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The thermospheric temperatures measured by the Fabry-Perod interferometer on the OGO 6 satellite 
are found to be reasonably represented by the mass spectrometer/incoherent scatter 1986 (MSIS-86) 
empirical model except for two anomalies, one in the South Atlantic and the other near noon local time. 
These anomalies are likely due to measurement problems. The OGO 6 temperature data were not used 
in the generation of the MSIS models, so this is an independent comparison of measured and model 
temperatures. The measurements were made primarily during daytime at mid to low latitudes and 
throughout the day at high latitudes. On average, the measured temperatures are 16 K below the 
MSIS-86 model temperatures. Latitude gradients during solstices as well as for the yearly average are 
well represented by the model, as are high-latitude longitudinal and magnetic activity variations. 

INTRODUCTION 

Measurements of thermospheric temperatures from ground 
stations and satellites provide valuable complementary infor- 
mation needed to understand the variability and physics of the 
thermosphere. Ground stations can provide a long time series 
of measurements to study solar activity and seasonal vari- 
ations which complement the global coverage provided by 
occasional satellites. The major methods of taking ground- 
based temperature measurements use optical (Fabry-Perot in- 
terferometer [Shepherd, 1972; Hernandez, 1986]) and radio 
(incoherent scatter [Evans, 1969]) techniques. The methods of 
determining temperature from a satellite have included the 
baffle-modulated mass spectrometer technique [Spencer et al., 
1973, 1981], use of the Fabry-Perot interferometer [Blarnont 
and Luton, 1972; Hays et al., 1981], inference from N 2 den- 
sities [Hedin et al., 1974], and inference from total densities 
[Jacchia, 1965, 1971, 1977]. 

The first global models of the thermosphere were based on 
total densities determined from satellite drag, and temperature 
variations were inferred from density variations [Jacchia, 
1965]. Early measurements of temperature by the incoherent 
scatter technique [Carru et al., 1967; Nisbet, 1967], however, 
showed significant differences in the diurnal and seasonal vari- 
ation as compared to satellite drag models. Temperatures in- 
ferred from N 2 densities [Hedin et al., 1974] were found to be 
similar to temperatures measured by incoherent scatter and 
led to the mass spectrometer/incoherent scatter (MSIS) series 
of models [Hedin et al., 1977; Hedin, 1983, 1987], which based 
temperature on N 2 density, incoherent scatter, and later also 
the baffle-modulated mass spectrometer technique. 

Initial comparisons of nighttime thermospheric temper- 
atures measured by ground-based Fabry-Perot interferometers 
with temperatures determined using empirical models and in- 
coherent scatter showed reasonable agreement [Biondi and 
Feibelman, 1968; Hays et al., 1970; Cogger et al., 1970; Hernan- 
dez et al., 1975]. Examination of line shapes and theoretical 
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estimates indicated that O(XD) should be in thermal equilibri- 
um with the neutral atmosphere before emission of the 6300-,& 
red line [Biondi and Feibelman, 1968]. However, a systematic 
comparison by Hernandez [1982] of data from Fritz Peak 
with predictions of several models, including the MSIS-77 
model [Hedin et al., 1977], showed that the measured temper- 
atures were generally higher than those of the models by 
about 100 K, particularly at low solar activity. The MSIS-77 
temperatures at mid-latitudes are somewhat higher than the 
MSIS-86 temperatures [Hedin, 1987] on average and are 
within 50 K of MSIS-86 temperatures under a wide variety of 
conditions. Measured temperatures that are higher than 
model temperatures have also been found for more limited 
data samples at other observation sites [Feibelman et al., 
1972; Siplet et al., 1983; Biondi and Meriwether, 1985; Ya•Ti 
and Dyson, 1985]. Thus there may be a systematic difference 
between the optical technique and the other methods of tem- 
perature measurement under certain conditions. Recently, Yee 
[1988] has calculated the nonthermal distribution of the 
O(tD) atoms at night and concludes that the measured tem- 
perature of the red line emission would be higher than the 
ambient temperature by about 100 K, but this same con- 
clusion does not necessarily apply to daytime, when the 
sources of O(•D) are different, In addition, temperature gradi- 
ents near the emission peak may bias the altitude assigned to 
the measured temperature [McCormac et al., 1987]. 

The OGO 6 satellite was launched in an elliptical (400-1100 
km) polar orbit in June 1969. It carried a spherical Fabry- 
Perot interferometer, which provided data until a spacecraft 
problem occurred in August 1970, for determining thermo- 
spheric temperatures from the 6300-,1, emission at F region 
heights [Blamont and Luton, 1972; Blamont et al., 1974]. 

Data were generally obtained during daytime at all lati- 
tudes and also during nighttime at high latitudes because of 
the line intensity increase in these regions. The typical statis- 
tical error of a single data point is 50 K. Data are generally 
obtained every 2 ø of latitude, but as the atmosphere is ob- 
served tangentially, an integration along the line of view is 
made over 1500-2000 km. The altitude resolution, which 

varies with spacecraft altitude, is 20 km at perigee. 
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Fig. 1. Histogram showing percent occurrence of OGO 6 measured minus MSIS-86 model temperature data for quiet 
magnetic conditions (Ap < 10). The solid curve shows the normal distribution based on the average difference of -16 K 
and the standard deviation of 126 K. 
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Fig. 2. (a) Measured minus MSIS-86 model temperatures averaged in 10 ø latitude bins versus latitude for quiet 
magnetic activity conditions. Bars show standard deviation of the scatter within each bin, with 250-1000 points per bin. (b) 
Measured minus MSIS-86 model temperatures without time independent terms averaged in 10 ø latitude bins versus 
latitude and corresponding model prediction averages for the measurement conditions connected by straight lines. Stan- 
dard deviation is as described for Figure 2a. 
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Fig. 3. Measured minus MSIS-86 model temperatures without time independent and yearly variation terms averaged 
in 10 ø latitude bins versus latitude •r quiet magnetic activity conditions and corresponding model predictions (connected 
by straight lines) •r June solstice (upper panel) and December solstice (lower panel). 

Early comparisons with Jacchia drag models showed that 
measured temperatures increased toward the poles and had 
larger seasonal variations and a later diurnal maximum than 
temperatures given by the drag models. There were originally 
238,000 data points. Their behavior has been studied as a 
function of the measurement conditions, such as minimum 
altitude of the line of view, line and background intensities, 
threshold of the detector, and South Atlantic magnetic anom- 
aly. There was no normalization to ground-based or other 
data. Selection criteria based on these considerations reduced 

the original number of measurements to 47,331, which were 
suitably distributed as a function of latitude, day, and local 
time for the purpose of modeling. They have been incorpor- 
ated in three empirical models [Thuillier et al., 1977a, b, 
1980]. More severe selection criteria would have provided a 
poor data distribution, for the purposes of the original mod- 
eling work, with respect to latitude, day, and local time, but 
they may be needed, as the comparisons with the model in this 
paper suggest. 

The OGO 6 temperature data were not incorporated in the 
MSIS models. This paper presents the results of a comparison 
of the OGO 6 optical Fabry-Perot temperatures with the 
MSIS-86 model temperatures in order to provide additional 
insight into the question of absolute thermospheric temper- 
atures and variations. 

COMPARISON AND DISCUSSION 

The overall comparison of measured to model temperatures 
is shown in Figure 1 in terms of a histogram of the deviations 
from the MSIS-86 temperatures [Hedin, 1987]. The measured 
temperatures are on average only 16 K below the model tem- 
peratures but have a large standard deviation of 126 K. The 
data minus model residuals have a long tail toward positive 
values. Further examination of the residuals, described below, 
indicates that gross geophysical variations are very similar for 
the measured and model temperatures except for two obvious 
anomalies. However, there remains an inherent scatter in the 
residuals of the order of 100 K which may be due, in part, to 
waves and local heating not resolved by the limited spatial 
and temporal resolution of the model. The existence of large 
point to point variations, particularly at high latitudes, was 
noted by Blamont and Luton [1972]. 

The measured minus MSIS-86 model temperature differ- 
ences are shown as a function of latitude in Figure 2a using 
10 ø averages. While the scatter within each bin is over 100 K, 
the scatter between bin averages is only 15 K. In order to 
emphasize the average variation of temperature with latitude, 
Figure 2b shows the differences between the measured and the 
model temperatures with the time independent terms (i.e., de- 
pendent on latitude, but not on day of year or time of day) of 
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Fi•. 4. (•) Contours of measured minus •S[S-86 model temperatures in lon•tude/lafitude coordinates usinS 30 ø 
longitude b• 15 • latitude bins for quiet magnetic acfivh• conditions. (b) Same as in FiSurc 4• but without lon•tude terms 
of the model. (c) •odcl prediction of longitude variations. 

the model omitted. The similar comparison of the full model 
calculated for the data conditions to the model without the 

time independent terms provides the corresponding model 
predictions of the average latitude variation for the OGO 6 
data. The data on average agree quite well with the ,--40-K 
increase from equator to poles predicted by the model. 

The agreement between data and model for the seasonal 
temperature variations is shown in Figure 3, where model 
predictions of the latitudinal variation during the June and 

December solstices are compared with data minus model pre- 
dictions with the time independent and yearly variation terms 
omitted from the model. The most serious disagreement is at 
moderately high latitudes during northern winter. The data 
here are largely from local times around noon and probably 
reflect a data anomaly around noon to be discussed later. 
Thuillier et al. [1977al showed that there was general agree- 
ment with incoherent scatter for the seasonal variations in 

OGO 6 temperatures. These seasonal temperature variations 
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Fig. 5. Contours of measured minus MSIS-86 model temperatures in local time/latitude coordinates using 2-hour local 
time by 15 ø latitude bins for quiet magnetic activity conditions. 

are much larger than in early drag models [dacchia 1965, 
1971] and lead to a global maximum at much higher summer 
latitudes [Blarnont et al., 1974] than the sub-solar point lo- 
cation predicted by drag models. 

The data minus model differences are shown in Figure 4 as 
a function of latitude and longitude. Also shown are the model 
predictions for the longitudinal variations, originally esti- 
mated from N 2 density variations [Hedin et al., 1979], and the 
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Fig. 6. Measured minus MSIS-86 model temperatures, with model magnetic activity terms omitted, versus magnetic 
activity (Ap) averaged in 10-unit intervals and corresponding model predictions (connected by straight lines) for latitudes 
poleward of 60 ø (upper panel) and equatorward of 30 ø (lower panel). 
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Fig. 7. Measured minus MSIS-86 model temperatures, with model universal time terms omitted, versus universal time 
averaged in 2-hour intervals and corresponding model predictions (connected by straight lines) during quiet magnetic 
conditions for latitudes greater than 70 ø (lower panel) and less than -70ø(upper panel). 

corresponding data minus model predictions without the lon- 
gitude terms of the model. At high latitudes the temperature 
enhancements near the magnetic poles are well represented by 
the model, including the larger effect at the south pole. OGO 
6 temperature results near the magnetic poles at low and high 
magnetic activity were discussed by Thuillier et al. [1980]. 

In addition, however, the data (Figure 4) show a marked 
enhancement over the South Atlantic region. There are actu- 
ally relatively few data points here because data had been 
previously eliminated [Thuillier et al., 1977a] for high instru- 
ment background caused by the hard radiation encountered at 
high altitudes over the South Atlantic magnetic field anomaly. 
While it is possible that neutral temperatures may actually be 
enhanced in this region, an examination of Dynamics Ex- 
plorer neutral wind and temperature spectrometer (WATS) 
data [Spencer et al., 1981] which had good coverage over the 
South Atlantic did not show any evidence of this anomaly in 
the 300- to 400-km altitude range. In addition, the OGO 6 
optical temperature increases sharply with altitude of the sat- 
ellite to over 200 K above the model temperature near 800 
km. Although restriction to lower satellite altitudes does not 
completely eliminate this anomaly, such a marked dependence 
on satellite altitude is not observed outside the South Atlantic 

region. Thus this effect is likely an OGO 6 measurement prob- 
lem. 

The data minus model differences are shown as a function 

of latitude and local time in Figure 5. While differences are 
generally of the order of 20 K, there is a significant area of low 
measured temperatures around local noon. As noted by Thuil- 
lier et al. [1977a] and Blarnont et al. [1974], this anomaly was 
so severe in the original data that the apparent diurnal maxi- 
mum was at night, and even after refinement these data still 
differ from the incoherent scatter data. Measurements in this 

area are difficult because of low signal levels and high back- 
ground light levels, and so this noon depression may not be a 
real feature of the ambient atmosphere. 

The data minus model differences, without the magnetic 
activity terms of the model, as a function of magnetic activity 
(Ap) averaged in 10 unit bins are shown in Figure 6. Also 
shown are the model predictions for the magnetic activity 
variations averaged for the data conditions. The general 
trends at low and high latitudes are fairly well represented by 
the MSIS-86 model. The observed increase in magnetic ac- 
tivity effects on thermospheric temperature toward high lati- 
tude, in contrast to little or no latitude dependence in drag 
models, was reported by Blarnont and Luton [1972] and mod- 
eled by Thuillier et al. [1977a]. 

There is a significant temperature variation with universal 
time at high southern latitudes consistent with the model, as 
seen in Figure 7. At northern latitudes the universal time vari- 
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ation is weak and out of phase with the southern polar vari- 
ation, as predicted by the model and originally estimated from 
N 2 data [Hedin et al., 1979]. 

C•NCLUSION 

The thermospheric temperatures measured by the Fabry- 
Perot interferometer on the OGO 6 satellite are reasonably 
represented by the MSIS-86 empirical model except for two 
anomalies, one in the South Atlantic and the other near local 
time noon, which are likely due to measurement problems. 
The OGO 6 temperature data were not used in the generation 
of the MSIS models, so this is an independent comparison of 
measured and model temperatures. Latitude gradients during 
solstices as well as for the yearly average are well represented 
by the model, as are magnetic activity and high-latitude longi- 
tudinal and universal time variations. On average, the mea- 
sured temperatures are 16 K below the MSIS-86 model tem- 
peratures. This agreement between temperatures measured by 
the satellite-borne Fabry-Periot interferometer and predicted 
by an empirical model is in contrast to differences of the order 
of 100 K found with ground-based optical measurements. 
However, outside the polar regions the satellite measurements 
were largely made during daytime, and the ground-based 
measurements during nighttime. Further detailed comparisons 
with ground-based measurements should shed more light on 
these temperature differences. 
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