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ABSTRACT
We have recently shown that a posteriori co-phasing of multi-spectral interferograms was possible.1 In this
contribution, we extend our approach so that it can be applied to actual data as provided by Amber2 or Matisse
instruments. The main advantage of the proposed post-processing technique is that it requires no modifications of
the instruments and yields interferometric observables with higher SNR and much fewer unknowns (in particular
for the Fourier phase) than conventional measurements. In order to perform the co-phasing of a complete
sequence of interferograms, we jointly estimate a global phase template and the frame dependent optical path
errors due to the turbulence. We show that this strategy is effective for very low SNR data. We assess the
effectiveness of our method on simulated and actual AMBER data. We also compare the lowest SNR that can be
achieved to the theoretical bounds and estimate the gain in sensitivity compared to usual interferometric data.

Keywords: optical interferometry, cophasing, phase delay tracking, dispersed fringes, data processing.

1. METHOD
To overcome turbulence effects and yet reach a reasonable signal to noise ratio (SNR), interferometric observables
require to integrate information over many short exposure frames computed from the so-called coherent fluxes.3, 4

Our objective is to compensate for the variable phase changes during a given sequence so that it is possible to
perform a direct integration of the coherent fluxes over many short exposures, before the computation of the
long exposure chromatic complex visibilities.

1.1 Maximum Likelihood Criterion
Let c`,m ∈ C be the coherent flux measured in `-th spectral channel and m-th frame; it is related to the complex
visibility cobj

` ∈ C of the observed object at the wavelength λ` of the spectral channel by:3, 4

c`,m = catm
`,m c

inst
` cobj

` + n`,m , (1)

where cinst
` ∈ C is a static instrumental complex visibility, catm

`,m ∈ C is a variable complex factor mainly due to
atmospheric effects and n`,m accounts for the noise. Our objective is to provide an estimator closely related
to cstat

`
def= cinst

` cobj
` , the static part of the coherent flux. Getting rid of the cinst

` factor is a matter of calibrating
this term either by means of internal calibration sources or by observing a calibrator whose complex visibility is
known.

Since we are interested in compensating for variable phase shifts, we rewrite the direct model in Eq. (1) as:

c`,m = ρ`,m ei (ϕ`+ψ`,m) + n`,m , (2)
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where
ρ`,m =

∣∣catm
`,m c

inst
` cobj

`

∣∣ (3)

is a variable amplitude factor, ϕ` is the phase of cstat
` = cinst

` cobj
` and ψ`,m = angle(catm

`,m) is the phase of catm
`,m.

We assume that the measured coherent fluxes are Gaussian independent, that the real and imaginary parts of
a given coherent flux are also independent and have the same variance, in agreement with Goodman model.5 We
also assume that the variable phases ψ`,m (∀`, ∀m) depend on unknown parameters θ. Under our assumptions,
the co-log-likelihood of the data is given by:1

− log Pr(c |ϕ, θ, ρ) = 1
2
∑
`,m

w`,m

∣∣∣c`,m − ρ`,m ei (ϕ`+ψ`,m(θ))
∣∣∣2 + κ (4)

= 1
2
∑
`,m

w`,m
(
|c`,m|2 + ρ2

`,m

)
−
∑
`,m

w`,m ρ`,m |c`,m| cos(ϕ` + ψ`,m(θ)− φ`,m) + κ , (5)

with w`,m ≥ 0 a statistical weight equal to the reciprocal of the variance of the real and imaginary parts of c`,m,
φ`,m = angle(c`,m) the phase of c`,m and κ a constant which is irrelevant as it does not depend on the sought
parameters.

1.2 Fitting all the unknowns
Following a maximum likelihood approach and if the amplitudes ρ`,m are unknown, we would estimate the best
phases ϕ` as:

ϕ̂ ∈ arg min
ϕ∈(−π,+π]L

{
min
θ,ρ≥0

∑
`,m

w`,m

∣∣∣c`,m − ρ`,m ei (ϕ`+ψ`,m(θ))
∣∣∣2} , (6)

where L is the number of spectral channels and ϕ = {ϕ1, ϕ2, . . . , ϕL} are the L sought phases defined in the
semi-open range (−π,+π]. We use the notation “ϕ̂ ∈ . . .” because the solution may not be unique (apart from
the modulo 2π). The minimization with respect to every ρ`,m is separable and has a closed form solution1

(provided w`,m > 0):

min
ρ`,m≥0

w`,m

∣∣∣c`,m − ρ`,m ei (ϕ`+ψ`,m(θ))
∣∣∣2 = w`,m |c`,m|2

[
1− (cos(ϕ` + ψ`,m(θ)− φ`,m))2

+
]
,

where (t)+
def= max{t, 0}. Inserting this solution in Eq. (6) yields:

ϕ̂ ∈ arg min
ϕ∈(−π,+π]L

{
min
θ

∑
`,m

w`,m |c`,m|2
[
1− (cos(ϕ` + ψ`,m(θ)− φ`,m))2

+
]}
. (7)

We have already shown1 that fitting the amplitudes ρ`,m does not achieve the best performances for the co-
phasing of frames. This can be understood from Eq. (7) that shows a truncated criterion. Indeed, because of
the (t)+ operator, the penalization does not change anymore as soon as the cosine is negative and cannot pull
down to the minimum.

1.3 Fitting the phase parameters only
A better approach is to fit only the phase parameters, assuming that all the ρ`,m are known, the maximum
likelihood phase parameters are obtained by solving:

min
ϕ,θ

{
f(ϕ, θ) =

∑
`,m

w`,m

∣∣∣c`,m − ρ`,m ei (ϕ`+ψ`,m(θ))
∣∣∣2} . (8)

By setting u`,m = c`,m, v`,m = ρ`,m eiψ`,m(θ) and χ = ϕ, minimizing f(ϕ, θ) with respect to ϕ corresponds to
solving Problem (24) in Appendix A. The penalty f(ϕ, θ) in Eq.(8) can thus be expressed as:

f(ϕ, θ) =
∑
`,m

w`,m
(
|c`,m|2 + ρ2

`,m

)
− 2 g(ϕ, θ) , (9)
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with:
g(ϕ, θ) =

∑
`,m

η`,m cos
(
ϕ` + ψ`,m(θ)− φ`,m

)
, (10)

where:
(∀`,m) η`,m = w`,m ρ`,m |c`,m| , (11)

play the role of weights. Then Problem (8) is equivalent to:

min
ϕ,θ

f(ϕ, θ) ⇐⇒ max
ϕ,θ

g(ϕ, θ) . (12)

Assuming known the variable phase parameters θ and from Eq. (27), the best static phases are given by:

(∀`) ϕ̂`(θ) = angle
(∑
m

η`,m cos(φ`,m − ψ`,m(θ)) + i
∑
m

η`,m sin(φ`,m − ψ`,m(θ))
)
, (13)

In Appendix A, with u`,m = c`,m and v`,m = ρ`,m eiψ`,m(θ) as before, the angles ξ become ξ`,m = angle(u`,m v?`,m) =
φ`,m − ψ`,m (∀`, ∀m). Then, from Eq. (30) and after elementary simplifications, the best variable phase shift
parameters θ can be obtained by solving:

θ̂ = arg max
θ

{
g(θ) =

∑
`

√∑
m,m′

η`,m η`,m′ cos
(
∆φ`,m,m′ −∆ψ`,m,m′(θ)

)}
, (14)

where:

∆φ`,m,m′ = φ`,m′ − φ`,m , (15a)
∆ψ`,m,m′(θ) = ψ`,m′(θ)− ψ`,m(θ) . (15b)

We note that ∆φ`,m,m′ is also the phase of the cross-product c?`,m c`,m′ of the coherent fluxes c`,m and c`,m′ . The
criterion f(θ) given in Eq. (14) is thus clearly insensitive to the actual phase of the object complex visibility
which is an important property for the co-phasing of the data.

1.4 Model of the phase variations
Accounting for an achromatic variable phase shift ψ0(t) and a chromatic and variable optical path delay δ(λ, t),
the resulting phase shift is given by:

ψ(λ, t) = ψ0(t) + 2π δ(λ, t)
λ

. (16)

A Taylor series in the form:
δ(λ, t) = δ(λ0, t) + (λ− λ0) ∂δ(λ, t)

∂λ

∣∣∣
λ=λ0

+ . . .

can be used to approximate the chromatic behavior of the optical path delay and to yield the following model:

ψ(λ, t) ≈ β(t) + α(t)/λ , (17)

where α(t) and β(t) are some time dependent functions. For the `-th spectral channel and m-th frame, this leads
us to assume the following model of the variable phase:

ψ`,m = βm + αm/λ` , (18)

with αm = α(tm) and βm = β(tm). The variable phase parameters are thus: θ = {αm, βm|m = 1, . . . ,M} with
M the number of short exposure frames.

We consider in what follows means to determine these parameters. Maximizing f(θ) defined in Eq. (14) is
a very difficult non-concave problem which can only be solved by means of global optimization. We propose
to tackle this problem by first co-phasing two chosen frames and then iteratively add frames and perform the
co-phasing individually (one frame at a time).
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Cost function for different phase shift models
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Figure 1. Criterion to minimize for the co-phasing of two
frames as a function of ∆α. The blue curve corresponds
to −g(∆α,∆β = 0) while the red curve corresponds to
−g(∆α). The curves are from two frames drawn from
Amber data as described in the text.
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Figure 2. Criterion to minimize for different SNR. The
true solution is indicated by the vertical gray line.

1.5 Co-phasing of two frames
Using the variable phase model in Eq. (18), we can write:

∆ψ`,m,m′ = ψ`,m′ − ψ`,m = ∆βm,m′ + ∆αm,m′/λ` , (19)

with ∆αm,m′ = αm′ − αm and ∆βm,m′ = βm′ − βm which characterize the differential phase shift between the
frames m and m′. However, maximizing f(θ) given in Eq. (14) with respect to ∆αm,m′ and ∆βm,m′ turns out
to be a 2D global optimization problem which cannot be further reduced to a simpler problem. We therefore
propose to minimize the co-log-likelihood, in Eq. (5), of the two frames, m and m′, but replacing the (unknown)
phase shift by the phase in the other frame with its variable phase shift removed. This amounts to maximizing:

g(∆α,∆β) =
∑
`

(η`,m + η`,m′) cos
(
∆φ`,m,m′ −∆β −∆α/λ`

)
,

with respect to ∆α and ∆β and to estimate the differential phase shift parameters as ∆αm,m′ = ∆̂α and
∆βm,m′ = ∆̂β where:

∆̂α, ∆̂β = arg max
∆α,∆β

g(∆α,∆β) .

As shown in Appendix A, the maximization in ∆β has a closed form solution:

∆̂β(∆α) = arg max
∆β

g(∆α,∆β) = angle(x(∆α) + i y(∆α)) .

with:

x(∆α) =
∑
`

(η`,m + η`,m′) cos
(
∆φ`,m,m′ −∆α/λ`

)
, (20a)

y(∆α) =
∑
`

(η`,m + η`,m′) sin
(
∆φ`,m,m′ −∆α/λ`

)
. (20b)

Replacing this solution in g(∆α,∆β) yields a criterion which only depends on ∆β:

g(∆α) =
√
x(∆α)2 + y(∆α)2 .
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Figure 3. Application to all frames of a sequence of Amber frames. From top to bottom and left to right: the SNR of the
980 frames; the amplitudes of the coherent flux in each frame; the phases of the coherent flux in each frame; the phases
of the coherent flux after accounting for the piston computed by AMDLIB; the phases of the coherent flux after applying
the proposed method; the resulting static phase for all the sequence.

It is then sufficient to maximize g(∆α) using the global 1D optimization method described in.1 Figure 1 shows
the behavior of −g(∆α) and, for comparison, −g(∆α,∆β = 0) (thus the optimal corresponds to the global
minimum in this figure). Clearly, assuming ∆β = 0 yields a criterion with many more local extrema.

In order to have the best robustness, it is preferable to apply the two-frame co-phasing method to the pair
of frames which have the highest SNR. Given the values of ∆̂α and ∆̂β, an initial estimate of the static phase
can be obtained by applying formula (13). There is however a degeneracy here as we only have the requirements
that ∆̂α = αm′ − αm and ∆̂β = βm′ − βm, for instance we take:

αm′ = +∆̂α/2 , αm = −∆̂α/2 ,

βm′ = +∆̂β/2 , βm = −∆̂β/2 .

In the next section, we explain how we perform the co-phasing of the full sequence.

1.6 Co-phasing of a sequence of frames
In order to co-phase many frames, we cannot directly solve Problem Eq. (8). So we propose to proceed iteratively
by the following alternating method:

0. Initialization. Choose an initial estimate of the static phase ϕ̂(0) (for instance by co-phasing the 2 frames
which have the best SNR as explained in Section 1.5). Then for k = 1, 2, . . . and until convergence, repeat
the two following steps.
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Figure 4. Application to 50 (out of 980 of a sequence of Amber data) frames with a low SNR. From top to bottom and
left to right: the phases of the coherent flux in each frame; the phases of the coherent flux after applying the proposed
method; the SNR of each frames; the resulting static phase for all the sequence.

1. Co-phasing of frames. At iteration k, we assume the static phases given by ϕ̂(k−1) and, according to
Eq. (8), we solve:

θ̂(k) = arg max
θ

f
(
ϕ̂(k−1), θ

)
, (21)

to achieve the co-phasing of all frames. With the assumed variable phase model, in Eq. (18), the above
problem is separable in independent problems with respect to the frame number m and co-phasing the set
of frames assuming known the static phase ϕ̂(k−1) amounts to solving:

max
α,β

∑
`,m

η`,m cos
(
ϕ̂

(k−1)
` + αm/λ` + βm − φ`,m

)
,

which is separable in m. According to Appendix A:

β̂m(αm) = arg max
βm

∑
`

η`,m cos
(
ϕ̂

(k−1)
` + αm/λ` + βm − φ`,m

)
= angle

(∑
`
η`,m cos

(
φ`,m − ϕ̂(k−1)

` − αm/λ`
)︸ ︷︷ ︸

x(k)
m (αm)

+i
∑

`
η`,m sin

(
φ`,m − ϕ̂(k−1)

` − αm/λ`
)︸ ︷︷ ︸

y(k)
m (αm)

)
,

and the optimal αm can then be obtained by solving separable 1D global optimization problems:

(∀m) α̂(k)
m = arg max

αm

√[
x

(k)
m (αm)

]2 +
[
y

(k)
m (αm)

]2
.

Then θ̂(k) =
{
α̂

(k)
m , β̂(k)

∣∣m = 1, 2, . . .
}
with β̂(k)

m = β̂m
(
α̂

(k)
m

)
is the solution of Problem (21).

2. Estimation of the static phase. We use Eq. (13) to compute a new estimate of the static phase:

ϕ̂(k) = angle
(∑
m

η`,m cos
(
φ`,m − ψ`,m

(
θ̂(k)))+ i

∑
m

η`,m sin
(
φ`,m − ψ`,m

(
θ̂(k)))) . (22)

In practice, we start with the two frames with the highest SNR and then add frames by decreasing SNR. For
difficult cases, it may be more robust to iterate and refine θ̂ before adding new frames. The two last panels of
Fig. 3 show the effectiveness of the proposed method on a set of 980 Amber frames.
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Figure 5. Application to 980 frames with a SNR ' 1. Artificial noise has been added to actual Amber data so as to
obtain very low SNR coherent fluxes. From top to bottom and left to right: the phases of the coherent flux in each frame;
the phases of the coherent flux after applying the proposed method; the amplitudes of the coherent flux in each frame;
the resulting static phase for all the sequence.

2. RESULTS
We applied the proposed method to coherent fluxes measured by Amber. The data set is a sequence of 980 short
exposure frames with 364 spectral channels in the K band (medium resolution of Amber). The average fringe
signal to noise ratio (SNR) is about 20 (see upper left panel in Fig. 3). The amplitudes and phases of the measured
coherent fluxes are displayed by the middle and bottom panels of the leftmost column of Fig. 3. The phases
appear very different from one frame to another although there is some correlations between successive frames.
The upper right panel in Fig. 3 shows the phases of the coherent fluxes co-phased using the piston computed
by Amber pipeline6 (AMDLIB). This procedure is inappropriate as it destroys the aforementioned correlations.
By comparison, the phases of the coherent fluxes co-phased by our method (shown in the middle panel of the
rightmost column of Fig. 3) are much more stable across the temporal (horizontal) axis. In particular a phase
peak can be seen on individual frames around 1.98µm. The static phase ϕ̂ estimated by the proposed alternating
algorithm is shown in the lower right panel of Fig. 3. After calibration to remove any static instrumental effects,
this phase corresponds to that of the complex visibility of the observed object up to an additive chromatic
correction given by:

ψ(λ) = β + α/λ , (23)

which follows from Eq. (18). The 2 parameters α and β are not provided by the proposed method and have to be
estimated by other means. The phase of the differential visibilities7 which can be provided by Amber pipeline
also have such degeneracies.

In order to check whether the proposed method can achieve an effective co-phasing with data of reduced
quality, we processed a subset of only 50 frames of much lower SNR (6.3 on average) extracted from the same
data set. Figure 4 shows that, in spite of the severely reduced quality of this subset of data, our method was
able to estimate a static phase (shown in the lower right panel of Fig.4) which is noisier but which, apart from
a slope due to the degeneracy, has the same shape as the phase estimated from the full data set.

The ability to perform co-phasing of the frames is certainly related to the fringe SNR. To study the effects of
the SNR on the proposed method, we artificially add some independent noise to the measured coherent fluxes
to reduce their SNR to a specific lower value. Figure 2 shows how the estimated parameter ∆αm,m′ is affected
by the SNR: the lower the fringe SNR the worse the estimate. However the co-phasing of two frames seems still
possible with SNR . 0.1 per spectral channel which is much lower than unity. This is not surprising considering
that the information from many (here 164) spectral channels is jointly used to perform the co-phasing. Figure 5
shows the result of applying our method to the sequence of 980 frames with added noise so that their SNR is
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about 1 per spectral channel. The restored phase clearly shares distinctive features with the one obtained with
a data set of much higher quality.

3. SUMMARY AND PERSPECTIVES
Following our preliminary work,1 we derive a method to estimate the time-varying phase shifts that affect coherent
fluxes measured by an interferometric instrument like Amber2 or Matisse. The proposed method exploits a
chromatic model of the variable phase shifts to estimate and then compensate these shifts. In principle, co-
phasing by fitting the model of the phase shifts is optimal, in a maximum likelihood sense, but requires to solve
a highly involved global optimization problem with many parameters. We propose to use an alternating method
where the order of the various estimations are carefully selected to effectively solve the complex problem by
solving more simple independent univariate global optimization problems. Applied on actual Amber data, our
method seems very effective even for data of very low quality.

In a very near future, we will consider estimating not only the phases but also the amplitudes by extending the
proposed algorithm. Implementing the method in Amber or Matisse pipelines would be quite straightforward
and could yield interferometric observables of improved quality. It would also relax the requirements for the fringe
tracker. A more extensive study on simulated and actual data is also needed to characterize the performances
and limitations of the method.
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APPENDIX A. TYPICAL CO-PHASING PROBLEM
We consider the following problem:

min
χ∈(−π,+π]N

{
f(χ) =

∑
j,k

wj,k
∣∣uj,k − vj,k eiχj

∣∣2} , (24)

where χ = {χ1, χ2, . . . , χN} are N unknown phases defined in the semi-open range (−π,+π], wj,k ≥ 0 are
nonnegative weights while uj,k ∈ C and vj,k ∈ C are given complexes. Of course, the problem above is separable
in j, but this specific form is typical to several problems considered in this paper. Expanding the squares, the
criterion to minimize can be rewritten as:

f(χ) =
∑
j,k

wj,k
(
|uj,k|2 + |vj,k|2

)
− 2

∑
j,k

wj,k |uj,k| |vj,k| cos(ξj,k − χj) ,

with ξj,k = angle(uj,k v?j,k) the phase of the cross-product uj,k v?j,k. Introducing ηj,k = wj,k |uj,k| |vj,k|, the
original Problem (24) becomes equivalent to:

max
χ∈(−π,+π]N

{
g(χ) =

∑
j,k

ηj,k cos(ξj,k − χj)
}
. (25)

Expanding the cosine, the criterion to maximize can be put in the form:

g(χ) =
∑
j,k

ηj,k cos(ξj,k − χj) =
∑
j

{
cosχj

∑
k
ηj,k cos ξj,k︸ ︷︷ ︸
xj

+ sinχj
∑

k
ηj,k sin ξj,k︸ ︷︷ ︸
yj

}
, (26)
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which shows that maximizing g(χ) in χ is separable in independent problems (one for each j). Inside the braces
of the right hand side of Eq. (26), each term is the scalar product between the vectors (cosχj , sinχj)t and
(xj , yj)t. The scalar product being maximized if the two vectors are aligned, the solution of Problems (24) and
(25) is given by:

(∀j) χ̂j = max
χj∈(−π,+π]

g(χ) = angle(xj + i yj) , (27)

where angle(z) yields the phase of the complex z in the semi-open range (−π,+π]. Replacing χ by the best
estimate χ̂ in f(χ) and g(χ) yields:

min
χ∈(−π,+π]N

f(χ) = f(χ̂) =
∑
j,k

wj,k
(
|uj,k|2 + |vj,k|2

)
− 2 g(χ̂) , (28)

max
χ∈(−π,+π]N

g(χ) = g(χ̂) =
∑
j

√
x2
j + y2

j (29)

=
∑
j

√∑
k,k′

ηj,k ηj,k′ cos(ξj,k − ξj,k′) , (30)

where the last expression is obtained by expanding the squared sums and applying simple trigonometric identities.
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