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A B S T R A C T

Remote sensing of inland and sea waters depends on the quality of the retrieval of the water-leaving radiance
from the top-of-atmosphere measurements. The water-leaving radiance can be difficult to observe due to the
reflection of direct sunlight on the air-water interface (sunglint) in the direction of the satellite field of view. The
viewing geometry of Sentinel-2 satellite (European Space Agency) makes it vulnerable to sunglint contamina-
tion. In this paper, an original method is proposed to correct Sentinel-2-like imagery for sunglint contamination.
The sunglint contribution is first estimated from the shortwave-infrared (SWIR) part of the spectrum and then
extrapolated toward the near-infrared and visible bands. The spectral variation of the sunglint signal is thus
revisited for a wide spectral range (from 350 to 2500 nm). The bidirectional reflectance distribution function
related to the sunglint is shown to vary by> 28% from the SWIR to the blue bands of Sentinel-2. The application
of the proposed algorithm on actual Sentinel-2 data demonstrates that sunglint patterns are satisfactorily re-
moved over the entire images whatever the altitude of the observed target. Comparison with in situ data of
water-leaving radiances (AERONET-OC) showed that our proposed algorithm significantly improves the corre-
lation between satellite and in situ data by 55% (i.e., from R2 = 0.56 to R2 = 0.87). In addition, the dis-
crepancies between satellite and in situ measurements are reduced by 60%. It is also shown that the aerosol data
provided by the Copernicus Atmosphere Monitoring Service (CAMS) can be safely used within the proposed
algorithm to correct the Sentinel-2-like satellite data for both sunglint and atmospheric radiances. Improvements
of the proposed method potentially rely on simultaneous retrievals of the aerosol optical properties. The pro-
posed method is applicable to any satellite sensor which is able to measure in SWIR spectral bands over aquatic
environments.

1. Introduction

Prior to reaching the satellite sensor, the sunlight undergoes nu-
merous optical interactions within the atmosphere and aquatic systems
(ocean, inland waters). For example, sunlight can be scattered or ab-
sorbed by gases and aerosols in the atmosphere, by water molecules,
dissolved and particulate matter in the water column. In addition,
sunlight is subjected to the reflection onto the water surface (the so-
called “sunglint” phenomenon). The water-leaving radiance contributes
no> 15% to the total radiance at the top of the atmosphere in the
visible spectrum and much less when sunglint is present in the direction
of the satellite viewing geometry.

Since the late 1970′s, an international effort has been conducted to
initiate, sharpen and reinforce passive remote sensing techniques in the
visible and the near-infrared part of the spectrum for monitoring the
global ocean. The first “ocean color” mission, the Coastal Zone Color
Scanner (CZCS, 1978–1986), successfully demonstrated the feasibility
of deriving pigment from space despite its poor spectral resolution (only
spectral bands in the visible) (Gordon et al., 1983). Thanks to the ex-
perience acquired through the CZCS lifetime, a second generation of
satellite missions was launched from the late 1990′s with improved
radiometric capabilities (e.g., SeaWiFS, MODIS, GLI, MERIS, VIIRS,
OLCI) which all operate with a kilometer-scale spatial resolution. Thus,
atmospheric correction algorithms were especially developed for the
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characteristics of those kilometer-scale pixels to retrieve the water-
leaving radiance by exploiting the atmospheric radiance measured in
the near-infrared (NIR) or the shortwave-infrared (SWIR) bands where
the water-leaving signal is negligible (Gordon, 1997; Wang and Shi,
2007).

Recently, two similar multispectral radiometers were launched: the
Operational Land Image (OLI) onboard the Landsat-8 satellite (Roy
et al., 2014) in February 2013 (National Aeronautics and Space Ad-
ministration, NASA), and the Multi-Spectral Instrument (MSI) onboard
the twin satellites Sentinel-2A and B (Drusch et al., 2012) in June 2015
and March 2017 (European Space Agency, ESA), respectively. Both
instruments have much finer spatial resolutions, ranging from 10 to
60 m, than that of the previous “ocean color” satellite missions (typi-
cally by a factor 10 to 100). Such a high spatial resolution is of great
interest for understanding and monitoring the inland and coastal
aquatic systems from passive remote sensing at local, regional and
global scales (Schaeffer et al., 2013; Palmer et al., 2015). However,
since the modeling of the top-of-atmosphere radiation remains a chal-
lenging task for decameter-scale pixels in comparison to kilometer-scale
pixels, a special attention should be paid to the performance of inverse
algorithms, especially for the atmospheric correction step. In particular,
the sunglint phenomenon leads to a strong radiation that often masks
the radiation exiting the water column. In addition, Sentinel-2 platform
operates at near-nadir viewing angles where sunglint is likely to con-
tribute to the signal received at the satellite level (Harmel and Chami,
2013).

The estimation of the sunglint contribution existing on ocean color
data acquired at 1 km spatial resolution typically relies on the Cox and
Munk (CM) model (Cox and Munk, 1954a, 1954b). Such a model is used
to determine the sunglint radiance component based on ancillary data
of wind speed and wind direction (Wang and Bailey, 2001; Zhang and
Wang, 2010). Note that the uncertainty in the surface wind speed is the
major source of error relatively to the uncertainty in the modeling of
the sea surface (Breon and Henriot, 2006; Fukushima et al., 2009).
Conversely, the wave slope statistics as parameterized by the CM model
are questionable when dealing with high resolution images (i.e., pixel
edge< 100 m) (Kay et al., 2009). Therefore, most of the “deglinting”
methods developed for high spatial resolution imagery are based on the
estimation of the sunglint signal without any a priori assumption on the
actual sea state (Kay et al., 2009).

The first algorithms developed to correct for sunglint were designed
to exploit the signal measured in the NIR where the contribution of the
water-leaving radiance is assumed as virtually negligible (Hochberg
et al., 2003; Philpot, 2007). Refinements of those methods, which were
mainly developed for hyperspectral imagery, permitted to account for
non-negligible water-leaving radiance in NIR by (i) the exploitation of
the characteristics of the oxygen absorption peak around 760 nm
(Kutser et al., 2009); (ii) the water-leaving spectral characteristics in
NIR on a pixel-wise approach (Goodman et al., 2008); or (iii) statistics
over a set of bright and dark pixels within the image (Hedley et al.,
2005; Lyzenga et al., 2006; Martin et al., 2016). Another study pro-
posed a scheme to perform sunglint correction along with the atmo-
spheric correction based on one band in the shortwave-infrared (SWIR)
(Heege and Fischer, 2000). These methods are based on regression
analyses of the radiances in the visible with those measured in the NIR.
The regressions are performed for a given region of interest (ROI) of the
image. It is assumed that within the ROI: (i) glinted and glint-free pixels
are present and (ii) the water signal is spatially homogeneous. The first
condition may be difficult to fulfill when the image contains an almost
constant level of glint in every pixel, which can occur when there are
only small waves smaller than the pixels. The selection of ROI is
therefore a critical step of those methods. Nevertheless, it has to be
done manually through a visual inspection thereby restricting any op-
erational use of those methods. On the other hand, the selection of non-
glinted area might be questionable when the full image is impacted by
sunglint. To overcome this limitation, a pixel-based approach is

developed here based on an explicit formulation of the sunglint signal
with a special attention paid to the sunglint spectral behavior from the
SWIR to the visible wavelengths.

The MSI/Sentinel-2 sensor provides measurements in the SWIR part
of the spectrum which could alleviate some previous assumptions made
for the NIR part of the spectrum. First, absorption of water molecules is
more pronounced in the SWIR than in the NIR wavelength range by
more than one order of magnitude thereby reinforcing the assumption
of “black water” in the SWIR. Second, the atmosphere is more trans-
parent with a weak amount of diffuse light (i.e., lower contribution of
aerosols and air molecules) making measurements more sensitive to the
sunglint contribution at such wavelengths. As a result, “deglinting”
methods could be potentially improved based on the exploitation of the
SWIR data.

In this paper, a methodology is proposed to estimate the sunglint
radiation over the entire visible/NIR spectrum from the analysis of the
signal measured at SWIR wavelengths. Then, the sunglint contribution
is removed from the top-of-atmosphere radiation for the Sentinel-2
satellite data acquired over coastal and inland waters. The paper is
organized as follows. First, the theoretical formulation of the sunglint
radiation over the visible-SWIR spectral range is described; a particular
attention is paid to the water surface reflectivity spectral shape (Section
2). Then, the algorithm that is proposed for sunglint correction is out-
lined (Section 3). The validation and performances of the algorithm are
analyzed using Sentinel-2 data over coastal and lake regions and in situ
measurements (Section 4). Comparisons with other methods taken from
the literature and the potential for making the proposed algorithm
operational are discussed in Section 5.

2. Theoretical background

2.1. Top-of-atmosphere signal and water-leaving radiance

At the top-of-atmosphere (TOA) level, the measured radiance can be
expressed as follows:

= +L θ θ Δφ L θ θ Δφ L θ θ Δφ( , , ) ( , , ) ( , , ),t s v diff s v g s v
TOA TOA TOA

(1)

where θs and θv are the solar and viewing zenith angles, respectively,
and Δφ is the relative azimuth between the sun and the sensor (Fig. 1).
LdiffTOA is the diffuse component of the light reaching the satellite
sensor. The diffuse radiance is defined as the sunlight radiation which
has been scattered at least once within the atmosphere and/or the water
column before reaching the sensor. LgTOA is the direct radiance corre-
sponding to the sunglint component which arises from single or mul-
tiple reflections of the direct downward sun radiation on the air/water
interface without undergoing any atmospheric or water column

Fig. 1. Coordinate system and definition of the relevant geometry parameters: θs and θv
are the solar and the viewing zenith angles, respectively, Δφ is the relative azimuth. The
vector N is the normal to the wave facet (gray area), θN is the angle of N with the vertical
and ω is the specular reflection angle.



scattering events.
As mentioned in Section 1, the water-leaving radiance is the

radiometric quantity of interest to monitor ocean or inland waters
content in particulate or dissolved matter. If the sunglint is ignored, the
measured radiance corresponds to the diffuse TOA radiance which can
be decomposed as follows:

= +L θ θ Δφ L θ θ Δφ t θ θ Δφ L θ θ Δφ( , , ) ( , , ) ( , , ) ( , , ).diff s v atm s v u s v w s v
TOA TOA BOA

(2)

Here, LatmTOA is the intrinsic atmospheric radiance accounting for
the reflection of skylight on the water surface. LwBOAis the water-leaving
radiance at the bottom of atmosphere and tu is the upward radiance
transmittance which accounts for the light propagation through the
atmosphere from the bottom to the top (Yang and Gordon, 1997).

2.2. Sunglint radiance

The sunglint component of the measured radiance, LgTOA, can be
straightforwardly formulated as follows:

= ↓L θ θ Δφ T θ BRDF θ θ Δφ T θ L θ( , , ) ( ) ( , , ) ( ) ( ),g s v u v surf s v d s sun s
TOA

(3)

where Lsun↓ is the extraterrestrial sun radiance reaching the atmosphere,
Td and Tu are the downward and upward direct transmittance, respec-
tively, and BRDFsurf is the bidirectional reflectance distribution function
of the rough water surface.

If the ocean surface is roughened by the wind, a myriad of reflected
images of the sun will reach the satellite sensor due to specular re-
flection from various waves and wavelets of the sea surface. Following
Cox and Munk (Cox and Munk, 1954b, 1956), the ocean surface can be
modeled based on a distribution of small facets. The orientation of the
facets can be fully described by their slopes ζx and ζy along the x and y
axis of Fig. 1. The slopes ζx and ζy of facets contributing to sun light
reflection toward the satellite sensor (sunglint signal) can be expressed
based on the viewing configuration as follows:

= ∂
∂

= − + +

= ∂
∂

= − +

ζ z
x

θ θ Δφ θ θ

ζ z
y

θ Δφ θ θ

(sin sin cos )/(cos cos ),

(sin cos )/(cos cos ).

x s v s v

y v s v
(4)

The proportion of such facets can be related to the wave slopes
distribution. In addition, an accurate parameterization of the sunglint
requires the consideration of the multiple reflections on the wave facets
(Ottaviani et al., 2008; Li et al., 2013) and of wave shadowing effects
(Ross et al., 2005), which depend on the wave height h. Several studies
introduced different formulations of a function q which merges the
wave slope distribution with observable effects of multiple reflections
and shadowing (Plass et al., 1975; Ross et al., 2005). Whatever the
parameterization of q, the BRDF of the air/water interface can be for-
mulated as follows:

=
πR ω

θ θ
q ζ ζ hBRDF

( )
4 cos cos ( , , ),surf

f

v N
x y4 (5)

where Rf is the Fresnel reflection coefficient. Although Eq. (5) is ap-
plicable to a point source, it has been shown that the use of the Sun's
irradiance produces an error smaller than 1% on the resulting observed
reflected radiance for any slope variance as long as the Sun is> 10°
above the horizon (Ross et al., 2005).

2.3. Spectral variation of the sunglint signal from 350 nm to 2500 nm

In this section, the spectral properties of the sunglint radiance are
investigated over the spectral range operated by Sentinel-2-like sa-
tellites, namely, from the UV–visible (350 nm) to the SWIR (2500 nm)
bands. The spectral variations of the sunglint radiance originate from
that of (i) the extraterrestrial solar irradiance spectrum, (ii) the direct

transmittance of the atmosphere, and (iii) the BRDF (Eq. (5)). The ex-
traterrestrial solar irradiance is known from tabulated data (Thuillier
et al., 2003). The atmospheric transmission depends on the optical
depth of the different atmospheric constituents such as gases and
aerosols. A particular attention has been paid to the direct transmit-
tances calculation in the proposed algorithm according to the scattering
and absorption properties of the gases and aerosols in presence (see
Section 3). The last source of spectral variability of the sunglint comes
from the BRDF of the air-water interface through the Rf coefficient. A
specific sensitivity analysis, which is detailed in Appendix, has been
conducted to characterize the spectral variation of the BRDF. We report
hereafter the main results of the sensitivity analysis.

Simulations based on different datasets or parameterizations of the
refractive index of liquid water n showed that the spectral variation of n
is about 4% from visible to SWIR wavelengths (see Fig. A.1 in Ap-
pendix). Such a variation induces a strong spectral dependence of the Rf

over the spectrum 350 to 2500 nm, due to the non-linear relationship
between n and Rf. This dependence is increased for smaller incident
angles ω; typically by> 30% when the incident light is nearly per-
pendicular to the wave facet (see Fig. A.2a in Appendix). However, it is
observed that the sunglint spectral variation is not significantly im-
pacted by changes in salinity or temperature of water for the viewing
geometry of observation of the Sentinel-2 platform (i.e., near-nadir
viewing angles), (see Fig. A.2b). Note that the spectral ratio
ε=BRDFsurf(λ)/BRDFsurf(λref=2190 nm) is slightly dependent on the
viewing zenith and azimuth angles as well as the solar angle in com-
parison to the variation of Rf with the incident angle ω. Therefore, the
sunglint signal can be handled from visible to SWIR measurements in-
dependently of water temperature and salinity in the case of MSI/
Sentinel-2 (or Landsat) configuration.

2.4. Brief summary of the existing methods for sunglint removal

Several deglinting techniques were developed based on regression
analyses over the image (see (Kay et al., 2009) for a comprehensive
review of those techniques). Such type of methods makes use of an
implicit formulation of the spectral dependency of the sunglint signal
expressed in reflectance (Hochberg et al., 2003; Hedley et al., 2005; Hu,
2011) such as:

= − −R λ R λ α λ R λ β( ) ( ) ( )( ( ) ),corr t t NIR (6)

where Rt is the reflectance at the top-of-atmosphere level, Rcorr is the
top-of-atmosphere reflectance that is corrected for the sunglint con-
tribution, α and β are two parameters that are determined during the
correction procedure.

In (Hochberg et al., 2003; Hedley et al., 2005), the parameter β is
taken as the minimum value of Rt(λNIR) within a given region of the
image assuming that some of the observed pixels are virtually not
contaminated by the sunglint radiance. The coefficient α is retrieved
based on linear regressions between the reflectances measured in the
NIR and the reflectances measured in the visible band. The reflectance
values of the two spectral bands are fitted with the following equation:

= +R λ α λ R λ( ) ( ) ( ) offsett t
TOA TOA

NIR (7)

Those regressions are obtained for a part of the image where glinted
and glint-free pixels should be present and where the water signal
might be assumed as spatially homogeneous. Practically, such a region
has to be selected “manually” by the user through a visual inspection of
the entire image. Once α and β are retrieved, Eq. (6) is used to obtain
the sunglint-corrected reflectance Rcorr. It is worth noting that Rcorr is
not corrected for the atmosphere contribution. In order to retrieve the
water-leaving signal, a proper atmospheric correction needs to be ap-
plied in addition to this type of deglinting methods.



3. Algorithm for sun glint removal of Sentinel-2-like images (GRS)

3.1. Main characteristics of the MSI/Sentinel-2 sensor

The Sentinel-2 mission (ESA) has been designed to provide multi-
spectral high spatial-resolution optical observations over global ter-
restrial surfaces, including the monitoring of vegetation, soil and in-
land/coastal waters (Drusch et al., 2012). Sentinel-2 carries the Multi-
spectral Instrument (MSI) which is a wide-swath, high-resolution,
multi-spectral imaging system. MSI operates at 13 spectral bands with
different spatial resolutions ranging from 10 m to 60 m (Table 1). It is
worth noting that the viewing and azimuth angles only slightly vary
from one spectral band to another given a pixel; the viewing angles are
smaller than 10° over the acquired image. Table 2 provides the spectral
ratio of BRDFsurf values (normalized to λref = 2190 nm) which were
calculated following the methodology detailed in Appendix. Note that
the true relative spectral response of the MSI/Sentinel-2 sensor was
used for that purpose. The spectral dependence of the BRDF could reach
about 28.6% between 443 nm and 2190 nm (Table 2).

3.2. GRS algorithm

Based on the spectral characteristics of the sunglint radiance that
was observed in Section 2 (and Appendix), an algorithm, was developed
to (i) estimate the sunglint radiation over the entire visible/NIR spec-
trum using the SWIR bands and (ii) to correct the MSI/Sentinel-2 data
acquired over oceanic/inland waters for the sunglint component of the
signal.

Fig. 2 provides the flowchart of the proposed GRS algorithm,. The
main principle of the algorithm is to derive the BRDF values of the air-
water interface in the SWIR bands for which the atmosphere is weakly
impacted by scattering of air molecules and aerosols. SWIR bands are
preferentially examined because the water-leaving radiance can be as-
sumed null due to the high absorption of the oceanic radiation by the
water molecules at these wavelengths (Hale and Querry, 1973). Note
that a null water-leaving radiance at SWIR bands is generally true even
for the most turbid waters (Shi and Wang, 2009). The algorithm re-
quires as well a prior knowledge of the optical properties of the aero-
sols. In this paper, the aerosol properties are taken from in situ mea-
surements collected by the AERONET network (Holben et al., 1998) or
model-based data provided by the Copernicus Atmosphere Monitoring
Service (CAMS) (Hollingsworth et al., 2008; Flemming et al., 2017).
Once the BRDF value is retrieved in the SWIR, the sunglint radiance in
the visible-NIR bands is calculated based on the BRDF spectral depen-
dence that was characterized in Table 2. Thus, the sunglint radiation
can be further subtracted from the measured satellite radiances to get
the normalized water-leaving radiances for all the Sentinel-2 bands.

Since the spectral bands of MSI have different spatial resolutions,
the first step is to resample the different bands on a common grid. To
make the SWIR information meaningful for the other bands, the

Sentinel-2 image is reprojected on the grid of the 2190-nm band for a
spatial resolution of 20 m. It is worth noting that the low signal-to-noise
ratio (SNR) of the SWIR bands of Sentinel-2 is not a major issue for the
sunglint removal. The SNR is typically low when no sunglint is present
in the scene but, in this case, it is not necessary to perform any sunglint
correction. Conversely, when pixels are contaminated by the presence
of sunglint, the sunglint signal will enhance the SNR of the SWIR bands
more rapidly than that of the visible bands due to the higher value of
atmospheric transmission in the SWIR channels.

The radiance data as well as the viewing and azimuth angles of each
band are reprojected using the Sentinel-2 toolbox that is publicly
available (http://step.esa.int/main/toolboxes/sentinel-2-toolbox).
Based on the viewing and solar angles, the spectral radiances are cor-
rected for the gaseous absorption through the last version of the SMAC
algorithm (Rahman and Dedieu, 1994). In SMAC algorithm, the trans-
mittances for each absorbing gas are parameterized using an ex-
ponential relationship with the gas content and using the viewing
geometry (sun and viewing angles). These parameterizations were
generated using the 6S code (Kotchenova et al., 2006) for standard
vertical profiles of the main absorbing gases (CO2, H2O, N2O, O3…) and

Table 1
Characteristics of the Sentinel-2/MSI spectral bands.

Central wavelength (nm) 443 490 560 665 705 740 783 842 865 945 1375 1610 2190

Band width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20

Table 2
Spectral values of the BRDFsurf (defined as the parameter ε in Section 2.3) integrated over the spectral response of each Sentinel-2 band and normalized by the value obtained in the SWIR
band at 2190 nm.

Band (nm) 443 490 560 665 705 740 783 842 865 945 1610

Spectral ratio ε 1.2862 1.2668 1.2496 1.2304 1.2248 1.2203 1.2155 1.2099 1.2066 1.1985 1.1246

Fig. 2. Flowchart of the proposed GRS algorithm to remove the sunglint contribution
from the MSI/Sentinel-2 images.

http://step.esa.int/main/toolboxes/sentinel-2-toolbox


by taking into account the spectral response of the Sentinel-2 bands.
Here, the H2O and O3 content are taken from the European Centre for
Medium-Range Weather Forecasts (ECMWF) global forecast dataset
(Dee et al., 2011). The content of the other gases was considered con-
stant over time.

After the correction of the radiances for the gaseous absorption, the
radiance is corrected for the atmospheric diffuse radiance to get both
the water-leaving and the sunglint components. Following the for-
mulation of Eqs. (1) and (2), and dropping off the viewing geometry
dependency for brevity, the correction of the total radiance for the at-
mospheric radiance is written as:

− = +∗L λ L λ t λ L λ L λ( ) ( ) ( ) ( ) ( ),t atm u w g
TOA TOA BOA TOA

(8)

where LatmTOA∗ is the simulated intrinsic atmospheric radiance in-
cluding reflection of the sky light on the air-water interface. Within the
algorithm, this term is calculated for the given viewing geometry based
on radiative transfer simulations archived in look-up tables (LUT).
Those LUTs were generated using the OSOAA code (Chami et al., 2015)
which numerically solves the radiative transfer equation for the cou-
pled system of atmosphere and water body with a rough air-water in-
terface considering the linear polarization state of light. Extended
computations were achieved for all the viewing geometry (θs,θv,Δφ)
with increments of 1.5° for θs and θv and 5° for Δφ and for aerosol
optical thicknesses ranging from 0.0001 to 1 at 550 nm. The Rayleigh
optical thicknesses is taken from tabulated values (Bodhaine et al.,
1999) and integrated over the spectral response of each MSI band. In
addition, the effect of atmospheric pressure is taken into account fol-
lowing (Wang, 2016). Note that the pressure at the target altitude, h (in
meter), is calculated from the pressure at the sea level, P(0) in hPa,
assuming the international standard vertical profile of temperature:

= ⎡
⎣

− ⎤
⎦

P h P h( ) (0) 1 0.0065
288.15

,
5.255

(9)

where P(0) value is taken from the ECMWF dataset.
The aerosols are assumed to follow a bimodal size distribution fol-

lowing several studies which showed that a satisfactory simulation of
aerosols can be obtained using a mixture of a fine mode with a coarse
mode (e.g., Kaufman et al., 2001; Veselovskii et al., 2004). The optical
properties of the fine and coarse aerosol modes considered in the LUT
were computed from the models 4 and 7 of the MODIS aerosol collec-
tion 5 (Levy et al., 2009) corresponding to a mean radius of 0.1 and
0.8 μm for the fine and coarse modes, respectively. The atmospheric
radiance LatmTOA∗ is computed within the algorithm based on a simple
weighted sum of the fine and coarse modes contributions which was
shown to be accurate for the viewing angles considered here (Wang and
Gordon, 1994):

= + −∗ ∗ ∗L λ γL λ τ γ L λ τ( ) ( , , fine) (1 ) ( , , coarse),atm atm a atm a
TOA TOA TOA (10)

where fine and coarse stand for the microphysical properties of the
respective aerosol modes, τa is the total aerosol optical thickness at
550 nm corresponding to the sum of the fine and coarse optical thick-
nesses (τa= τa

f+ τa
c). The term γ is the mixing coefficient between the

two aerosol modes which is defined as γ= τa
f/τa. In the proposed al-

gorithm, the γ coefficient is retrieved as follows. First, following (Eck
et al., 1999), a second order polynomial is used to model the spectral
variation of τa:

= + +τ λ a a λ a λlog( ( )) log( ) log( ) .a 0 1 2
2 (11)

Here, the parameters a0–2 are retrieved by fitting the function of Eq.
(11) upon available exogenous data of the aerosol optical thickness
spectral values. In the following, those aerosol data are taken from ei-
ther the AERONET or CAMS datasets. Afterward, the mixing ratio of the
fine and coarse modes is retrieved by fitting the τa spectral values ob-
tained from Eq. (11) with those of the bimodal aerosol model τa_sim:

= + −τ λ γτ λ γ τ λ( ) ( ) (1 ) ( ).a sim a sim a sim
fine coarse (12)

Assuming that the water-leaving radiance is null in the SWIR bands,
one can combine Eqs. (3) and (8) to express the BRDF of the air-sea
interface for a given pixel:

= ↓θ θ Δφ λ
L θ θ Δφ λ

T λ θ T λ θ L θ
BRDF( , , , )

( , , , )
( , ) ( , ) ( )

,s v
g s v

v s sun s
SWIR

TOA
SWIR

SWIR SWIR (13)

where the geometrical dependencies are explicitly expressed to high-
light that the sunglint signal is highly directional. T is the direct
transmittance, which is defined as:

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

T λ θ τ λ P τ λ
θ

( , ) exp ( , ) ( )
cosi

r a

i (14)

Note that the gaseous absorption does not appear in Eq. (14) since
correction of gaseous absorption was already achieved in the previous
steps of the algorithm. Note that the retrieved BRDF values can be used
to mask the non-glinted pixels (BRDF ~ 0) or to contribute to define a
threshold value to eliminate strongly contaminated pixels. Once the
BRDF is retrieved for the different SWIR bands available by the satellite
sensor (i.e., two SWIR bands for MSI/Sentinel-2), the sunglint radiance
can be calculated for every band by taking into account the BRDF
spectral variation (Fig. A.2b) through the computed ε values:

= ↓L λ T λ θ T λ θ ε λ
ε λ

θ θ Δφ λ L λ θ( ) ( , ) ( , ) ( )
( )

BRDF( , , , ) ( , ).g v s s v sun s
TOA

SWIR
SWIR

(15)

The spectral sunglint radiance is finally subtracted from the right-
hand side of Eq. (8) and the normalized-water leaving is computed
independently for each pixel of the image in the visible part of the
spectrum.

4. Applications to Sentinel-2 imagery

The GRS algorithm is applied to the level 1 images (L1C) of the
Sentinel-2/MSI archive for several locations around the world. Those
locations were selected according to the availability of ground-based
measurements of the water-leaving radiances so that the performance
of the method could be evaluated. The first set of available ground-
based data relies on the ocean color component of the NASA Aerosol
Robotic Network (AERONET-OC). Such a network has been designed to
support long-term satellite ocean color investigations through cross-site
consistent and accurate above-water measurements collected by au-
tonomous radiometer systems that are deployed on offshore fixed
platforms (Zibordi et al., 2009). Sentinel-2 images of the areas sur-
rounding the different AERONET-OC sites are thus processed and ana-
lyzed. In addition, the site of Naussac reservoir (France; 44.75 N, 3.80E;
altitude: 940 m.a.s.l.) was also selected since it is one of the pilot sites of
the TELQUEL/CNES project that is dedicated to develop specific bio-
optical algorithms for inland waters (Tormos et al., 2015). As men-
tioned in Fig. 2, the multispectral aerosol optical thickness is considered
as an ancillary data for the GRS algorithm. Here, those data are taken
from the ground-based measurements of the AERONET photometers
corresponding to the level 1.5 of the Direct Sun Algorithm version 3
(https://aeronet.gsfc.nasa.gov/cgi-bin/type_piece_of_map_aod_v3).

4.1. Qualitative analysis

The performances of the GRS algorithm are first assessed qualita-
tively based on couples of red-green-blue composite (RGB) images be-
fore and after removing the sunglint contribution. The RGB images
have been generated from the normalized water-leaving radiance ob-
tained for the Sentinel-2 bands centered on 490, 560 and 665 nm. Note
that the images have been first corrected for the atmospheric radiance
(Eq. (8)). Therefore, the observed differences between those images can

https://aeronet.gsfc.nasa.gov/cgi-bin/type_piece_of_map_aod_v3


be attributed to the sunglint removal only.
Fig. 3 shows two couples of images acquired over two coastal sites:

Venice site, located on the Adriatic Sea (Italy) (top row) and WaveCIS
AERONET site, located at 120 km south of New Orleans (USA) in the
Gulf of Mexico (bottom row). Before removing the sunglint radiance,
the image of the Venice site exhibits, in addition to the water-leaving
radiance patterns, conspicuous sunglint patterns recognizable by their
violet hue on the RGB image. It can be readily observed that those
patterns follow complex shapes with pronounced discontinuities over
the entire image. As an example, this is particularly observed in the
middle of the right-hand side of the image. After removing the sunglint
radiance (Fig. 3b), all the noticeable discontinuities are removed. In-
stead of sunglint patterns, smooth variations of the radiance are ob-
served which are consistent with the presence of more turbid waters in
the vicinity of the coast.

The second couple of images of the WaveCIS site corresponds to a
closer look within the Sentinel-2 scene. The presence of ships and their
subsequent wakes are remarkable in the bottom-right corner of Fig. 3c.
Indeed, it is well-known that a ship moving in deep water generates a V-
shape wake, consisting of Kelvin waves, with a fixed half-angle of 19.5°
(e.g., Zilman and Miloh, 2001). On the other hand, ship wakes can
significantly modulate the total reflected sunlight (Gatebe et al., 2011)
thereby impacting sunglint pattern as observed from the satellite
images. All the ship wake patterns are smoothed out after applying the
GRS algorithm with the exception of thin white lines behind the ships
which likely correspond to turbulence-induced bubbles in the subsur-
face waters.

Similarly to Fig. 3, Fig. 4 shows RGB images for an estuary area
prior and after removing the sunglint radiance. The qualitative per-
formances are evaluated over river and estuary waters in the vicinity of
the Luncida AERONET site (East Australia; 146.39E, −18.52 N)
(Fig. 4a and b). The left-hand side of the image corresponds to the main
land with rivers ended to estuaries and the coastal zone. In the example

of Fig. 4, the hue of the rivers is better distinguishable after removing
the sunglint radiance. This is particularly true in the main estuary
(middle of the image) where it can be readily observed that the water
hue is restored in the end of the mouth and the plume after subtraction
of the sunglint component.

The GRS algorithm is now tested for scenes corresponding to fresh
waters that are located at an altitude much higher than the sea level. A
Sentinel-2 image of the Naussac reservoir (France) that was acquired in
July 7, 2016 is analyzed (Fig. 4c). Note that Naussac reservoir is located
at an altitude of 940 m.a.s.l. As it can be observed in Fig. 4c, the image
is highly contaminated by the sunglint. The sunglint contamination
produces contrasted patterns over the entire lake area. After removing
the sunglint radiance, the lake appears homogeneous throughout the
RGB image of Fig. 4d. Therefore, the example of Fig. 4c and d illustrates
the efficiency of the GRS method to correct for the sunglint radiance in
the case of a high sunglint contamination including for areas that are
located at a significant altitude.

Based on Figs. 3 and 4, the GRS algorithm performs well from a
qualitative point of view to remove the spatial effects of the sunglint
radiance. A similar conclusion was also obtained when dealing with
many other images (not shown). It is worth reminding that the GRS
algorithm relies on the processing of each pixel independently of the
others (pixel-based approach). From this point of view, the elimination
of the sharp and pronounced sunglint patterns is a first evidence de-
monstrating the effectiveness of the GRS algorithm for coastal and
offshore waters as well as inland waters whatever the altitude of these
inland targets.

4.2. Quantitative validation

The assessment of the GRS performances is quantitatively per-
formed based on matchup comparison of the normalized water-leaving
radiances LWN retrieved from the level 1 (L1C) Sentinel-2 data with the

Fig. 3. RGB images obtained after subtraction of the atmo-
spheric radiance from TOA signal but before (left column) and
after (right column) removing the sunglint radiance. These
images correspond to the areas surrounding the AERONET-OC
sites of (a, b) Venice (July 18, 2016) and (c, d) WaveCIS (April
23, 2016). Note that the same color scale was used to generate
the RGB images before and after removing the sunglint radiance.



coincident data of the AERONET-OC sites. Such a comparison is carried
out for the same spectral bands as AERONET-OC device, namely, 443,
490, 560, 665 and 865 nm. The AERONET-OC data correspond to the
level L1.5 quality controlled datasets. The mean, 25% and 75% quan-
tiles are computed within a time window of plus or minus 3 h around
the satellite overpass.

The Sentinel-2 data are taken from a 5 × 5 pixel box centered on
the AERONET-OC site locations. A coarse cloud filtering is applied
based on the Sentinel-2 L1C operational flag. The measured reflectance
at 1375 nm (noted R1375) is used to filter out potential contamination
by high clouds, i.e., pixels showing a value of R1375> 3 10−3 are
discarded. Finally, pixels showing at least three negative values in the
visible bands are also excluded from the comparison since these pixels
can be potentially impacted by cloud shadows. After such steps of fil-
tering, boxes for which at least 50% of valid pixels remains are used for
the comparison. For each spectral band, the median value is used to
minimize potential impacts of the AERONET-OC platform which might
be visible on a few pixels within the selected 5 × 5-pixel boxes.

The comparison between satellite and in situ data of water-leaving
radiances is presented in Figs. 5 and 6 before and after removing the
sunglint radiance, respectively. The statistics of the comparison are
summarized for each spectral band within these figures. The statistical
quantities that are further analyzed are as follows: equation of the
linear regression line, coefficient of determination R2, root-mean-square
error RMSE and its normalized counterpart NRMSE (i.e., RMSE divided
by the mean value of the in situ data) as well as the bias. The resulting
comparison corresponds to a total number of 150 matchup points (i.e.,
150 satellite images) for 16 AERONET-OC sites including 14 coastal
sites (namely, COVE, Gageocho, Galata, Gloria, GOT, Gustav Dalen,
Helsinki Lighthouse, LISCO, Lucinda, MVCO, Thornton C-power, USC,
Venise, WaveCIS, Zeebrugge) and 2 lake sites (namely, Lake Erie,
Pålgrunden).

Fig. 5 shows the results of the comparison between satellite and in
situ data when the sunglint contribution is not removed yet. Despite the
fact that the slope of the regression line is close to one (1.06), the sa-
tellite and ground-based data are poorly correlated (R2 < 0.56). The
RMSE is significantly high (0.78 mW·cm−2·sr−1·μm−1) corresponding
to a value of NRMSE of 138% with an important bias indicating an
overestimation of LWN by 0.48 mW·cm−2·sr−1·μm−1 on average. When
the sunglint component is removed from the image using the GRS al-
gorithm (Fig. 6), the correlation between satellite and in situ data is
significantly increased (i.e., value of R2 of 0.87). Both the RMSE and the
bias are reduced by> 60% (RMSE = 0.32 mW·cm−2·sr−1·μm−1,
bias = 0.17 mW·cm−2·sr−1·μm−1) relatively to the case of Fig. 5, thus
demonstrating the effectiveness of the GRS algorithm. In addition, it is
worth noting that the dispersion of the satellite data within the 5 × 5-
pixel box (vertical bars in Figs. 5 and 6) is largely reduced after re-
moving the sunglint signal. This can be explained by the fact that the
sunglint component might be rapidly changing from one pixel to an-
other (case of Fig. 5) while the spatial variation of actual water-leaving
radiance is likely to be smoothed over a 5 × 5-pixel box (e.g.,
100 × 100 m2) (case of Fig. 6).

Fig. 6 shows that the improvements obtained after applying the GRS
algorithm occur for each spectral band, especially for the band at
665 nm where R2 is largely increased from 0.19 (Fig. 5) to 0.88 (Fig. 6).
The RMSE value is significantly reduced as well by 75% after the
sunglint correction. The best performances of GRS algorithm are ob-
served for the bands at 490, 560 and 665 nm for which the spatial re-
solution is the highest (10 m). The lowest performances are observed
for the band at 443 nm where R2 is equal to 0.58. This can be partly
explained by the fact that the aerosol models used in GRS algorithm
exhibit a weak absorption component (imaginary refractive index n′
between 0.001 and 0.002) which may not be so realistic for some
coastal areas where absorption by specific aerosols could be much more

Fig. 4. Same as Fig. 3 but for estuary and lake areas: (a, b) Lu-
cinda AERONET-OC site (estuary, Australia) (February 19, 2016)
and (c, d) Naussac reservoir (France) (July 7, 2016).



significant (by one order of magnitude) with values of n′ that could
be> 0.01. Yet, the GRS method allows decreasing both RMSE and bias
by a factor of two at 443 nm. Note finally that the weak correlation that
is observed at 865 nm (R2 = 0.1) could likely be explained by the low
values of LWN (almost black waters) at this wavelength which are cor-
roborated by the weak bias (0.07 mW·cm−2·sr−1·μm−1).

The matchup comparison has been performed using a great number
of Sentinel-2 images (150) and a large variety of water types from in-
land to sea waters, from oligotrophic to eutrophic conditions (Zibordi
et al., 2009). The performances of the GRS method applied to Sentinel-2
data are similar to those obtained for the main ocean color satellite
missions (MERIS, MODIS, SeaWiFS, VIIRS); which have been assessed
using the same reference data provided by the AERONET-OC network
(e.g., Mélin et al., 2007; Zibordi et al., 2009; Goyens et al., 2013; Hlaing

et al., 2013). Therefore, the GRS method could be considered as a ro-
bust one from the point of view of the validation step. Our results
clearly demonstrate the requirement of including the systematic cor-
rection of the sunglint contribution (in addition to the correction for the
atmospheric radiance) in the MSI/Sentinel-2 data processing to cor-
rectly estimate the water-leaving radiance over contrasted waters at
high spatial resolutions.

5. Discussion

5.1. Comparison of GRS algorithm with other methods

The proposed scheme for sunglint correction is based on a per-pixel
approach and a full consideration of the physical basis underlying the

Fig. 5. Matchup comparison of the normalized water-
leaving radiance LWN (in mW·cm−2·sr−1·μm−1) between in
situ AERONET-OC data and satellite Sentinel-2 data when
the sunglint radiance has not been removed. Note that the
atmospheric radiance (Eq. (8)) has been subtracted from
the satellite data. Vertical and horizontal bars indicate the
dispersion from the 25% to the 75% quantiles for satellite
and AERONET-OC data, respectively.

Fig. 6. Same as Fig. 5 but after removal of the sunglint
radiance using the GRS algorithm.



sunglint signal that reaches the satellite sensor. Several deglinting
techniques were developed based on regression analyses over the image
(see Section 2.4). In this section, we demonstrate that Eq. (6) used in
the regression methods can be derived from the theoretical formalism
used earlier in the paper. In addition, we discuss the performances of
the current deglinting techniques (i.e., regression analyses as given by
Eq. (6)) by comparison with the proposed GRS algorithm (i.e., physi-
cally-based method).

The main assumption that is made in the regression analyses tech-
niques is that the sunglint reflectance Rg can be retrieved in the NIR part
of the spectrum as follows:

= −R λ R λ R λ( ) ( ) ( ).g t atmNIR NIR NIR (16)

Note that the water contribution is assumed negligible in Eq. (16).
Thus, the parameter β is simply the reflectance of the atmosphere (in-
cluding sky reflection on the air-sea interface) Ratm. In the proposed
GRS method, the term Ratm is obtained pixel per pixel using exact ra-
diative transfer calculations (through LUTs). Afterward, the sunglint
signal needs to be calculated for each spectral band considering the
spectral variation of the BRDF as previously explained in Section 3
(Fig. 2). Following the formalism of Eqs. (15) and (A6), and after
converting the radiance into reflectance, the sunglint reflectance can be
written:

=R λ T λ θ T λ θ ε λ λ( ) ( , ) ( , ) ( )BRDF( ).g v s ref (17)

This implies:
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Therefore, the parameter α in Eq. (7) can be explicitly formulated as
follows:

→ =α λ λ T λ θ T λ θ ε λ
T λ θ T λ θ ε λ
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In Fig. 7, the parameter α is shown for the optical properties of an
atmosphere including air molecules and aerosols. The value of the
aerosol optical thickness at 550 nm is 0.1 and the Angström exponents
used are 0 (typical of coarse aerosols) and 1.5 (typical of fine aerosols).
It is worth noting that the spectral variation of the BRDF (i.e., the ε
ratio) must be accounted for in the calculation of α. In (Hu, 2011), α
was set after error and trial on a series of MODIS images over the gulf of
Mexico. The following values 0.73, 0.87 and 0.93 were proposed by
(Hu, 2011) for α at 469, 555 and 645 nm respectively (see Fig. 7). The
values retrieved by (Hu, 2011) are in good agreement with those cal-
culated here for an Angström exponent value of 0 (which is re-
presentative of coarse marine aerosols). It can be observed in Fig. 7 that

values of α vary significantly with the type of aerosols (which is
characterized here by the Angström exponent). Therefore, the spectral
properties of aerosols must be accounted for in order to accurately re-
trieve the values of α for removing the sunglint contribution.

The deglinting method of (Hochberg et al., 2003; Hedley et al.,
2005) described Section 2.4 is applied here to the Sentinel-2 image of
Fig. 3a over the AERONET-OC site of Venice (Fig. 8). This method is
hereafter referred to as Hedley-like procedure. The selected region of
the image used for the calculation of α and β is shown in Fig. 8b; this
region was selected because of the large variation of the Rt values at
865 nm, thus indicating a noticeable variation of the sunglint con-
tamination among the pixels. Once the GRS atmospheric correction
(i.e., subtraction of the atmospheric radiance only, see Eq. (8)) is ap-
plied, the retrieved values of α and β are used for removing the sunglint.
The resulting corrected RGB image is shown in Fig. 8c. The visual and
qualitative inspection of the processed image reveals that the strong
discontinuous sunglint patterns are satisfactorily removed with the
Hedley-like procedure coupled with the atmospheric correction part of
the GRS algorithm. However, the retrieved α values are in disagreement
with the expected theoretical values calculated according to the
AERONET data and the geometry of observation of Sentinel-2 acquisi-
tion (Fig. 9a). To examine more quantitatively the performances of the
Hedley-like procedures, the spectra of LWN obtained for pixels sur-
rounding the AERONET-OC site are shown in Fig. 9b. The spectra re-
trieved from the GRS sunglint correction show less dispersion and are in
a better agreement with the AERONET-OC measurements than those
retrieved following the Hedley-like scheme. This can be partly ex-
plained by the difference between the retrieved α values and the the-
oretically expected ones but also by the choice of the β value corre-
sponding to the minimum value of LWN at 865 nm in the selected region
of the image.

It is important to note that the performance of the Hedley-like
method depends on the selection of the region of interest (ROI) used to
perform the regression calculations to retrieve α and β. This selection is
based on two hypothesis (i) spatial homogeneity of water-leaving ra-
diances and (ii) presence of both glinted and glint-free pixels. However,
the selection has to be done by visual inspection of the image which can
be arbitrary. This is one of the major difference with the per-pixel-based
GRS method which could be more easily automatically implemented.
Potential better performances of the Hedley-like procedure might have
been reached with other ROI used within the procedure. For instance, a
better agreement between the retrieved LWN and the AERONET-OC data
can be obtained when β is set as the 10th percentile of Rt at 865 nm (to
limit impact of noise in the lowest values) instead of taking the strict
minimum value of Rt (865 nm) within the ROI. The Hedley-like method
is therefore considered as an efficient tool to process images where a

Fig. 7. Parameter α (unitless) describing the spectral variation
of the sunglint reflectance at the top of the atmosphere from
theoretical calculations (Eq. (19)) (colored lines) and from the
values retrieved empirically by (Hu, 2011) (black dots). Calcu-
lations were performed for two values of the Angström exponent
of 0 and 1.5, for a viewing angle of 10° and several solar zenith
angles (colors). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of
this article.)



priori knowledge on the water-leaving radiance distribution over the
image can be used. Additionally, the Hedley-like method needs to be
accompanied by a proper atmospheric correction where the aerosol
signal must be estimated to retrieve the water-leaving radiance at the
sea surface. Conversely, the GRS method can be applied regardless of
the LWN distribution and, thereby, is more suitable for an operational
use like the processing of full archive of Sentinel-2 like satellite ima-
gery.

5.2. Consideration of exogenous aerosol data for an operational use of GRS
algorithm

Sunglint correction needs to be performed together with a specific
atmospheric correction algorithm (i.e., removal of the atmospheric ra-
diance) in order to retrieve the water-leaving radiances from satellite
measurements. As mentioned in Section 3, prior knowledge on the
aerosol optical thickness is required in GRS algorithm to derive LWN

from top-of-atmosphere radiances (Fig. 2). Note that additional in-
formation on aerosol load and type is also needed for the Hedley-like
methods (i.e., regression analyses) to correct for the atmospheric ra-
diance in the visible and to retrieve the proper water-leaving radiance
(see Section 5.1). Note also that the use of ancillary data (e.g., surface
pressure, gas concentration data) as inputs of inverse algorithms is
virtually systematic to derive level 2 geophysical products for most of
the ocean color satellite sensors (e.g., MODIS, MERIS, VIIRS) and so, it
is not so surprising that GRS algorithm requires ancillary data as far as
these data are correctly documented elsewhere. In the results presented
Section 4, the aerosol optical thickness data from the ground-based
AERONET network were used to process the Sentinel-2 data. Un-
fortunately, the AERONET network is not dense enough to provide data
in the vicinity of most inland reservoirs, lakes or coastal water. The lack
of coincident (in time and space) aerosol data may reduce the

operational use of the GRS algorithm to process Sentinel-2-like data
archive. Another source for considering exogenous data for aerosol
optical thickness is the large datasets generated in the framework of
global circulation models and/or assimilation techniques using ground-
based and remote sensing datasets. As an example, the Copernicus At-
mosphere Monitoring Service (CAMS) provides through the European
Centre for Medium-range Weather Forecast (ECMWF) data server real-
time analyses and forecasts of aerosol optical thickness, τa, starting from
year 2003 (Flemming et al., 2017). Interestingly, it has been recently
shown that hourly τa values of the CAMS dataset were highly consistent
with AERONET in situ measurements (correlation coefficients around
0.86 except for urban sites where correlations are weaker) (Cesnulyte
et al., 2014). Note that Cesnulyte et al. (2014) also pointed out that
CAMS dataset might overestimate the contribution by coarse mode
aerosols.

Here, the consideration of the CAMS aerosol optical thickness da-
taset rather than AERONET aerosol data is examined to make the GRS
algorithm operational for a systematic processing of Sentinel-2-like
satellite data. For that purpose, the AERONET aerosol optical thickness
data is replaced by the spectral aerosol optical thickness data provided
by the CAMS dataset. Note that the use of the CAMS data induced a
retrieval of negative water-leaving radiances before removing the
sunglint component (i.e., during the step of the subtraction of the at-
mospheric radiance from top-of-atmosphere radiation) for 21 satellite
images over a total of 150 (i.e., 14% of our satellite dataset). As a result,
these images have been discarded from the analysis. Matchup com-
parisons between the satellite water-leaving radiance LWN derived by
GRS algorithm when CAMS ancillary aerosol data are used and in situ
water-leaving radiance measured by AERONET-OC photometers are
carried out in the same way as it was shown in Figs. 5 and 6. A summary
of the statistical indicators of the matchup comparison is provided
Table 3. Table 3 also shows the impact of the sunglint removal on the

Fig. 8. (a) Sentinel-2 RGB image similar to that of Fig. 3a and (b) top-of-atmosphere reflectance measured by Sentinel-2 at 865 nm in the region that is selected to apply the regression
calculation of the Hedley et al. (2005) procedure. (c) RGB image after application of the Hedley-like method for removing the sunglint.

Fig. 9. (a) Retrieved α values from regression relationships ob-
tained from the selected region illustrated in Fig. 8b (black dots)
and simulated α values (Eq. (19)) using the AERONET aerosol
data for the viewing geometry of the image (red line). (b) Nor-
malized water-leaving radiances retrieved after applying (i) the
full GRS algorithm (this study) and (ii) the Hedley et al. (2005)
procedure (Hedley-like) to remove the sunglint component for
which the GRS atmospheric correction module was used to re-
move the atmospheric radiance component. A comparison with
the collocated measurements of the AERONET-OC system is also
shown. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
article.)



validation of satellite LWN.
When the sunglint component is removed from satellite imagery,

the overall correlation obtained between satellite and in situ LWN is
satisfactory (R2 = 0.78). Such a correlation compares well with the
case where AERONET aerosol optical thickness data are used as ancil-
lary data (R2 = 0.87, Fig. 6 – all data). It should be noted as well that
the impact of the sunglint removal on the validation of the retrieved
satellite LWN is significant since much better determination coefficients
(R2), regression slopes (i.e., they get closer to 1) and RMSE are obtained
for each wavelength apart from the 865-nm band where LWN is fairly
close to zero (Table 3). As a result, the overall performances of the GRS
algorithm are maintained when using the CAMS aerosol data, thus fa-
cilitating the operational use of GRS-like algorithms. Exogenous data
such as surface pressure or gas concentration from the CAMS database
are commonly used in atmospheric correction algorithm. It has been
shown here that CAMS aerosol optical thickness data can be safely used
to correct Sentinel-2-like images for the sunglint radiances. In the near
future, investigations should be carried out to reduce the use of aerosol
ancillary data to better account for the real aerosol optical thickness
corresponding to each satellite pixel. One way of achieving such a goal
could be to use CAMS aerosol optical thickness data as a first guess
within a more sophisticated inversion scheme than that used in the GRS
algorithm. The spectral shape of the sunglint signal outlined earlier in
this paper (Eq. (15) and Fig. A2b) would greatly help to derive both the
aerosol optical properties and the sunglint radiance using a single al-
gorithm.

6. Conclusions and perspectives

Due to the near-nadir view of the MSI/Sentinel-2 sensor, radiance
data acquired by such a sensor are likely to be impacted by the re-
flection of direct sunlight on the air-water interface (so-called sunglint).
Such a sunglint contribution thus needs to be accurately removed to
retrieve the water-leaving radiance which is of primary interest for
deriving the water optical properties and for monitoring the water
quality. In this study, an algorithm, referred to as GRS, was proposed to
remove the sunglint radiance for each pixel independently from
Sentinel-2-like imagery over inland and sea waters, including targets at
various altitudes.

In this study, the two SWIR bands of Sentinel-2 (centered on 1610
and 2190 nm) were exploited for deriving the sunglint component and
removing it from each band of the satellite image. To this end, the
spectral variation of the sunglint contribution over a large spectral
range from 350 to 2500 nm has been first revisited in this study. We
found that the bidirectional reflectance distribution function (BRDF) of
the sunglint varies by> 28% between the SWIR and the blue bands of

Sentinel-2. Based on these results on the spectral properties of the
BRDF, the sunglint signal can be extrapolated from the SWIR to the
visible and NIR part of the spectrum to correct for the Sentinel-2 bands.
In addition to removing the sunglint radiance, the GRS algorithm also
enables to correct the top-of-atmosphere satellite radiance for the at-
mospheric radiance and sky reflection onto the water surface provided
that a prior knowledge of the aerosol optical properties is available. The
aerosol optical thickness values were taken from the AERONET pho-
tometer network but also from the CAMS dataset to process the
Sentinel-2 images shown in the paper.

Application of the method to inland and coastal sites highlighted
that the sunglint patterns are satisfactorily removed from a qualitative
point of view over the image extent. As an example, it has been shown
that sunglint contribution induced by ship wakes can be quasi-fully
eliminated. The quantitative validation of the GRS algorithm has been
carried out using matchup comparisons between satellite and in situ
measurements of the water-leaving radiance using a number of 150
images acquired over various AERONET-OC sites. The matchup com-
parison showed that the application of GRS algorithm improves by 55%
the correlation between the water-leaving radiances retrieved from
Sentinel-2 and those measured in situ. The discrepancies between sa-
tellite and in situ measurements were reduced by 60% in terms of RMSE
and bias. These results thus showed that the water-leaving radiances are
retrieved from the Sentinel-2 data with performances that are expected
for the current “ocean color” missions (e.g., MODIS, VIIRS). However,
Sentinel-2 has the main advantage to acquire data at a much higher
spatial resolution (< 60 m) than current ocean color sensors
(> 300 m).

In the current version of the GRS algorithm, prior knowledge of the
aerosol optical thickness is needed. Such an issue was overcome by
taking ground-based AERONET aerosol measurements or aerosol data
from global reanalysis and forecasts datasets such as the CAMS dataset.
In particular, it was shown that the use of the global CAMS dataset
enables the operational use of the GRS algorithm to correct for Sentinel-
2 archive systematically. The main limitation of the proposed method is
the need of a priori information on the aerosol optical properties.
Further developments could consist in linking the sunglint removal
procedure with a proper atmospheric correction algorithm that will be
capable of estimating the aerosol optical properties (e.g., spectral op-
tical thicknesses) directly from each pixel. It should be also noted that
further works are needed to take into account the small angle differ-
ences that could exist between the MSI spectral bands when the BRDF is
calculated by GRS algorithm.

The GRS method has been implemented here for the MSI/Sentinel-2
specifications but could be easily applied to similar types of satellite
sensors (e.g., availability of SWIR bands). Among the existing missions
with decameter spatial resolution, the series of Landsat satellites (from
Landsat-4 TM to Landsat-8) is interesting since these sensors are
equipped with SWIR channels. Interesting applications could also be
foreseen for the aerosol/ocean color current missions having a lower
spatial resolution than Sentinel-2 or Landsat, such as MODIS or
Sentinel-3 (combining the OLCI and SLSTR sensors) for which more
accurate aerosol optical properties could be retrieved.
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Appendix A. Appendix

One of the source of spectral variability of the sunglint comes from the BRDF of the air-sea which is discusses in this Appendix.
Let us consider n as the refractive index of water relative to air and ω the incident angle of sunlight reaching a wave facet. For a given geometry of

observation, the sunglint radiance reaching the satellite sensor has undergone specular reflections on the appropriate wave facets for the incident
angle ω which can be calculated from the geometry of observation:

= +ω θ θ θ θ Δφcos 2 cos cos sin sin cos .s v s v (A1)

Given that the incident sunlight is unpolarized, the Fresnel's reflection coefficient Rf, introduced in Eq. (5), can be expressed as follows:

=
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r ω r ω
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where r⊥ and r∥ are the perpendicular and parallel components of the Fresnel coefficients with respect to the plane of incidence, respectively, which
are defined as:
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As it can be seen from Eq. (5), the spectral behavior of the reflection coefficient is only driven by the refractive index of the natural water, n. The
spectral variation of n can have a significant impact on the sunglint signal when dealing with visible to SWIR measurements. A variation of 5% for
instance can induce a strong spectral dependence of the Fresnel reflection coefficient Rf due to the non-linearity of Eq. (A3).

The characterization of the spectral variation of n over wavelengths ranging from the visible (VIS) to the SWIR part of the spectrum has proven to
be a challenging task (Austin and Halikas, 1976; Segelstein, 1981; Bertie and Lan, 1996; Ball, 2008; Max and Chapados, 2009). However, it has been
recently shown that the concatenation of the different datasets or parameterizations provides a practical means to express the refractive index for a
realistic range of temperature and salinity over the VIS-to-SWIR range (Röttgers et al., 2011). Here, a similar method is used based on three studies of
reference (Quan and Fry, 1995; Max and Chapados, 2009; Kedenburg et al., 2012) to deal with the spectral variation of the refractive index.

The effect of temperature and salinity were evaluated and parameterized by Quan and Fry (Quan and Fry, 1995). This formulation, denoted as
nQF1995 (T,S), was shown to be valid for the spectral range of 200-1100 nm (Huibers, 1997). Kedenburg et al. (Kedenburg et al., 2012) accurately
parametrized the refractive index of distilled water, hereafter referred to as nK2012, at 20 °C for wavelength region between 500 nm and 1750 nm.
Max and Chapados (Max and Chapados, 2009) established reference values for pure water, hereafter denoted as nMC2009, at 25 °C in the SWIR for
wavelengths larger than 1600 nm. These three formulations are concatenated over the 0.4-2.5 μm spectral range following (Röttgers et al., 2011):

⎧
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where T, S and λ are temperature, salinity and wavelength respectively. The refractive index is then determined by the distribution:
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From this distribution, the spectral variation of n over the range 350 to 2500 nm is about 0.09 in absolute values (i.e., the value of n varies from

Fig. A.1. (a) Spectral variation of the refractive index of liquid water, n, for different salinity [0;40 psu] (based the formulation of Eq. (A5)); (b) relative spectral variation of n when the
refractive index is normalized to its value at λref = 2190 nm. Note that the variations due to salinity and temperature are smaller than the line thickness in Fig. A.1b.



1.27 to 1.36, Fig. A.1a) which corresponds to a relative variation of 4.3% (Fig. A.1b). The sensitivity of n with salinity, which is varied from 0 to
40 psu, is also shown in Fig. A.1a. Typically, the variation of n with the salinity increasing from 0 to 40 psu is of 0.01 in absolute values (0.8% in
relative values), which remains very weak in comparison to the impact of the wavelength. Note that the sensitivity of n with a temperature
comprised between 0° and 35 °C is so small relatively to that of salinity that it could not be discernable in Fig. A.1a. As result, the sunglint spectral
variation is not significantly impacted by changes in salinity or temperature.

Then, the Rf coefficients were calculated for various incident angles of the sunlight beam and for the refractive index values shown in Fig. A.1a
(see Fig. A.2a). The relative spectral variations of Rf show a variation of 10% for grazing incident angles (~70°) and of> 35% when the incident
light is nearly perpendicular to the wave facet. Results confirm the significant dependence of the spectral variation of the sunglint radiation (~35%)
due to the spectral variations of the water refractive index, which was yet shown to be around 4% only over the spectrum 350 to 2500 nm.

Finally, the BRDFsurf values were calculated through Eq. (5) for the same range of variation of salinity and temperature as mentioned above. For
these calculations, the function q of Eq. (5) corresponds to 2-dimensional Cox and Munk (CM) model (Cox and Munk, 1954b) which provides the
wave slope distributions as a function of the wind speed and direction. It is important to recall that the CM model relationship between surface wind
and sea roughness might be not applicable for decameter-scale pixel. However, the CM parameterization remains efficient to model realistic wave
spectra including long gravity to short capillary waves irrespective of the spatial scale (Munk, 2009; Lin et al., 2016). Here, the wind speed input
used with the CM model is not taken as an actual wind value but as a mathematical parameter enabling us to obtain a wide range of realistic sea
roughness encompassing a large range of variance, kurtosis and skewness of the wave slope distribution. Thus, the BRDFsurf values were calculated
for wind speed values ranging from 0 to 12 m·s−1. Note that the wave shadowing effects was also accounted for through the Sancer model (Sancer,
1969). The viewing angle range was limited to that of the MSI/Sentinel-2 sensor (i.e., θv ≤ 12°) and a full range of azimuth Δφ was considered (i.e.,
0° to 360° by step of 5°). Values of the solar zenith angles θs beyond 60° were excluded from the computation since the validity of the version of Cox
and Munk model that does not account for multiple reflections may be questionable (Mobley, 2015).

Let us introduce the spectral ratio of the BRDF ε:

=ε λ λBRDF ( )/BRDF ( )surf surf ref (A6)

where the reference wavelength λref is fixed to 2190 nm (last SWIR band of Sentinel-2) in the following. The ratio ε is shown in Fig. A.2b to highlight
the BRDF spectral dependence. It is remarkable that the ε ratio is very slightly dependent on the viewing angle θv in comparison to the variation of
the Fresnel coefficient with the incident angle ω (Fig. A.2a). This is because the maximum incident angle ω that is capable of generating sunglint for
θv ≤ 12° and θs ≤ 60° is smaller than 36° (see Eq. (A1)). As it can be seen Fig. A.2a, the Fresnel coefficient varies weakly within this angular range
(0° to 36°) for a given wavelength. As a result, it was noted that the sunglint spectral variation is not significantly impacted by the viewing geometry
of observation of the Sentinel-2 platform (i.e., near-nadir viewing angles). Therefore, the sunglint signal can be handled from the visible to SWIR
measurements in the case of MSI/Sentinel-2 configuration independently of water temperature and salinity. The same demonstration can be done for
Landsat platform.
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