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Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The pur-
pose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is
widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution
tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration
and parametrization, while potentially facing demanding computational tasks. To make deconvolution
more accessible, we have developed a practical platform for deconvolution microscopy called
DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D micro-
scopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage
of the release of DeconvolutionLab2 to provide a complete description of the software package and its
built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution
microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov–Miller,
Richardson–Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D
microscopy images using simulated datasets and real experimental images. We distinguish the algo-
rithms in terms of image quality, performance, usability and computational requirements. Our presenta-
tion is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand
Challenge on deconvolution microscopy that was recently organized.

� 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The widespread development of fluorescent-labeling tech-
niques has rendered fluorescent microscopy one of the most pop-
ular imaging modalities in biology. An epifluorescence (a.k.a.
widefield) microscope is indeed the simplest modality for observ-
ing cellular structures: After labelling with a fluorescent dye, the
biological specimen is illuminated at the excitation wavelength.
The fluorescence emission is used to form the image. A 3D acquisi-
tion of the cell is built as a z-stack of 2D images, by moving the
focal plane through the sample.

Unfortunately, the resolution of 3D micrographs is intrinsically
limited by the diffraction of light; structures closer than the Ray-
leigh criterion cannot be distinguished. For a popular fluorophore
(DAPI, emission wavelength k ¼ 470 nm) and for the standard
numerical aperture NA ¼ 1:4 and diffraction index ni ¼ 1:51 nm,
the Rayleigh criterion predicts that it is impossible to observe
details smaller than about 0:61 k

NA � 200 nm in the lateral sections

and 2 ni k
NA

2 � 700nm along the optical axis [1]. Thus, the resolution
is anisotropic, i.e., the resolution along the depth axis is lower than
the resolution in the lateral dimensions. Moreover, this resolution
is usually insufficient to satisfy the current demands of biological
research for the visualisation of intracellular organelles. The
impact of diffraction is perceived as a blur, where fine details are
obscured by the haze produced by out-of-focus light. The acquired
blurred image can be mathematically modeled as the result of con-
volving the observed objects with a 3D point-spread function (PSF).
This PSF is the diffraction pattern of the light that would be emitted
from an infinitesimal point-like object and collected by the micro-
scope. In other words, the PSF sums up the effects of the imaging
setup on the observations.

There are two approaches to improve the resolution: (i) chang-
ing the microscope design to improve the shape of the PSF (e.g.
confocal, multiphoton and most super-resolution microscopy
modalities), (ii) numerically inverting the blurring process to
enhance micrographs: the deconvolution. The ultimate goal of
deconvolution is to restore the original signal that was degraded
by the acquisition system (see Fig. 1). It relies on methods that
have to be carefully optimized to preserve biological information.
We present these methods in Section 3.

Deconvolution is a versatile restoration technique that has been
found useful in various contexts such as biomedical signal process-
ing, electro-encephalography, seismic signal (1D), astronomy (2D),
or biology (3D). It performs well in 1D or 2D, but its results are the
most impressive for 3D volumetric data, especially when the PSF is
large axially. In this case, 3D deconvolution has the capability to
combine lateral and axial information when restoring the original
signal.

Deconvolution has multiple advantages. It is applicable to
even the simplest optical setup, reducing financial costs and
streamlining the acquisition pipeline. In addition to the resolu-
tion improvement, indirect benefits of deconvolution are contrast
enhancement and noise reduction. As it mitigates the effect of
noise, it can be used in low-light condition. The dim excitation
light lowers bleaching probability of fluorophores and is there-
fore beneficial in terms of photo-toxicity in living cells. Not
surprisingly, deconvolution is used routinely by microscopists
and has become a popular pre-processing tool to further image-
analysis steps such as segmentation and tracking. Unfortunately,
without a proper tuning of the algorithms parameters, the
deconvolved volume can be corrupted by artifacts that might
prevent sound biological interpretation. Among such possible
degradations, the most notable ones are noise amplification,
ringing (known as Gibbs or Runge phenomenon) and aliasing
(both spatial and spectral).

The deconvolution of micrographs was first investigated by
Agard and Sedat [2]. Many variations and improvements have been
proposed since then [3–7]. Some of these ‘‘deconvolution micro-
scopy” methods led to various commercial and open-source soft-
ware implementations [8,9]. The typical cost of a commercial
package varies between USD 5000 and USD 10,000. At the time
of writing this paper, the most popular ones are: Huygens (Scien-
tific Volume Imaging); DeltaVision Deconvolution (Applied
Precision, GE Healthcare Life Science); and AutoQuant

(MediaCybernetics). Some of these commercial solutions (e.g.,
Huygens) specialize in the processing of large data and are capable
of running unattended deconvolution in batch mode [10].

Meanwhile, several open-source deconvolution solutions exist
too, often taking the form of an ImageJ

1 plugin. One of the first
such platform that was made available is the popular Deconvolu-

tionLab software developed at the Biomedical Imaging Group
(EPFL) and detailed in the present paper. Freely distributed, Decon-
volutionLab hosts various algorithms for 3D microscopy deconvo-
lution and drives them through a user-oriented interface. Other
open-source softwares also exist, including Nick Linnenbrügger’s
DeconvolutionJ, Bob Dougerthy’s Iterative Deconvolve 3D

2

which implements a deconvolution approach for the mapping of

http://imagej.nih.gov/ij/
http://www.optinav.info/Iterative-Deconvolve-3D.htm


Fig. 1. Principle of the deconvolution of a z-stackof images, presented here as the maximum-intensity projection of the volumetric data.
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acoustic sources, Piotr Wendykier’s Parallel Iterative Decon-

volution
3 which proposes four iterative algorithms, and the

MiTiV
4 project that proposes blind deconvolution software.

The deconvolution of three-dimensional data is a computa-
tionally heavy process. Fortunately, the last decades have seen
a strong increase in the general accessibility to computing power.
Without special equipment, it has now become possible to
deconvolve data of practical size 512� 512� 64ð Þ on a 8 GB
consumer-grade computer in less than a couple minutes. Thus,
the number of users having gained access to deconvolution has
grown markedly through the years, which stresses the need for
accessible and user-friendly software packages for deconvolution
microscopy. This need is heightened by the fact that many poten-
tial users are biologists or life-science students, who may lack in
computer and algorithmic literacy, so that they would have to be
educated about the different available algorithms. Among others,
the required skills address the selection of parameters, the con-
trol of computational and memory costs, and the recognition of
restoration artifacts.

In this paper, we take advantage of the release of Deconvolu-
tionLab2, the revamped sequel of DeconvolutionLab, to pro-
vide a complete description of the software and its built-in
deconvolution algorithms. In regards to the aforementioned peda-
gogical aspects, the present paper equally intends as a step toward
the education of inexperienced users.
2. DeconvolutionLab2: A Java open-source software package

Although microscope manufacturers may sometimes propose
well-integrated software packages, their solutions are often mere
black boxes. This situation prevents users to make an informed
choice on which commercial deconvolution software is the most
appropriate for their task at hand. Conversely, many deconvolution
methods have been described in the scientific literature over the
past twenty years, sometimes accompanied by open-source imple-
mentations. But even then, end users who do not master the
underlying principles of deconvolution might face difficulties in
selecting the method best suited to their needs. Moreover, aca-
demic packages meant to investigate some aspects of an algorithm
are usually poorly designed in terms of user interface and applica-
ble only to a specific class of signals.

At the Biomedical Imaging Group (EPFL), we have taken upon
ourselves to develop the freely available software package Decon-

volutionLab
5 to experiment with 3D deconvolution microscopy.

DeconvolutionLab is a software platform that hosts various algo-
rithms and drives them through a unified and user-friendly inter-
face. After ten years of experience with this package, we have
revamped it and renamed it DeconvolutionLab2. This second ver-
sion keeps the same key ingredients that made the success of the
3 h t t p s : / / s i t e s . g o o g l e . c o m / s i t e / p i o t r w e n d y k i e r / s o f t w a r e /
deconvolution/paralleliterativedeconvolution.

4 https://mitiv.univ-lyon1.fr/.
5 http://bigwww.epfl.ch/deconvolution/.
first version: Java source code, efficient FFT (fast Fourier transform),
pluggable algorithms and an accommodating user interface.
2.1. DeconvolutionLab: The original ImageJ deconvolution tool

DeconvolutionLab was initially developed for educational
purposes at EPFL. For over a decade it has been allowing students
to conduct deconvolution experiments with the most representa-
tive classical algorithms, as well as with some more recent ones
such as fast iterative soft-thresholding [11], Richardson–Lucy total
variation [12], and thresholded Landweber [13]. Nowadays, we still
train students with the help of DeconvolutionLab.

We have made DeconvolutionLab freely available since its
release as an ImageJ plugin. As ImageJ is the de facto standard
software tool of biological imaging, most biologists know how to
install DeconvolutionLab on their own and can rapidly experi-
ment with it. The package permits the deconvolution of large bio-
logical images at least as efficiently as commercial software
packages [9]. With the passing years, our contribution has also
gained popularity in several microscopic core facilities, where
one of its favorite uses is for internal training. Moreover, from an
academic perspective, DeconvolutionLab was deployed in more
than seventy-five publications for various modalities (widefield,
confocal [14], 2-photons [15], STED [16], light-sheet [14]). These
works cover a wide range of applications, including neuroscience
[15,17], osteology [16], microbiology [18], plant science [14] and
material science [19].
2.2. DeconvolutionLab2: The remasterized Java deconvolution
tool

The present paper focuses on the complete description of
DeconvolutionLab2, the sequel to DeconvolutionLab. It is a
freely accessible and open-source software package running on
Windows, Linux, and Mac OS operating systems. The package can
be linked to well-known imaging software platforms. The back-
bone of the software architecture is a library that contains the
number-crunching elements of the deconvolution task. The current
list of built-in algorithms includes:

Naive inverse filtering (NIF, Section 3.2);
Tikhonov regularization (TR, Section 3.3);
Regularized inverse filtering (RIF, Section 3.4);
Landweber (LW, Section 3.5);
Tikhonov–Miller (TM, Section 3.6);
Fast iterative soft-thresholding (FISTA, Section 3.7);
Richardson–Lucy (RL, Section 3.8);
Richardson–Lucy with total-variation regularization (RL-TV,
Section 3.9).

New algorithms are easily pluggable into the framework of
DeconvolutionLab2. The source code is written in Java 1.6, as
closely as possible to the text-book definition of the algorithms.

https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://mitiv.univ-lyon1.fr/
http://bigwww.epfl.ch/deconvolution/


Fig. 2. Visualization of the convolution of simulated tubes with a PSF defined by the Born & Wolf model.
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Inquisitive minds inclined to peruse the code will find it fosters the
understanding of deconvolution.

Our goal with DeconvolutionLab2 is to make deconvolution
broadly accessible to the community of all those who show inter-
est in this technique. To achieve such a goal, we provide a user-
friendly front-end interface that also accommodates non-experts.
Our software package is able to process large volumes on a mid-
range desktop computer, or even on a laptop computer.

To experiment with the software, we share test data on the
DeconvolutionLab2 website. These data include synthetic and
real cases to help benchmarking algorithms. DeconvolutionLab2
can act not only as a didactic tool equipped with a simulator (con-
volution and noise generator), but also as a validation module that
gives access to the signal-to-noise ratio between a ground-truth
image and the output of every algorithm.

Like DeconvolutionLab, DeconvolutionLab2 is able to pro-
cess data relevant to real biological applications. However, and
contrarily to the commercial software packages, our tools are
restricted to deconvolution alone. We intentionally apply neither
pre-processing nor postprocessing. Compared to Deconvolu-

tionLab, DeconvolutionLab2 includes new fast Fourier trans-
form (FFT) libraries (see Appendix A.1), a recordable macro for
ImageJ, new apodization functions, new padding schemes, and
new switchable constraints in the space domain.

2.2.1. Practical details
DeconvolutionLab2 is delivered as a plugin for ImageJ [20],

for Fiji [21], and for the new bio-imaging platform Icy [22]. Since
it is a Java class, it is also callable from the MATLAB command line
and runnable as a standalone application through a Java Virtual
Machine. For batch processing, we recommend calling Deconvo-

lutionLab2 from an ImageJ macro. This key feature enables one
to handle time-lapse images or multiple channels, which need to
be processed individually, in sequence.

Deconvolution is a heavy computational task in terms of run-
ning time and memory usage. In DeconvolutionLab2, we tried
to find the best tradeoff between computational efficiency and
code readability. The deconvolution is implemented in the discrete
Fourier domain, so that the most time-consuming task is the FFT.
Some iterative algorithms may require several FFT at every itera-
tion, which can consume more than nine tenth of the runtime.
Therefore, it is of utmost importance to rely on efficient FFT
libraries.
3. Deconvolution algorithms

In this section, we recall the basic principles of image formation
in fluorescence microscopy and give a brief technical description of
the algorithms implemented in DeconvolutionLab2. We focus
on the impact of the underlying models and the influence of the
parameters. For an in-depth understanding and a more complete
overview of the deconvolution field, we refer to the reviews
[3,5,6,23] that cover most of the methods described here.

3.1. Image-formation model

Fluorescence microscopes are often assumed to be shift-
invariant, which means that the response of the system does not
depend on the position in the image. Therefore, they can be char-
acterized by a PSF which approximates the distortions of the signal
in the optical system. More elaborated approximations (e.g. spa-
tially varying PSF) are described in Section 6.2). From a signal-
processing point of view, the acquisition of images is modeled as
the convolution of the fluorophore distribution x in the observed
volume with the PSF h, followed by a degradation by noise. The
convolution operation is defined at a given 3D location p 2 R3 by

ðx � hÞðpÞ ¼
Z
R3

xðrÞhðp� rÞ dr: ð1Þ

In epifluorescence microscopy, the shape of the PSF in the
image domain, shown in Fig. 2 with the Born and Wolf model
[24,25], is typically such that it produces an anisotropic blurring
of the signal. The resolution of the convolved signal is usually three
times lower in the axial direction than in the lateral plane.

From now on we consider a discretized model. We denote by
y 2 RN the observed volume in vector form, x 2 RK the underlying
fluorescence signal, and H 2 RN�K the PSF matrix defined such that
the discretization of the convolution defined in Eq. 1 writes as the
matrix multiplication Hx. Possibly, we may want to perform the
reconstruction at an output resolution that differs from the input
resolution, or to handle carefully border effects by estimating an
image x with larger size, whereby K – N.

For a circulant and shift invariant discrete PSF with K ¼ N , the
matrix–vector multiplication Hx becomes an element-wise multi-

plication in the Fourier domain: ŷ ¼ ĥ� x̂ where ŷ and x̂ are the

discrete Fourier transform coefficients of y and x, and ĥ are the
coefficients of the discrete Fourier transform of the PSF. This per-
mits efficient computation of Hx, both in terms of speed and mem-
ory requirements through the use of the fast Fourier transform
(FFT) algorithms. Every deconvolution algorithmwe present in this
paper relies on this technique.

The discrete image acquisition model is then

y ¼ Hxþ n; ð2Þ
with n 2 RN an additive noise component. The acquired images are
affected by several sources of noise, which are often modeled by
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two components. The first component is signal-dependent and
models the fluctuation of the number of photons arriving at a given
pixel. This so-called shot noise follows a Poisson distribution whose
mean depends on the intensity of the incoming light. The second
component accounts for various other distortions such as a back-
ground signal, read-out noise, or quantization noise, which are usu-
ally modeled as additive Gaussian noise. Note that in the case of
Poisson noise, the variable n depends on the data y in Eq. (2). We
decided to drop this dependency for the sake of clarity of the
notations.

The aim of deconvolution algorithms is to invert the noisy con-
volution process defined in Eq. 2, thereby producing an estimated
image ~x from the knowledge of y and H, and the assumptions about
the noise n.

3.2. Naive inverse filtering

The simplest approach to deconvolution consists in minimizing
a least-squares cost function CðxÞ that measures the similarity
between the observation y and the current estimate Hx, so that

~x ¼ argmin
x

CðxÞ ð3Þ

with CðxÞ ¼ jjy� Hxjj2: ð4Þ
We call it naive inverse filtering. It corresponds to maximum-

likelihood estimation in the presence of Gaussian noise. The solu-
tion can be computed efficiently in the Fourier domain and
amounts to the coefficient-wise division

~̂x ¼ ŷ

max ĥ; �
� � ; ð5Þ

where max denotes the element-wise maximum and � is a small
constant to avoid divisions by zero. The final solution is then

obtained by taking the inverse Fourier transform of ~̂x.
The method is parameter-free and the direct inversion in the

Fourier domain leads to fast computations. Unfortunately, the
NIF tends to amplify measurement noise, resulting in spurious
high-frequency oscillations.

3.3. Tihkonov regularization

A way to avoid the noise amplification of NIF is to add to the

cost function (4) the regularization term kxk22 to penalize high val-
ues of the solution [26]. This leads to

CðxÞ ¼ ky �Hxk2 þ kkxk22; ð6Þ
where k is a regularization parameter that balances the contribution
of the two terms. The explicit minimizer of (6) is

x ¼ HTHþ kI
� ��1

HTy; ð7Þ

where I is the identity matrix, and HT denotes the adjoint of H. As
for NIF, the solution (7) can be computed directly in the Fourier
domain. This formulation can also be interpreted as a maximum a
posteriorimodel. There, the regularization introduces prior informa-
tion about the signal to guide the estimation.

3.4. Regularized inverse filtering

Other types of regularizations than TR can be used. A popular
approach that performs well is to impose smoothness on x by
penalizing the energy of its derivative. The resulting cost function is

CðxÞ ¼ ky �Hxk2 þ kkLxk22; ð8Þ
where L is a matrix that corresponds to the discretization of a dif-
ferential operator. In deconvolutionLab2, we use the Laplacian
operator. The explicit minimizer of (8) is given by

x ¼ HTHþ kLTL
� ��1

HTy: ð9Þ

When the filtering by LTL has a whitening effect on x and k is
defined as the inverse of the noise variance, RIF amounts to Wiener
filtering [27].

3.5. Landweber

The LW algorithm minimizes the same least-squares cost func-
tion than NIF. But, instead of expressing the solution through direct
inversion, it resorts to an iterative gradient-descent approach [28].
In DeconvolutionLab2, we take advantage of the iterative nature
of LW to impose a nonnegativity constraint at each iteration. Each
update indexed by k can be written as

xðkþ1Þ ¼ PðRþÞK xðkÞ þ cHT y �HxðkÞ
� �n o

; ð10Þ

where c is a step size parameter and PðRþÞK fxg ¼ maxðx;0Þ is the

component-wise projection of x onto the set ðRþÞK .
Minimizing the energy (4) only enforces data fidelity of the

result. The consequence is that the solution at convergence of iter-
ations (10) tends to produce an over-fitting of the noise in the
input data.However, one may obtain a satisfactory tradeoff
between deconvolution and noise amplification if the algorithm
is stopped early. In fact, the number of iterations is made to act
as a pseudo regularization parameter. This phenomenon occurs
for all maximum-likelihood based algorithms.

3.6. Tikhonov–Miller

Similarly with the LW method, the TM algorithm uses iterative
gradient descent to minimize the regularized inverse filter cost (8).
The iterative procedure is

xðkþ1Þ ¼ PðRþÞK xðkÞ þ c HTy � HTHþ kLTL
� �

xðkÞ
� �n o

: ð11Þ

When iterative projections onto the set ðRþÞK are performed,
the method is sometimes referred to as iteratively constrained
Tikhonov–Miller (ICTM).

3.7. Fast iterative soft-thresholing

Alternative regularization terms to the one in (8) can be consid-
ered. In particular, sparsity constraints in the wavelet domain have
proven to yield better preservation of image details and disconti-
nuities. The associated cost function is

CðxÞ ¼ ky �Hxk2 þ kkWxk1; ð12Þ
where W represents a wavelet transform. Due to the non-
smoothness of the ‘1 norm, gradient-descent algorithms cannot
be used. However, the problem can be solved efficiently by fast iter-
ative soft-thresholding [11] with the following iterations:

zðkþ1Þ ¼ sðkÞ � cHTðHsðkÞ � yÞ ð13Þ

xðkþ1Þ ¼ WTTðWzðkþ1Þ; ckÞ; ð14Þ

pðkþ1Þ ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pðkÞ2

q� �
ð15Þ

sðkþ1Þ ¼ xðkþ1Þ þ pðkÞ � 1
pðkþ1Þ

ðxðkþ1Þ � xðkÞÞ: ð16Þ



Table 1
Important deconvolution parameters per method.

Method Parameters Section

NIF – 3.2
TR k 3.3
RIF k 3.4
L Miter ; c 3.5
TM Miter ; c; k 3.6
FISTA Miter ; k; c 3.7
RL Miter 3.8
RL-TV Miter ; k 3.9

6 http://bigwww.epfl.ch/algorithms/psfgenerator/.
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There, c is a step size that can be determined explicitly to
ensure convergence [11], and Tð�; sÞ is a soft-thresholding opera-
tor with threshold s.

3.8. Richardson–Lucy

The RL method [29,30] is a maximum-likelihood approach, like
NIF. The difference is that RL assumes that the noise follows a Pois-
son distribution, which leads to

CðxÞ ¼ 1THx� yT logðHxÞ; ð17Þ
where the log operation is applied component-wise and
1 ¼ ð1; . . . ;1Þ 2 NN . The iterative minimization of (17) can be under-
stood as a multiplicative gradient descent and writes

xðkþ1Þ ¼ xðkÞ �HT y
HxðkÞ

� �
; ð18Þ

where the multiplication � and the division y=ðHxðkÞÞ are under-
stood to be component-wise.

Since the updates of x are multiplicative, nonnegativity is natu-
rally ensured by the algorithm for any nonnegative starting point.
As a maximum-likelihood method, the solution of RL is subject to
the same noise-amplification problem as NIF and LW. Thus, the
optimal number of iterations should be heuristically set to stop
the algorithm before convergence.

3.9. Richardson–Lucy with total-variation regularization

To counterbalance the noise amplification effect of RL, a regu-
larization term can be added to (17) [12]. The total-variation (TV)
regularizer penalizes the ‘1 norm of the gradient of the signal, with

CðxÞ ¼ 1THx� yT logðHxÞ þ kkDxk1: ð19Þ
There, D is the finite-difference matrix for first-order deriva-

tives. In [12], a differentiable approximation of the ‘1 norm is used
and the multiplicative iterations are expressed as

xðkþ1Þ ¼ xðkÞ �HT y
HxðkÞ

h i
� 1
1þ kgðkÞ ; ð20Þ

where gðkÞ is the derivative of a regularized version of the l1 norm of
DxðkÞ.

Compared to the ‘2 penalization used in (8), the ‘1 norm yields
piecewise-constant results that better preserve image
discontinuities.

4. Deconvolution in practice

4.1. Image acquisition

The preparation of samples and the design of the imaging sys-
tem are of paramount importance to a successful deconvolution.
In particular, it is critical to take into account elements of the imag-
ing system such as calibration, sampling, and noise level. These
practical issues have been well considered in the literature
[4,31]. Specifically for deconvolution, it is also recommended to
validate the acquisition and the further processing of known sam-
ples to avoid false interpretations, especially in the context of
quantitative imaging assays [32,33].

4.2. Point-spread function

The quality of the deconvolution relies on the accuracy of the
3D PSF, which is the optical signature of an (ideally infinitesimally
small) point. It is affected mostly by the objective, the medium, and
the coverslip. A PSF can be obtained either experimentally or
theoretically.

An experimental PSF can be deduced from the acquisition of the
z-stack of a sparse field of spherical beads of very small diameter
(e.g., (100 nm). Regions of interest are cut in the data centered
around several well-contrasted beads and averaged. Microscopists
generally agree that the experimental PSF captures well the
aberrations of the microscope, but that the resolution of an
experimental PSF is tied to the resolution of the acquisition. Unless
super-resolution methods are deployed, this enforces N ¼ K (see
Section 3.1).

By contrast, a theoretical PSF can be computed from a mathe-
matical model. In addition to being able to lift the restriction on
resolution, microscopists generally appreciate the convenience of
software packages like PSFGenerator

6 that allow them to tune
freely microscope parameters such as numerical aperture (NA),
wavelength, and pixelsize [25].

4.3. Setting of parameters

A few important parameters are shared by groups of deconvolu-
tion methods. In this section, we give practical hints about the
meaning and the impact of the main parameters for each group.
We provide the parameters-per-method associations in Table 1.

Regularization parameter k. When the cost function contains a
regularization term weighted by k, the value of k balances the
contribution of data fidelity and regularization. For algorithms
with Tikhonov-type regularization, higher values of k result in
smoother images. Finally, by setting k ¼ 0, TR and RIF become
equivalent to NIF, and RL-TV becomes equivalent to RL.
Number Miter of iterations. For all iterative methods, Miter puts
a cap on the number of iterations. How to set Miter follows one
of two rules: either the deconvolution method is known to
reach the desired solution at convergence, in which case Miter

has to be chosen large enough; or noise amplification happens
during convergence, in which case Miter has to be chosen small
enough so that the deconvolution procedure stops before noise
dominates. In the latter case, the choice of the appropriate Miter

has a crucial impact on the result.
Stepsize. Methods based on gradient descent rely on a stepsize
c 2 ð0;1� which determines the speed of convergence. Small
values of c encourage safe but slow convergence.

4.3.1. Ghosts and ringing
Every deconvolution algorithm presented in Section 3 relies

partly on circular convolutions computed through FFT. Compared
to space-based approaches, Fourier-based approaches reduce the
computational cost of handling a PSF that would have a wide spa-
tial support. The downside is the appearance of Fourier-related
artifacts such as ghosts and ringing.

http://bigwww.epfl.ch/algorithms/psfgenerator/
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Fig. 3. Illustration of border artifacts after a deconvolution operation on a bead placed on the top of the volume of size 128� 128� 128 pixels. The illustrations are presented
as orthogonal sections. (A) Deconvolution without artifact-cancellation processing was applied on the signal; the arrow shows the impact of ghosting. (B) Deconvolution with
Hann apodization along the axial direction. (C) Deconvolution with a zero-padding extension to 128� 128� 256ð Þ pixels (only the red surrounding of the signal will be kept).

7 http://bigwww.epfl.ch/deconvolution/.

34 D. Sage et al. /Methods 115 (2017) 28–41
Data subjected to a FFT must necessarily be assumed to be peri-
odic. This implies that borders at opposite sides of the image are
implicitly abutting once periodization is taken into account. Conse-
quently, structures near the border of an image, once processed,
will spill over the opposite border, letting ghosts appear.

Data subjected to a FFT must necessarily be assumed to be ban-
dlimited. This implies that the sharp transitions of intensities
found in an image (i.e., the edges), once processed, will incur local
overshoots and undershoots of intensity. This mechanism is called
ringing. Nonnegativity constraints may help cancel this artifact,
but only with regard to undershoots, and only for those under-
shoots that would otherwise result in negative values. Nonnegativ-
ity, commonly positivity, therefore makes a lot of sense in
fluorescence microscopy.

Inconveniently, Fourier-related artifacts frequently appear, par-
ticularly in the axial direction since this direction is often sampled
to a lesser extent than the lateral ones. For instance, if a biological
cell physically extends outside of the bottom of the acquired vol-
ume and is thus virtually cropped at acquisition time, then a
reverse ghost of the cell will appear on the top part of the volume
after deconvolution. At the same time, ringing artifacts will reveal
themselves as waves in the background and as Gibbs phenomena
in the high-contrast areas.

To attenuate these artifacts, we have implemented two
countermeasures in DeconvolutionLab2: apodization and
zero-padding. Apodization consists in multiplying the input data
by a window function that gradually sets the signal to zero near
the borders of the image. Depending on the window specifics,
the central part of the data may or may not remain pristine. In
DeconvolutionLab2, we have made available the five classical
apodization functions referred to as Cosine, Hamming, Hann,
Tukey, and Welch. They can be applied independently along the
axial and the lateral directions. As shown in Fig. 3(B), apodization
succeeds in cancelling the ghost object, but also reduces the
intensity of the data.

While it modifies the data, apodization proceeds without a
change in the image dimensions. Conversely, zero-padding main-
tains the data intact but modifies the dimensions of the image by
extending its border with zero values. For practical reasons related
to the computational efficiency of the FFT, the width of the exten-
sion is generally chosen such that the size of the extended image is
highly decomposable as a product of small prime numbers. To
facilitate adherence to this constraint, DeconvolutionLab2

automatically proposes extensions to the next even number, to
the next multiple of 2 and 3, to the next multiple of 2, 3, and 5,
and to the next power of 2, independently in the axial and the lat-
eral directions. As shown in Fig. 3(C), zero-padding succeeds in
cancelling the ghost object, but does so at an increased computa-
tional cost compared to apodization.

5. Experimental illustrations

We now illustrate the performance of DeconvolutionLab2

and its built-in algorithms by restoring various types of degraded
3D images (i.e., synthetic volumes, beads, and real volumes). Visu-
alizations of the deconvolution results are provided and quantita-
tive measurements are reported when available. The data, as well
as the corresponding model of the theoretical PSF, are available
online7.

5.1. Synthetic data

We applied all DeconvolutionLab2 algorithms on a syntheti-
cally degraded volume. The ground-truth data consisted of a stack
of 128 axial views of size 512� 256 pixels depicting cellular micro-
tubules. To mimic the acquisition artifacts of classical wide-field
microscopes, blurring and noise were generated on the ground-
truth volume through the Convolution tool of Deconvolu-

tionLab2. More precisely, the 3D data was convolved with a the-
oretical PSF and a mixture of Gaussian and Poisson noise was
added to the volume.

The effect of the deconvolution algorithms is illustrated in
Figs. 4 and 5, while the quantitative measurements after deconvo-
lution are reported in Table 2. The visual and quantitative outputs
lead to similar observations.

Firstly and most obviously, the severe artifacts introduced by
the NIF algorithm lead to non-exploitable results. The introduction
of regularization (TR, RIF) enables decent deconvolution results,
but the presence of undesirable ringing artifacts still hinder correct
visualization of the imaged structure. As supported by Table 2, the
beneficial effect of deconvolution increases when classical iterative
algorithms (LW, RL, TM) are applied. However, the cost of doing so
translates into an augmentation of the required computational
resources.

Finally, the more advanced methods (FISTA, RL-TV) were also
applied to the data. Interestingly, although RL-TV is theoretically
more sophisticated than RL, the algorithm yields similar deconvo-
lution results when applied to the present data. This can be
explained by the fact that the structure of the considered object

http://bigwww.epfl.ch/deconvolution/
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Fig. 4. Orthogonal sections of the maximum intensity projection (MIP) of a degraded 3D synthetic volume after its deconvolution by DeconvolutionLab2 algorithms. From
top left to bottom right: Ground-truth volume, Degraded volume (i.e., simulated acquisition), Naive Inverse Filter, Tikhonov regularization (low regularization), Regularized
Inverse Filter (low regularization), Landweber (s ¼ 1:0, 2000 iterations), Richardson–Lucy (150 iterations), Tikhonov–Miller (low regularization, s ¼ 1:5, 150 iterations), FISTA
(low regularization, s ¼ 1:5, 50 iterations), Richardson–Lucy with TV (low regularization, 150 iterations). The data, as well as the corresponding PSF, are available online. A
non-negativity constraint was used for all algorithms. The setting of the optimal parameters for each deconvolution algorithm was performed through visual assessment.
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imposes a negligible level of regularization during deconvolution.
Indeed, the synthetic sample harbors thin filament-like structures
which are difficult to recover through a TV regularizer, since TV
tends to promote piece-wise constant surfaces. This illustrates
the fact that the efficiency of a certain deconvolution algorithm
may vary with the type of the data being processed. Thus, one can-
not straightforwardly use the results presented above as a direct
indicator of the individual performance of each deconvolution
algorithm. Moreover, depending on the data size, time constraints
and the available computational resources, some less advanced
methods may be better suited for the deconvolution task at hand.
5.2. Isolated bead

We apply several algorithms of DeconvolutionLab2 on a z-
stack called ‘‘Bead” [9]. The volume displays a single fluorescent
bead, which corresponds to a sphere with known diameter of
2.5 lm. The z-stack was acquired on a standard widefield micro-
scope (k ¼ 530 nm;NA ¼ 1:4); the lateral pixelsize is 64.5 nm and
the stepsize in the axial direction is 160 nm.

The effect of the deconvolution algorithms is illustrated in
Fig. 6, while the measurements of the full width at half maximum
(FWHM) of the bead in the lateral and axial directions after decon-
volution are reported in Table 3. We first observe that the NIF algo-
rithm is not able to recover the bead. For the RIF algorithm, the
effect of regularization on the deconvolution process becomes evi-
dent. Blurred images and overestimated dimensions are observed
when the RIF regularization factor is overly increased, while setting
it too low generates ringings. For the LW algorithm, the best results
are obtained with 64 iterations. When the number of iterations is
insufficiency, the effect of deconvolution is imperceptible. By con-
trast, using a too large number of iterations leads to high frequency
artifacts appearing near the contour of the bead. This simple data-
set thus illustrates the importance of the selection of the parame-
ters for a given deconvolution method.
5.3. Widefield data

Finally, we briefly illustrate how DeconvolutionLab2 may be
used in a practical application to efficiently deconvolve real bio-
microscopy data. We work with a 3D visualization of a C. elegans
embryo which was acquired on a standard wide-field microscope
(k ¼ 542 nm;NA ¼ 1:4); the lateral pixelsize is 64.5 nm and the
stepsize in the axial direction is 160 nm. As shown in Fig. 7, our
3Dmeasurement displays some non-desirable visual features, such
as a relatively poor contrast or an indistinguishability of certain
neighboring centrosomes.
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Fig. 5. Zooms on XY-views of a degraded synthetic volume after its deconvolution by DeconvolutionLab2 algorithms. From top left to bottom right: Ground-truth volume,
Degraded volume (i.e., simulated acquisition), Naive Inverse Filter, Regularized Inverse Filter (low regularization), Tikhonov regularization (low regularization), Landweber
(s ¼ 1:0, 2000 iterations), Richardson–Lucy (150 iterations), Tikhonov–Miller (low regularization, s ¼ 1:5, 150 iterations), FISTA (low regularization, s ¼ 1:5, 50 iterations),
Richardson–Lucy with TV (low regularization, 150 iterations). The data, as well as the corresponding PSF, are available online. The zoom corresponds to a cropping with
positions (244, 128, 238, 119) on the 64th z-slice.A non-negativity constraint was used for all algorithms. The setting of the optimal parameters for each deconvolution
algorithm was performed through visual assessment.

Table 2
Quality and computational efficiency of the DeconvolutionLab2 algorithms for the deconvolution of degraded 3D synthetic data. For comparison, the results of a widely-used
commercial software (Huygens) and L2D-A3D (the ‘‘Learn 2D, Apply 3D” method [34] that won ‘‘3D Deconvolution Microscopy” challenge) were also added into this table. To
assess the deconvolution performance, the signal-to-noise ratio (SNR), the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) were computed after an
initial normalization of the volumes in ImageJ. Indications of the computation time and the memory ratio values are reported to allow for comparison of the computational
complexity of the available algorithms. The ‘‘Required RAM” is the peak of allocated memory to run the algorithm on an input dataset of 16,000,000 voxels. The ‘‘Memory Ratio”
corresponds to the ratio between the required memory and the number of voxels of the input dataset. The deconvolution tasks were performed on a Mac OS X 2� 3:06 GHz 6-
Core Intel Xeon for all algorithms except for the Huygens software that was run on a 48-core server on Linux Red hat Entreprise

Algorithm SNR PSNR SSIM Time Required RAM Memory
[dB] [dB] [–] [s] [Mb] Ratio

NIF �75.45 �49.79 6.29e�9 7.6 258 �16:1
RIF 3.47 29.13 3.41e�2 7.0 322 �20:1
TR 2.78 28.45 2.48e�2 6.4 258 �16:1
LW 2.57 28.23 2.06e�2 2107 888 �55:5
FISTA 3.37 29.04 3.87e�2 1400 599 �37:4
TM 2.56 28.22 2.05e�2 2128 1016 �63:5
RL 3.66 29.33 3.30e�2 1661 258 �16:1
RL-TV 3.36 29.03 3.34e�2 2759 621 �38:8

Huygens (CMLE) 2.47 28.13 1.84e�2 180 n/a n/a
L2D-A3D 7.27 32.94 6.73e�2 7200 n/a n/a
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To enhance the visual condition of this measurement, we apply
three distinct deconvolution algorithms (TR, LW, RL) to it. The
results after deconvolution are shown in Fig. 7. Globally, we
observe similar effects than with the previous data sets. For all
algorithms, the deconvolution permits a notable increase of the
sharpness of the imaged structures and reduces out-of-focus blur-
ring. Moreover, the iterative algorithms (LW, RL) yield better
results than basic methods (RIF) at the cost of a more expensive
computational need.
6. Discussion: trends in deconvolution

Similarly to many inverse problems, deconvolution requires one
to express and minimize a cost function. As exemplified in Eqs. (6),
(8), (12) and (19), the common form taken by this cost function is
composed of a data-fidelity term that measures how well the
model Hx represents the data y, and a regularization function
that enforces some priors. Deconvolution methods are thus
characterized by three ingredients: (i) data-fidelity measure; (ii)
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Fig. 6. Two orthogonal sections (XY and XZ) of the volumetric data before and after deconvolution. The plots show intensity profiles, the upper plot of a panel is the lateral
profile trough the bead; the lower plot is the axial profile. The unit is lm. (A) From left to right: input image, PSF, and the result of the NIF algorithm. Plots show the intensity
profile of the input (blue line) and theoretical shape of the bead (green line). (B) Results of the RIF algorithm with various settings. From left to right: low level of
regularization (Low Reg.), medium level of regularization (Med Reg.), and high level of regularization (High reg.). (C) Results of the Landweber algorithm with various
numbers of iterations. From left to right: 4 iterations, 64 iterations, and 1024 iterations.
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Fig. 7. Orthogonal sections of the C. Elegens volume (size: 672� 712� 104 voxels). For better visualization, a Gamma correction have been applied to the images. Scale bar is
10lm. The data are available online. (A) Acquisition. (B) Tikhonov Regularized. (C) Landweber deconvolution (200 iterations). (D) Richardson Lucy deconvolution (200
iterations). Advanced iterative algorithms permit better distinction between two neighboring centrosomes.

Table 3
Lateral FWHM and axial FWHM of the bead measure on line profiles for the input image (upper row) and for various algorithms and settings.

Algorithm Settings Lateral FWHM [nm] Axial FWHM [nm]

Acquisition 2695.33 3979.46
RIF Reg: Low 2630 5909
RIF Reg: Medium 2616 4881
RIF Reg: High 2716 4900
Landweber 4 iterations 2714 4624
Landweber 64 iterations 2711 4777
Landweber 1024 iterations 2605 4449

8 http://bigwww.epfl.ch/deconvolution/challenge/.
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regularization prior; and (iii) minimization algorithm. The impact
of each block is quite independent, so that improvements can be
devised separately. Typically, one can:

upgrade the data-fidelity term by devising a more precise
image-formation model and by gaining and taking advantage
of a deeper knowledge of the statistics of the measurement
noise;
use prior-promoting regularizers that fit the object better;
deploy robuster and faster optimization schemes.

These three topics are shared by all inverse problems. Deconvo-
lution microscopy can benefit from every improvements in this
currently very active field of research.
The priors introduced by the regularizer must be chosen care-
fully to retain usefulness while avoiding the pitfall of overfitting.
During the last decade, the compressive-sensing and the sparsity
theories gave theoretical grounds to the observation that the ‘1-
based regularizers of (8) and (19) in Sections 3.7 and 3.9, respec-
tively, always perform better than the ‘2-based regularizers of
Eqs. (6) and (8) in Sections 3.3 and 3.4, respectively.

Out of a dozen of competing methods, the methods that ranked
first [34] and third [35] in the ‘‘2014 International Challenges on
3D Deconvolution Microscopy” took advantage of regularizers that
were based on recent advances in signal processing8. The authors of

http://bigwww.epfl.ch/deconvolution/challenge/
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[35] bring to fruition a second-order total-variation regularizer
called a Schatten norm, while the method ‘‘Learn 2D Apply 3D” of
[34] did exploit the fact that the resolution is much better within
the lateral sections than along the axial direction. Assuming that
the structures of interest are isotropic, it learned from the lateral sec-
tions of the acquired volume a dictionary of 2D high-resolution fea-
tures that are used as priors to enhance the resolution along the axial
direction. Approaches where the priors are learned appear to be very
efficient; we surmise that the recent successes of deep neural net-
works in machine learning will soon lead to improved deconvolution
algorithms [36] in microscopy. Finally, many modern deconvolution
methods rely on state-of-the-art optimization schemes that can deal
with non-differentiable ‘1 functions, for instance on proximal algo-
rithms such as the alternating-direction method of multipliers [37].

Up to now in this paper, we have assumed that the PSF was
known, either through ancillary measurements or through model-
ing. Moreover, we have assumed spatial shift-invariance of the sys-
tems. We now present approaches that have been recently
developed to handle imaging situations in which these assump-
tions are not met.
6.1. Blind deconvolution

Blind deconvolution attempts to jointly estimate the object x
and the PSF h from the data alone, without relying on ancillary
measurements. It is a challenging, strongly ill-posed, and nonlinear
problem. As an example, among other degeneracy issues [38], it
must address that of scale, characterized by ðahÞ � ð1a xÞ ¼ h � x for
any non-vanishing a. As it turns out, setting a meaningful value
to jjhjj is highly nontrivial. Some proposed methods are explicitly
designed to overcome degeneracies (scale and others) using an
optically motivated parameterization of the PSF [39–41] or esti-
mating the PSF from a dictionary [42]. Currently, the trend fol-
lowed by all blind-deconvolution algorithms for fluorescence
microscopy is to resort to iteratively alternating between the
deconvolution and the estimation of the PSF [39–45].
9 http://bigwww.epfl.ch/thevenaz/academicfft/.
10 https://sites.google.com/site/piotrwendykier/software/jtransforms.
11 http://www.fftw.org/.
6.2. Space-varying deconvolution

The deconvolution of large micrographs faces an important
issue: in practice, the PSF varies across the field of view. In partic-
ular, a depth-varying PSF is often induced by a refractive index
mismatch between the immersion medium and the specimen. In
this case, the PSF suffers of spherical aberrations that get stronger
as the focal plan is deeper inside the sample. This effect can be
clearly seen on the Fig. 7(A) where the image is sharper at the bot-
tom where the objective is closer to the sample.

Space-varying deconvolution raises two important problems.
First, the assumption that the PSF varies across the field of view
implies that the blurring process can no longer be modeled as a
convolution. Hence, space-varying deconvolution is an oxymoron.
As a consequence, FFT-based algorithm can no longer be used.
The computational cost of space-varying deconvolution tends to
rise as the square of the number of voxels. However using some
approximations, several fast methods to model space-varying con-
volution have been proposed (see [46] for a review). In the refrac-
tive index mismatch case, as the size of the data along the depth
axis is usually much smaller than along lateral axes, a depth only
varying deblurring algorithm is much more tractable and several
methods have been proposed in that case [47–50].

The second issue raised by the space varying deconvolution is
how to estimate the PSF variation across the 3D object. With the
exception of the case of refractive index mismatch where the PSF
depth variation can be analytically known, one has to infer the PSFs
from the data in a space varying blind deconvolution algorithm. Up
to now, only one attempt [41] has been done in that direction.
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Appendix A. Implementation aspects

A.1. FFT Libraries

The algorithms that we have proposed made an extensive usage
of the fast Fourier transform (FFT). For instance, one iteration of the
Richardson–Lucy algorithm is composed of two multiplications in
the Fourier domain (74 ms), a division in the space domain
(51 ms), an application of the non-negativity constraint (6 ms),
and two FFT/FFT�1 (2’520 ms). The FFT/FFT�1 are representing
95% of the computational time of this algorithm see (Table 4).
DeconvolutionLab2 has a Java wrapper for three FFT libraries.

– AcademicFFT9. This is pure Java library running on any platform.
The source code of AcademicFFT is bundled with Deconvolu-

tionLab2. It handles arbitrary data lengths, memory permitting.
It is standalone; no external library is required.

– JTransforms10. This is the first, open-source, fast multithreaded
FFT library written in pure Java. It is bundled with Fiji and Icy,
but JTransforms is not part of the classical distribution of ImageJ.

– FFTW 2.011 [51]. FFTW is a C routine library for computing the
fast Fourier transform in several dimensions, of arbitrary input
size, and of both real and complex data. FFTW is one of the fastest
FFT library. DeconvolutionLab2 includes a wrapper for FFTW
version 2.0 and it includes pre-compiled binaries for Mac OS X
and Windows 32-bits and 64-bits.

A.2. Dissection of an algorithm

We present a complete iterative algorithm from its mathemat-
ical formula to its Java snippet. Here, we choose to detail the
Landweber algorithm Section 3.5.

We first reformulate the iteration to reduce the number of oper-
ations in the discrete Fourier domain and to limit the memory
consumption.

A.2.1. Implementation of the Landweber algorithm
The original formulation is reduced to one multiplication and

one addition in the discrete Fourier domain for every iterations.

xkþ1 ¼ xk þ cHT y �Hxk
� � ð21Þ

xkþ1 ¼ xk � cHTHxk þ cHTy ð22Þ

xkþ1 ¼ I� cHTH
� �

xk þ cHTy ð23Þ

xkþ1 ¼ Axk þ g ð24Þ
Using this expression, the variables A and g can be pre-

computed.

http://bigwww.epfl.ch/thevenaz/academicfft/
https://sites.google.com/site/piotrwendykier/software/jtransforms
http://www.fftw.org/


Table 4
Computation time for a FFT and FFT�1 for a volume of size N � N � N. This experiment
was performed on a Mac OS X 2.5 GHz Intel Core i7.

N (size) FFTW2 [ms] JTransforms [ms] AcademicFFT [ms]

32 � 32 � 32 1.5 9.8 11.5
37 � 37 � 37 13.3 30.3 17.2
56 � 56 � 56 9.6 12.8 34.8
64 � 64 � 64 17.1 23.5 38.6
74 � 74 � 74 101.2 61.8 111.0
111 � 111 � 111 353.9 189.1 324.0
128 � 128 � 128 247.4 151.9 577.9
147 � 147 � 147 347.4 243.3 620.8
223 � 223 � 223 7200.0 1615.4 4910.0
256 � 256 � 256 2937.7 1743.9 7860.0
294 � 294 � 294 3090.0 2197.7 11,200.0
446 � 446 � 446 62,200.0 46,700.0 61,100.0
512 � 512 � 512 35,000.0 25,900.0 141,000.0
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A ¼ I� cHTH
� �

ð25Þ

g ¼ cHTy ð26Þ
A.2.2. Java snippet of Landweber
We choose the Java code of the Landweber algorithm. The iter-

ation mechanism is handled by the object controllerwhich is an
instance of the class Controller. The instance of the Java FFT
wrapper class is fft that contains two methods transform()

and inverse(). The Java classes ComplexSignal and RealSig-

nal are two classes of DeconvolutionLab2 to store complex 3D
signals and real 3D signals, respectively. The input variables are the
two RealSignal objects, input and psf and the scalar parameter
gamma which is the step parameter of the Landweber algorithm.

Landweber algorithm

// RealSignal y: this is the input volume to deconvolve
// RealSignal h: this is the PSF volume
// RealSignal x: this is the output deconvolved volume
// Operations.delta() is a high-level method to compute

(I- gamma Ht H) public RealSignal call() {ComplexSignal Y
= fft.transform(y);
ComplexSignal H = fft.transform(h);
ComplexSignal A = Operations.delta(gamma, H);
ComplexSignal G = Operations.multiplyConjugate(gamma,
H, Y);
ComplexSignal X = G.duplicate();

while(!controller.ends(X)) {X.times(A);
X.plus(G);
constraint(X);}

RealSignal x = fft.inverse(X);
return x;}
References

[1] S. Inoué, Foundations of confocal scanned imaging in light microscopy,
Handbook of biological confocal microscopy, Springer, 2006, pp. 1–19.

[2] D.A. Agard, J.W. Sedat, Three-dimensional architecture of a polytene nucleus,
Nature 302 (5910) (1983) 676–681.

[3] J.G. McNally, T. Karpova, J. Cooper, J.A. Conchello, Three-dimensional imaging
by deconvolution microscopy, Methods 19 (3) (1999) 373–385.

[4] W. Wallace, L.H. Schaefer, J.R. Swedlow, A workingperson’s guide to
deconvolution in light microscopy, Biotechniques 31 (5) (2001) 1076–1097.

[5] J. Sibarita, Deconvolution microscopy, Microsc. Tech. (2005) 1288–1291.
[6] P. Sarder, A. Nehorai, Deconvolution methods for 3D fluorescence microscopy

images, IEEE Signal Processing Mag. 23 (3) (2006) 32–45.
[7] M. Bertero, P. Boccacci, G. Desiderà, G. Vicidomini, Image deblurring with

poisson data: from cells to galaxies, Inverse Prob. 25 (12) (2009) 123006.
[8] A. Griffa, N. Garin, D. Sage, Comparison of deconvolution software in 3D
microscopy. a user point of view part 1, G.I.T., Imag. Microsc. 1 (2010) 43–45.

[9] A. Griffa, N. Garin, D. Sage, Comparison of deconvolution software in 3D
microscopy. a user point of view part 2, G.I.T., Imag. Microsc. 1 (2010) 41–43.

[10] A. Ponti, P. Schwarb, A. Gulati, V. Bäcker, Huygens remote manager, Imag.
Microsc. 9 (2) (2007) 57–58.

[11] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J. Imag. Sci. 2 (1) (2009) 183–202.

[12] N. Dey, L. Blanc-Féraud, C. Zimmer, Z. Kam, P. Roux, J. Olivo-Marin, J. Zerubia,
Richardson–Lucy algorithm with total variation regularization for 3D confocal
microscope deconvolution, Microsc. Res. Tech. 69 (2006) 260–266.

[13] C. Vonesch, M. Unser, A fast thresholded Landweber algorithm for wavelet-
regularized multidimensional deconvolution, IEEE Trans. Image Process. 17 (4)
(2008) 539–549.
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