: Top: Chromatogram of the gases trapped during an experiment with 5% of CO2. 
Bottom: mass spectrum corresponding of the peak 4 of the chromatogram. This peak is 
attributed to C2N2 in agreement with the ion detected at m/z 52. The presence of the mass 
peak at m/z 17 and 18 is explained by the presence of water co-eluted with C2N2.  

The first molecule identified is carbon dioxide, with a retention time of 3.42 min, and 

corresponds to a major peak in the chromatogram. This detection is surprising. Indeed, CO2 is 

not expected to condense in these conditions of pressure and temperature. Most likely 

explanation, an important formation of water ice is observed during the experiment, which 

can trap small molecules depending on the temperature (Bar-nun et al., 1985; Notesco and 

Bar-Nun, 1997). This unexpected trapping of CO2 has to be taken into account in the 
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following and possibly extended to other gas products, which are not expected to condense 

such as hydrocarbons with 2 carbon atoms.  

The second species detected is nitrous oxide N2O with a retention time of 4.06 min. N2O has 

previously been detected in the gaseous products in a simulation realized with the PAMPRE 

experiment and using an initial gaseous mixture made of N2, CO and CH4 (Fleury et al., 

2014).  

The third species detected is water with a retention time of 12.34 min. because of the 

saturation of the chromatographic column. This detection of water is in agreement with its 

previous detection (Fleury et al. 2015).  

And the last detected species, co-eluted with water, is ethanedinitrile (C2N2) with a retention 

time of 12.52 min. The mass spectrum corresponding to this peak is presented in the bottom 

of the Figure 5. The important peak at m/z 52, with a relative intensity of 70 %, allows an 

unambiguous identification of C2N2. The presence of two other important peaks at m/z 17 and 

18 is explained by the co-elution of water with C2N2 and, which is responsible for these two 

peaks in the mass spectrum. 

Analysis	of	the	trapped	gaseous	products	by	mass	spectrometry	

The identification of the gaseous products is completed by a direct analysis of the gas trapped 

released in the reactor by using mass spectrometry. Mass spectra are found similar for the 5 

and the 10% CO2 experiments, in agreement with the total pressure of the released products. 

Intensities are found lower in the 1% CO2 experiment, also in agreement with the total gas 

pressure collected at the end of the warming. No qualitative difference is noted according to 

the initial CO2 concentration. The further analysis is therefore focused on one condition, the 

5% CO2 experiment.  
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Figure 6 presents two mass spectra obtained with an initial CO2 amount of 5%: the first 

spectrum is recorded at 173 K and the second after the warming of the plasma box to room 

temperature (294 K). As water and ammonia were previously identified and quantified by FT-

IR spectroscopy, the interpretation of the spectra is achieved only for m/z > 20. 

 
Figure 6: Mass spectra recorded at 173 K (blue) and 294 K (red) after 4 hours of gaseous 
trapping in N2-CO2-H2 (91/5/4) plasma. 

First, the signature of the residual air in the mass spectrometer (contributions of N2, O2, CO2 

and Ar) is identified in the mass spectrum recorded at 173 K. It corresponds to the vacuum 

limit of the MS pumping, at 3 × 10-8 mbar.  

At room temperature, Figure 6 shows an evolution of the mass spectrum with the one 

recorded at 173 K. We observe the increase of the intensity of some peaks and the apparition 

of new ones with masses up to 60 u. This reflects a release of gaseous species in agreement 

with the increase of the pressure measured in the reactor.  

The low resolution of our mass spectrometer does not allow differentiating molecules with 

close masses. However, few molecules can be tentatively identified. As discussed previously 

in the GC-MS section with the detection of CO2, the important formation of water ice on the 

walls of the plasma box impacts the species simultaneously trapped. This water trapping 
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explains the four highest intensities for m/z > 20 observed in Figure 6 at 294 K: m/z 28, 32, 

40 and 44 for N2 and CO, O2, Ar and CO2 respectively. Indeed these molecules do not 

condense in the conditions of pressure and temperature of the experiment. Given the detection 

of N2O by GC-MS analysis, a contribution of this molecule is expected at m/z 44 in addition 

to the main CO2 signature. Indeed, in mass spectrometry, N2O has a principal fragment at m/z 

44, which is mixed with the CO2 signature according to the analysis of the gaseous phase 

achieved by GC-MS and presented above. The second fragment is at m/z 30 and represents 

31% of m/z 44 intensity. This pattern is compatible with the mass spectrum presented in 

Figure 6.  

A first important precursor for the formation of complex organic molecules is hydrogen 

cyanide HCN. Its signature in mass spectrometry is a major peak at m/z 27 with a relative 

contribution at m/z 26 (20%). This signature is visible on the mass spectrum in Figure 6, but is 

low, involving a low concentration of HCN is the gas phase. This concentration is even under 

the detection limit of our FTIR diagnosis so that it cannot be definitely quantified in the 

experiment. A pathway for HCN formation is well established in the case of the chemistry of 

N2 and CH4 in Titan’s atmosphere (Hébrard et al., 2012; Krasnopolsky, 2009; Loison et al., 

2015; Wilson and Atreya, 2003). It involves the key species CH3 produced by the photolysis 

of CH4 in Titan’s atmosphere. This mechanism is less obvious in a N2/CO2/H2 plasma 

discharge, in agreement with the low concentration of HCN observed.  

At m/z 26 the ratio between the peak at 27 and 26 is larger than the ratio expected from the 

NIST database for HCN. This more important intensity of the m/z 26 peak can be explained 

by the contribution of all abundant nitriles with their CN+ fragments even if the presence of 

acetylene C2H2 cannot be discarded. Indeed, if C2H2 does not condense in these conditions of 

pressure and temperature but could be trapped in water ice.  
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Given the trapping of N2 or CO revealed at m/z 28, the peak at m/z 29 could be mainly 

attributed to the isotopologues 14N15N or 13C16O. In our experiment, the intensity ratios I29:I28 

are 100:1.13, while the expected I29:I28 ratios for natural abundance isotopologues of N2 and 

CO are 100:0.75 and 100:1.12 respectively as given by the NIST database. The ratio 

measured in our experiment is in good agreement with the one expected for CO, which is so 

the most likely candidate contributing to these peaks. The presence of CO in the mass 

spectrum can result of the dissociation of CO2 in the mass spectrometer or of its trapping 

during the experiment, CO being a major product of the CO2 dissociation in the plasma.    

The peak at m/z 30 is important in the mass spectrum observed at 294 K. There are two 

possible species at this mass: formaldehyde H2CO and ethane C2H6 with a similar explanation 

for ethane trapping as for acetylene. Given the abundance of the reactants CO2 and H2 in the 

gas mixture, formaldehyde would be expected as an important contributor. H2CO are at 29 

and 30 amu with a 29:30 ratio of 100:58. This is in disagreement with the ratio observed in 

the mass spectrum of the Figure 6, where the main contribution to the peak at 29 amu is 

attributed to 13CO. Our results point out a possible production of ethane even in the oxidant 

conditions used in the present work.  

At m/z 41, one possible species is acetonitrile CH3CN, in agreement with the formation of 

HCN, which is a precursor of CH3CN (Dobrijevic and Dutour, 2006; Gautier et al., 2011).  

The intensities of the peaks at m/z 45 and 46 are consistent with isotopes of CO2.  

And a last peak is observed at m/z 52 in agreement with the detection of ethanedinitrile C2N2 

by GC-MS. 

In conclusion in situ mass spectrometry completes our overview of the gas products by 

pointing out nitrile molecules. Among them hydrogen cyanide HCN is an important 
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molecules for prebiotic chemistry, for example involved with ammonia NH3 in the Strecker 

amino acid synthesis (Strecker, 1854). 

4. Discussion	

The possible formation of organic aerosols in the atmosphere of the early Earth is of the prime 

interest for the comprehension of the environment of the Earth during the Hadean and the 

Archean eons. First of all, the formation of fractal organic hazes can provide an ultraviolet 

shield for the early Earth (Wolf and Toon, 2010) against the high UV flux of the young Sun 

(Claire et al., 2012). This shield affects the composition of the atmosphere protecting some 

constituents of the atmosphere such as ammonia from photochemical destruction (Sagan and 

Chyba, 1997). Furthermore, the formation of haze would affect the climate of the early Earth 

providing an antigreenhouse effect (Haqq-Misra et al., 2008; Hasenkopf et al., 2011; McKay 

et al., 1999).  

In our gaseous mixture, solid organic products are only observed as deposited on a substrate. 

The solid formation seems to be promoted on the substrate with the formation of an organic 

thin film, which has grown on a substrate placed on the grounded electrode of the plasma 

device. On the contrary, the formation of spherical shaped individual grains is not observed. 

The mechanism of formation of these two types of solid in the plasma is not fully known. 

Both grow from reactive gas species present in the plasma. For the formation of grains in the 

plasma, the process starts with the formation of nanometer-size monomers, which aggregate 

to form larger particles with a negative charge when the density of the monomers in the 

plasma reaches a critical value. Then the particles grow by deposition of species present in the 

gaseous phase (Wattieaux et al., 2015). The hypothesis, which can be done to explain the 

absence of these grains in our gaseous mixture compared to CH4-rich experiments (Szopa et 
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al. 2006) is that the lower reactivity of CO2 does not allow to reach the critical value of 

monomers in the plasma necessary to start the growth of larger particles.  

With such a mechanism, we expect that the water formation observed in this gaseous mixture 

would sustain the formation of solid organic in the case of the atmosphere of the early Earth. 

Indeed, as discussed in Fleury et al. 2015, water formed above the troposphere leads to the 

formation of high altitude clouds analogues to the present PSC and PMC. These clouds are 

composed of water ice, which would play the role of nucleus cores, promoting a 

heterogeneous nucleation of organic molecules at the surface of ice grains.  

Moreover, the formation of organic volatiles in interaction with water ice can also be 

important in the perspective of a potential enrichment of the lower atmospheric layers of the 

early Earth by prebiotic molecules formed in the upper atmosphere. Indeed, these molecules 

could be trapped in the water ice clouds and transport to the lower atmospheric layers 

involving an important source if nitrogenized molecules for the lower atmospheric layers. 

Conclusion	

We have shown that an organic growth is possible in an oxidized atmosphere made of N2, 

CO2 and H2 simulating the early Earth atmosphere. This suggests that an organic growth can 

been sustained only by carbon composing CO2 in the primitive atmosphere of the Earth 

without methane. Firstly this results in the formation of volatiles molecules with the 

identification of H2O, NH3, C2N2, N2O and the possible detection of HCN. The detections of 

these molecules are interesting in a prebiotic chemistry point of view. Indeed, they are 

reactive molecules, which conduct to the formation of more complex molecules and HCN and 

NH3 are involved in the formation of amino acids and nitrogenous bases. Secondly we have 

shown that in the absence of methane CO2 also plays a role in the formation of organic 

compounds. Indeed, if the composition of the gaseous phase does not change as a function of 
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the CO2 initial amount, an increase of the CO2 content promotes the formation of organic 

compounds highlighting that a high level of CO2 in the primitive atmosphere of the Earth can 

promote organic chemistry in such an atmosphere. And finally, an organic thin film formation 

is observed in the experiments requiring a threshold concentration of CO2. Ammonia has also 

been shown to be precursor for this solid formation. This highlights the important complexity 

of the organic chemistry, which could be initiated in the early Earth atmosphere from N2, CO2 

and H2.  

Another result, from this work is that in our gaseous mixture, solid organic products are only 

observed as thin films deposited on a substrate and a low quantity. In such mechanism, the 

water formation observed in our experiment can play a role in the formation of solid organic 

in the atmosphere of the early Earth. Indeed, water formed above the troposphere would 

conduct to the formation of high altitude clouds analogues to the present PSC and PMC. 

These clouds could then play the role on nucleus cores, promoting a heterogeneous nucleation 

of organic at the surface of ice grains. 

In this work we have investigated the influence of the CO2 concentration on the chemistry but 

the hydrogen concentration in the primitive atmosphere of the Earth is also debated. Further 

work will be necessary to understand the influence of the hydrogen concentration of the early 

Earth’s atmospheric reactivity for different concentrations of carbon dioxide.   
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