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Abstract. The aragonite shell-bearing thecosome pteropods
are an important component of the oceanic plankton. How-
ever, with increasingpCO2 and the associated reduction
in oceanic pH (ocean acidification), thecosome pteropods
are thought to be particularly vulnerable to shell dissolu-
tion. The distribution and preservation of pteropods over
the last 250 000 years have been investigated in marine sed-
iment cores from the Caribbean Sea close to the island of
Montserrat. Using theLimacinaDissolution Index (LDX),
fluctuations in pteropod calcification through the most recent
glacial/interglacial cycles are documented. By comparison to
the oxygen isotope record (global ice volume), we show that
pteropod calcification is closely linked to global changes in
pCO2 and pH and is, therefore, a global signal. These data
are in agreement with the findings of experiments upon liv-
ing pteropods, which show that variations in pH can greatly
affect aragonitic shells. The results of this study provide in-
formation which may be useful in the prediction of future
changes to the pteropod assemblage caused by ocean acidifi-
cation.

1 Introduction

The faunal responses to ocean acidification (the reduced
availability of carbonate ions) are still largely unknown, al-
though experimental evidence reveals that a reduction in pH
typically leads to a decrease in calcification rates of a num-
ber of, but not all organisms (Feely et al., 2004; Orr et al.,
2005; Guinotte and Fabry, 2008; Turley et al., 2010). To
date, little information is available about important planktic

producers of calcium carbonate. Several studies have investi-
gated coccolithophore and planktic foraminiferal responses,
but only three species of the aragonite-producing thecosome
pteropods have been considered (Fabry et al., 2008; Comeau
et al., 2009, 2010a, b). Here we demonstrate a relationship
between the calcification of pteropod shells and past atmo-
spheric CO2 concentrations through the last 250 000 years
by using low resolution Vostok CO2 data and the high reso-
lution oxygen isotope record. A diverse and abundant assem-
blage of pteropods and heteropods is recorded from marine
cores collected from the Caribbean Sea offshore Montserrat.
A number of these cores contain intervals of well-preserved
pteropods which are associated with the glacial periods of
the Late Pleistocene (Messenger et al., 2010). These well-
preserved levels appear to be of widespread significance and
a response to global climate change.

The group of holoplanktic molluscs known as the
Pteropoda consists of two orders; the shell-less gymnosomes
and the shell-bearing thecosomes (Fig. 1). These two orders
are now considered to be less closely related than originally
thought, but the term “pteropod” is still widely used (van der
Spoel, 1976; B́e and Gilmer, 1977; Lalli and Gilmer, 1989).
Thecosome pteropods are a common component of the water
column throughout the world’s oceans and can reach densi-
ties of up to 10 000 individuals per cubic metre (The Royal
Society, 2005; Fabry et al., 2008). They are consequently im-
portant prey to a number of large cetaceans and commercial
fish (The Royal Society, 2005). This study focuses on the
speciesLimacina inflata, a common euthecosome (suborder
of thecosomata) pteropod.

Published by Copernicus Publications on behalf of the European Geosciences Union.



310 D. Wall-Palmer et al.: Pteropods from the Caribbean Sea

Fig. 1. Thecosome pteropodLimacina inflatafrom the Caribbean
Sea near Montserrat at different stages of shell calcification.

All euthecosome pteropods produce calcareous shells
from aragonite, a polymorph of calcium carbonate, which
is particularly susceptible to dissolution (50 % more suscep-
tible than calcite): see Mucci (1983), Millero (1996), Morse
and Arvidson (2002) and Klöcker et al. (2006). This makes
their shells extremely vulnerable to the effects of ocean acid-
ification, making it more difficult for them to grow and main-
tain their shells. It also means that, upon death, their shells
frequently dissolve as they settle through the water column
to the sea floor. This limits their occurrence in sediments to
water depths of less than 3000 m and also restricts their pres-
ence in the geological record (Curry, 1971; Herman, 1971;
Berner, 1977). The distribution of the modern fauna is well
known (B́e and Gilmer, 1977) and “pteropod oozes” have
been recognised for over one hundred years (Murray and Re-
nard, 1891). With current increasing levels of atmospheric
CO2 and the resulting ocean acidification (Orr et al., 2005;
The Royal Society, 2005), pteropods with their aragonitic
shells are the subject of renewed interest, since they are likely
to be the most vulnerable of the major planktic producers of
CaCO3. They are also likely to be the first planktic fauna
to experience persistent decreased CaCO3 saturation states.
As an important part of the food web, especially in the Arc-
tic and Southern Oceans, their potential demise is of great
significance.

2 Marine sediment cores from Montserrat

In March 2002, as part of a multi-disciplinary project on
the volcanic activity on the island of Montserrat, the R/V
L’Atalanterecovered a series of piston-cores from the ocean
floor surrounding the island (Fig. 2). Of the 12 cores col-
lected on the “Caraval Cruise”, CAR-MON 2 provides the
longest time record (Le Friant et al., 2008 document in detail

Fig. 2. Map of the Lesser Antilles showing the island of Montserrat
and the location of core CAR–MON 2. A full bathymetric map of
the area is available in Le Friant et al. (2004).

the collection techniques and subsequent methodologies em-
ployed). The site of CAR-MON 2, in 1102 m of water, is
located at 16◦27.699′N, 62◦38.077′W. The oxygen isotope
(δ18O) profile of CAR-MON 2 (Fig. 3) gives an accurate
record of the Marine Isotope Stages (MIS) back∼250 000
years BP and the record compares well with other studies
(Imbrie et al., 1984; Prell et al., 1986). Thisδ18O profile
has been verified using a limited number of AMS radio-
carbon dates and39Ar/40Ar radiometric dates (Le Friant et
al., 2008). Using the>150 µm size fraction, counts of the
planktic foraminifera have allowed the determination of the
Globorotalia menardiizonation (Ericson and Wollin, 1956;
Reid et al., 1996; Le Friant et al., 2008).

Reduced calcification ofLimacina inflatashells has been
quantified throughout CAR-MON 2 using the scale pub-
lished by Gerhardt and Henrich (2001). As theLimacina
Dissolution Index (LDX) has only been used by a limited
number of workers (e.g., Klöcker et al., 2006) on “fossil”
material, its calculation is now described.

Pre-processed and dried sediment (Le Friant et al., 2008)
was used to collect just over 300 (or as many as were present)
pteropod specimens from two size fractions (>500 µm and
150–500 µm) at varying intervals. Only whole specimens
that retained their protoconch and protoconch fragments
were counted. Determination of the calcification of the ptero-
pod shells was made using theLimacina Dissolution In-
dex (LDX) which was devised by Gerhardt et al. (2000) and
published as a scale by Gerhardt and Henrich (2001). This
method involves the semi-quantitative analysis of the surface
of the pteropod shell on a scale of 0 to 5; 0 being a pristine,
transparent, lustrous shell with a smooth surface and 5 being
an opaque, white and completely lustreless shell with addi-
tional damage. At least 10 shells (max 30 shells) of adult
Limacina inflataof a size of 300 µm or larger were allocated
a value from this scale by the use of light microscopy for each
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Fig. 3. Sedimentary log for core CAR–MON 2 including age model (from oxygen isotope stratigraphy) from Le Friant et al. (2008),
Vostok atmospheric CO2 concentrations, stable isotope stratigraphy (Marine Isotope Stages), pteropod calcification (LDX) and abundance
of >500 µm pteropod and heteropod shells: partly modified after Le Friant et al. (2008).

sample. The average for each sample was then calculated to
provide the LDX value.

3 Pteropod calcification record

CAR-MON 2 records three levels of particularly well pre-
served, abundant and diverse pteropods (Fig. 3), two of
which have been documented previously (Le Friant et al.,
2008; Messenger et al., 2010) but not studied in detail. The
upper concentration of pteropods is found in MIS 2 and has
been dated at around 25 000 years BP (55–80 cm), with a
peak in pteropod preservation at MIS 2.2 (∼20 000 years
BP). The middle concentration of pteropods is within MIS 6
(295–425 cm) with a peak in preservation at MIS 6.4, dated at
about 150 000 years BP and the lower concentration is found
within MIS 8 at the very base of the core (565–575 cm), with
a peak in preservation at MIS 8.2. The upper concentration

of pteropods corresponds almost exactly with the “pteropod
sands” reported by Chen (1968) from the Gulf of Mexico,
Venezuela Basin and other occurrences in the Caribbean Sea,
Mediterranean Sea and Red Sea. Chen (1968) suggests that
their widespread occurrence was controlled by Late Pleis-
tocene climate changes.

This latest Pleistocene occurrence of abundant pteropods
has also been recorded in the Andaman Sea (Sijinkumar et
al., 2010), in the Red Sea (Almogi-Labin et al., 1991), off-
shore Florida (Gardulski et al., 1990), on the western flank
of the Great Bahama Bank (Eberli et al., 1997; Messenger
et al., 2010), on the Brazilian Slope (Gerhardt et al., 2000),
in the Caribbean Sea (Haddad and Droxler, 1996), off-shore
Somalia (Kl̈ocker and Henrich, 2006; Klöcker et al., 2006)
and in the South China Sea (Wang et al., 1997). In the
cores from the South China Sea and the Caribbean Sea, the
concentrations at∼20 000 years BP and 150 000 years BP
are both recorded, clearly demonstrating that this enhanced

www.biogeosciences.net/9/309/2012/ Biogeosciences, 9, 309–315, 2012
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preservation of aragonitic fossils is of global significance
and not the result of local variations in water chemistry (Pe-
terson and Cofer-Shabica, 1987; Peterson, 1990, Broecker
and Clark, 2002; Sepulcre et al., 2009). Elsewhere in the
CAR-MON 2 core, reduced shell calcification occurs dur-
ing interglacial periods and is particularly poor during ex-
treme stages, such as at MIS 5.5. In the Gulf of Aden (Core
KL15), Almogi-Labin et al. (2000) record the near absence
of pteropods during interglacials (MIS 13, 11, 9, 7, 5 and 1).
The record from this core shows that pteropod maxima ap-
pear to be at the glacial/interglacial terminations (especially
the MIS 6 to MIS 5 transition). Such deglaciation “spikes”
have also been noted by Frenzel (1975) and Berger (1977,
1990). Berger (1977) describes this world-wide phenomenon
as a pteropod-rich layer present at the end of the last glacial,
although, the exact timing and cause of this event are in some
dispute. Serre-Bachet and Guiot (1987) also linked pteropod
preservation to colder periods. This link is particularly strik-
ing in the post–MIS 2 records in the N.E. Atlantic Ocean
(Ganssen et al., 1991), Equatorial Atlantic Ocean (Kassens
and Sarntheim, 1989) and the N.W. Indian Ocean (Klöcker et
al., 2006). This preservation relationship to colder periods is,
almost certainly, due to fluctuations inpCO2 causing higher
pH and increased availability of carbonate during glaciations
(Sanyal et al., 1995; Ruddiman, 2001; Hönisch and Hem-
ming, 2005; Yu et al., 2007) and lower pH and reduced avail-
ability of carbonate during interglacials. In the CAR-MON
2 data there are some unexpected excursions from the gen-
eral trend, which show that variations in calcification are not
directly proportional to theδ18O signal. This can be seen
particularly between MIS 5.1 and 5.5, where changes in cal-
cification appear to be accentuated.

Several factors during the sedimentation process, which
are summarised in Fig. 4, may have influenced the LDX cal-
cification profile. The pattern produced by the LDX profile
could not, however, be an artefact of sea floor dissolution and
diagenesis. If pteropods within CAR-MON 2 showed a gen-
eral trend from LDX 0–2 in the near–surface sediments to
LDX 4–5 at depth, this would clearly be a diagenetic signal,
however, this is not the case. Klöcker et al. (2006) have also
noted that, in their core 905 from the N.W. Indian Ocean, di-
agenesis has had minimal effect on the LDX record. The cor-
relation of pteropod abundances in MIS 2 and MIS 6 across a
range of oceans and environments also implies that the LDX
profile is caused by global atmospheric CO2 fluctuations and
not merely by variations in local water chemistry.

Water chemistry around the Lesser Antilles island arc
is however, complicated by influences of several water
masses flowing between the islands and through a number
of deeper passages into the Caribbean Sea (Peterson and
Cofer-Shabica, 1987; Peterson, 1990, Broecker and Clark,
2002; Sepulcre et al., 2009). Gerhardt and Henrich (2001)
found that the influence of Antarctic Intermediate Water
(AAIW), towards the south of the island arc, caused moder-
ate to very poor preservation ofLimacina inflata. However,
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Fig. 4. Conceptualization of pteropod sedimentation, taphonomy
and preservation for areas of the sea floor above the aragonite lyso-
cline and aragonite compensation depth. Preservation of pteropod
shells is, potentially, impacted by water chemistry during life, pas-
sage through the water column (probably minimal as they have quite
high settling rates of 1–2.5 cm s−1; see Byrne et al., 1984), on the
water/sediment surface and during burial.

towards the north of the island arc, the influence of AAIW
is minor due to a large volume of Upper North Atlantic
Deep Water (UNADW), which flows through the nearby
Anegada Passage. This area consequently shows very
good preservation ofLimacina inflata. Gerhardt and Hen-
rich (2001) place the aragonite saturation depth at 2000 m
and the Aragonite Compensation Depth (ACD) at 3800 m
water depth in this area. CAR–MON 2 was collected in 1102
m water depth, which is above the aragonite lysocline and
ACD, thus discounting any effects that this may cause. It is
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also important to note that firstly, no changes in the benthic
foraminiferal community were found during our microfos-
sil analysis. This indicates that water masses are unlikely
to have changed during the period covered by CAR-MON
2. Secondly, within CAR-MON 2, interglacial periods coin-
cide with a reduced abundance of large (>500 µm) pteropod
and heteropod shells (Fig. 3). If the LDX variations seen
throughout CAR-MON 2 were due to post-depositional dis-
solution, a preferential dissolution of small shells would be
expected (Lalli and Gilmer, 1989). However, whilst a re-
duction in the abundance of small shells during interglacial
periods was found, there is also a relatively equal reduction
in the number of large shells. This suggests a reduction of
calcification, rather than an artefact of dissolution. It can
therefore be assumed that the variations in pteropod calcifi-
cation throughout CAR-MON 2 reflect carbonate availability
in the surface ocean. A possible interference in the calcifica-
tion profile may be caused by inputs of volcanic ash, which
can reduce the oceanic pH in the local area dramatically dur-
ing and just after an eruption. A recent study has shown that,
under laboratory conditions, volcanic materials entering sea
water produce a significant reduction in pH (Jones and Gis-
lason, 2008), reducing the availability of carbonate. This lo-
cal impact on the pteropod fauna has been investigated and
described elsewhere (Jones et al., 2009; Wall-Palmer et al.,
2011). However, our observations suggest that, in this case,
the ash from the South Soufrière Hills volcano has had little
or no effect upon the overall LDX profile. This is because the
ash found within CAR-MON 2 is the result of several rela-
tively short-lived events rather than one large, long–lasting
event. Ash from these individual eruptions would have been
so greatly diluted upon entering the ocean, that the acidic im-
pact upon surface water fauna would have been insignificant.
The assumption that the LDX profile is the result of chang-
ing carbonate availability is in agreement with recent labora-
tory work on living pteropods (Fabry et al., 2008; Comeau
et al., 2009, 2010a, b) and pteropods from sediment traps in
the Southern Ocean (Roberts et al., 2008). It also compares
favourably with shell-weight data ofGlobigerina bulloides
and Globigerinoides ruberprovided by recent work in the
Southern Ocean (Barker and Elderfield, 2002), in the Ara-
bian Sea (Moel et al., 2009) and in the North Atlantic (Moy
et al., 2009).

Our results suggest that the distribution and abundance
of shelled pteropod and heteropod fauna, and the quality
of their calcification through the last 250 000 years, reflect
changes caused by climate variations. This signal appears to
be worldwide and may help to predict future changes in the
aragonitic holoplanktic fauna caused by increases inpCO2
and the resulting changes in oceanic pH. However, since the
level of anthropogenic CO2 entering the oceans is now in-
creasing at a rate 100 times faster than any changes seen in
the past 650 000 years (Fabry et al., 2008), it might be inap-
propriate to apply such a model to the modern oceans. The
fate of the modern-day aragonitic holoplankton is uncertain,

however, this study shows that, at oceanic pH levels rela-
tively higher than those predicted for the 21st Century, eu-
thecosome pteropods have been noticeably affected.
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