
HAL Id: insu-01634635
https://insu.hal.science/insu-01634635

Submitted on 14 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Typhoon-Induced Ground Deformation
Maxime Mouyen, A. Canitano, B. F. F Chao, Y.-J. Hsü, Philippe Steer,

Laurent Longuevergne, J.-P. Boy

To cite this version:
Maxime Mouyen, A. Canitano, B. F. F Chao, Y.-J. Hsü, Philippe Steer, et al.. Typhoon-
Induced Ground Deformation. Geophysical Research Letters, 2017, 44 (21), pp.11004-11011.
�10.1002/2017GL075615�. �insu-01634635�

https://insu.hal.science/insu-01634635
https://hal.archives-ouvertes.fr


Typhoon-Induced Ground Deformation
M. Mouyen1 , A. Canitano2 , B. F. Chao2 , Y.-J. Hsu2 , P. Steer1 , L. Longuevergne1 ,
and J.-P. Boy3

1Géosciences Rennes, UMR 6118, OSUR, CNRS, Université Rennes 1, Rennes, France, 2Institute of Earth Sciences, Academia
Sinica, Taipei, Taiwan, 3EOST-IPGS, UMR 7516, CNRS-Université de Strasbourg, Strasbourg, France

Abstract Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth
and surface processes interact. By combining surface air pressure data, nontidal sea level variations model,
and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven
borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island
from 2004 to 2013. The typhoon’s signature consists in a ground dilatation due to air pressure drop, generally
followed by a larger ground compression. We show that this compression phase can be mostly explained
by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the
strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the
amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful
constraint for building hydrological models.

1. Introduction

The solid Earth constantly deforms under the dynamics of its external fluid envelopes, including ocean, con-
tinental water, and atmosphere. This is observed in geodetic time series such as very long baseline interfero-
metry (Petrov & Boy, 2004), global navigation satellite system (Argus et al., 2014; Martens et al., 2016), or
ground gravimeters (Longuevergne et al., 2009). Surface loads alter the stress tensor in the crust and in turn
can lead to strain and potentially to earthquakes. Transient or permanent deformation were observed and
modeled to be induced by both solid Earth processes, such as nearby earthquakes (Delescluse et al., 2012;
King et al., 1994; Reasenberg & Simpson, 1992; Stein, 1999), slow-slip events (Segall et al., 2006), and surface
processes, such as episodic and short-lived events such as hydrologic (Bettinelli et al., 2008) or snow (Heki,
2001) loading, surface erosion (Calais et al., 2010; Steer et al., 2014) and ocean tides (Ide & Tanaka, 2014;
Rubinstein et al., 2008; Thomas et al., 2009). The latter examples demonstrate the significant coupling that
exists between the Earth fluids envelopes (hydrosphere and atmosphere) and the solid Earth.

Among atmospheric events, tropical cyclones (typhoons) represent good candidates to trigger significative
deformation (Hsu et al., 2015; Liu et al., 2009). Indeed, typhoons are localized, extreme climatic events char-
acterized by air pressure drops of several tens of hectopascal (hPa) and, most of the time, heavy rains (Lin &
Jeng, 2000). Therefore, air pressure drops, continental rainfalls, and sea level variations represent the most
likely sources of surface load changes associated to typhoons. Several typhoons make landfall on Taiwan
every year, with an average that increased from 3.3 typhoons per year between 1970 and 1999 to 5.7
between 2000 and 2006 (Tu et al., 2009), 70% of which occurring from July to September. On the other hand,
Taiwan is also an active tectonic area. It is located at the junction of the Eurasian and Philippine Sea plates,
converging toward each other at a rate of 8 cm yr�1 (Yu et al., 1997) with 3 cm yr�1 being accommodated
by faults on the eastern part of Taiwan (Hsu et al., 2012). A network of borehole strainmeters has been
deployed in that region (Figure 1) by the Institute of Earth Sciences, Academia Sinica, in cooperation with
the department of Terrestrial Magnetism, Carnegie Institution of Washington, to monitor mainly tectonic
deformation (Hsu et al., 2015). Borehole strainmeters record ground deformation with a good precision (1
part per billion = 1 nanostrain, that is, 1 mm of change over 1000 km (Langbein, 2015)) and represent useful
tools for studying tectonics and volcanoes (Langbein et al., 1999; Linde et al., 1996; Voight et al., 2006). Recent
efforts demonstrate that strainmeters are also effective to monitor hydrology and groundwater extraction
(Barbour & Wyatt, 2014). Most of these studies were possible thanks to dense networks of borehole strain-
meters operated in the western United States by the U.S. Geological Survey and the University NAVSTAR
Consortium Inc., through the Plate Boundary Observatory. For our purpose, since most typhoons initiate in
the Pacific Ocean and make first landfall on the eastern coast of Taiwan, the Taiwan strainmeter network
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provides a unique opportunity to analyze typhoon-induced deformation and to define strategies to properly
separate tectonics from surface processes signals.

In this study, we analyze time series recorded by seven borehole strainmeters, for the period ranging from
2004 to 2013, including 31 typhoons. In each case, we use surface air pressure data, nontidal sea level varia-
tions model and rainfall data to compute the expected volumetric strain at the depth of the strainmeter sen-
sors and compare them to the actual volumetric strain measured by the strainmeters. Our approach is thus
based on the modeling of realistic physical processes, not on the determination of transfer functions
between the strain signal and the rainfall or air pressure time series. Our aim is to separate the respective sig-
nals induced by atmospheric, oceanic, and rainwater surface loadings on strainmeter records during
typhoons and to discuss the potentiality for other processes and contributions.

2. Borehole Strainmeters Data

The strain were measured using Sacks-Everton borehole strainmeters (Sacks et al., 1971) installed along the
Longitudinal Valley in eastern Taiwan (Hsu et al., 2015), at depths around 200 m. Their calibration is done by
comparing the tidal signals recorded by the strainmeters with computed tidal strain for the location.
Although suffering from uncertainties due to inaccurate ocean loading model, topography and nonhomoge-
neous Earth model parameters, which may eventually bias the interpretation of the strainmeter data
(Beaumont & Berger, 1975; Langbein, 2010, 2015), tide calibration remains convenient because tides have
large amplitude in the strainmeter records and can be computed using software such as SPOTL (Agnew,
1997, 2012).

To better focus on typhoon-induced processes, we focus on the data recorded during ~10 days centered on
the time when typhoons make landfall on Taiwan, or when their paths are the closest to the Taiwanese
coasts. We analyze the signal of 31 typhoons from 2004 to 2013. The Taiwan strainmeter network counts
11 instruments today, but due to gaps and network evolution since 2004, we can study the effect of typhoons
at up to 7 sites, totaling 72 cases typhoon-induced volumetric deformation (Figure 1). Basic processing con-
sists in removing solid Earth tides and ocean-tidal loading using Baytap08 (Tamura et al., 1991), offsets, and
long-term trends.

3. Modeling Typhoon-Induced Deformation

Our hypothesis is that typhoon-induced deformation results from three effects: (1) the change of atmo-
spheric loading due to the drop of surface air pressure; (2) the load of the nontidal oceanic surge, which is
also a consequence of air pressure and winds; and (3) the load of rainwater since, in many cases, typhoons
are accompanied by heavy rainfalls. Both the atmospheric (1) and nontidal oceanic (2) loadings are computed
with volumetric strain Green functions computed with the preliminary reference Earth model (PREM,
(Dziewonski & Anderson, 1981)) and calculated for the shallow depths (Kamigaichi, 1998) at which each
strainmeter resides.

For effect (1), the Green functions are convolved with global surface air pressure fields provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF: ERA-Interim data (Dee et al., 2011)) at
0.25° and 6 h spatial and temporal resolutions. However, the 0.25° spatial resolution is too coarse to properly
capture the maximum of surface pressure drop that occurred near the strainmeters. For this reason, when the
convolution of the surface pressure field with the Green functions reaches angular distances lesser or equal to
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Figure 1. (a–c) Location of the boreholes strainmeters (red squares, with their installation depths in meters), rainfall gauges
(blue circles), and barometers (green circles) used in this study, all set on the eastern coast of Taiwan.
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0.1° from the strainmeter, the ECMWF data are replaced by local barometer data provided by the Taiwan Data
Bank for Atmospheric & Hydrologic Research service (DBAHR). Following Petrov and Boy (2004), we remove
the effect of atmospheric diurnal (S1) and semidiurnal (S2) tides from these air pressure data, using atmo-
spheric S1 and S2 tides models developed by Schindelegger and Ray (2014) on the basis of ground data from
the International Surface Pressure Databank (Compo et al., 2011). This model is used as a reference when test-
ing tidal structures in reanalysis products (Díaz-Argandoña et al., 2016). Here correcting the air pressure data
with this model reduces by 51% and 78% the spectral amplitude of S1 and S2, respectively.

For effect (2), above oceanic areas, the sea level can accommodate part of the change of air pressure, possibly
canceling out any loading effect on the seafloor (inverted barometer hypothesis). These hypothesis and its
opposite, the noninverted barometer (all the change of air pressure transmits to the seafloor, as if there were
no ocean), were discussed and tested in several studies (Boy et al., 1998; Mémin et al., 2014; van Dam et al.,
2012). They agree that the inverted barometer hypothesis is not suitable for air pressure changes at shorter
periods than 5 to 20 days, which include typhoons. Therefore, for an optimal evaluation of the non-tidal ocea-
nic effect, we use the modeled dynamic ocean response to air pressure and winds provided by the Toulouse
Unstructured Grid Ocean model (TUGO-m (Carrère & Lyard, 2003)) rather than the static inverted-barometer
hypothesis. Boy and Lyard (2008) and Boy et al. (2009) have shown the ability of TUGO-m to model sea level
variations and its induced geodetic impacts due to storm surges in the North Western European shelf.

Concerning effect (3), it must be emphasized that typhoons also generally lead to heavy rainfall on land. For
instance, on 4 August 2009, more than 2000mm of 3 day cumulated rainfall was recorded in southern Taiwan
as typhoon Morakot made landfall (Hong et al., 2010). This rainfall was exceptional, but heavy rains of more
than 15 mm h�1 remain common during typhoons, and their effect on the strain field is significant compared
to the sensitivity of borehole strainmeters (Hsu et al., 2015). However, the processes through which the
ground accommodates and discharges this water are various and complex to monitor. It is basically a balance
between the ability of the soil and rock in subsurface to split available water into storage, surface runoff, infil-
tration, and evapotranspiration. Note that the mass of water getting into the air by evapotranspiration
becomes part of the atmospheric loading and is therefore accounted for by air pressure measurements.

Comparing the strainmeter signal with the accumulated rain as a function of time shows a good coherence
and can be used to assess empirically the transfer function between these two variables (Hsu et al., 2015).
Though, the amount of water to include in the loading computation is uncertain. In this study, we suggest
that lateral water flow that concentrates water from the watershed toward the sensitivity zone of the strain-
meter is a critical process. Since the strainmeters are set in valleys, water is flowing on the topography to
accumulate downstream, in addition to the rainwater falling directly above the strainmeters. To model this,
we consider a funnel (schematic in Figure S1). The lower (narrower) tip the funnel is a cylinder of accumulated
rainwater centered above the borehole strainmeter and whose radius is 3 km. We compute its effect on the
volumetric strain at the depth of each strainmeter through the Boussinesq elastic approximation, using
PREM’s crust Lamé coefficients λ = 3.42 1010 Pa and μ = 2.66 × 1010 Pa. We use 3 km radius because, given
the maximum value of the accumulated rain, the strain effect of the disk load reaches an asymptote, with
at most 4% variation for a radius increasing from 3 to 5 km. The volume of this cylinder, hence its loading,
has two origins:

1. The rainwater falling directly on the top of this cylinder.
2. The rainwater drained from the sloping sides of the funnel (no strain effect) and delayed by the time it

needs to flow from its impact position to the loading cylinder.

The rain time series is taken from the closest rainfall gauge next to each borehole strainmeter (Figure 1). At a
given time, the volume of rainwater drained by the funnel depends on its geometry, governed by its upper
(wider) radius Rf and its slope α, and by the velocity V of the water flowing on the slopes, which is estimated

using the empirical Manning’s equation V ¼ KsR
2=3
h √S where Rh is the hydraulic radius, S is the stream gradi-

ent, and KS is the Strickler coefficient, which denotes how easily the water can flow. We set that Rh is equal to
the height of rainwater and S to the topographic height gradient (tanα), with α = 30°. In this model, we test by
trial and error the two parameters Rf and KS to get the best fitting results between the computed and the
observed strain. Rf ranges from 3 (no funnel) to 15 km (with 0.5 km steps) and KS between 0 (no velocity)
and 10 m1/3 s�1 (with 0.5 steps). These two parameters allow to adjust the amplitude and dynamics of the
rainwater loading recorded by the strainmeters.
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4. Results

As a first step, to avoid the influence of large hydrological loading on the ground deformation, we focus on
“dry” typhoons, i.e., with less than 70 mm of accumulated rainfall from 2 days before to 1 day after the max-
imum of surface air pressure drop. The main effect at the time of the typhoon is the ground dilatation, itself
almost entirely due to the air pressure drop, while the nontidal ocean loading account for less than 1% of the
total dilatation. Note that the dilatation of the ground by the ocean loading comes from the use of the shal-
low depth volumetric strain Green functions, which let loads dilate the ground for some ranges of angular
distances. This differs from the effect of loads computed under the Boussinesq elastic approximation, which
always generate a ground compression. This was discussed in detail by Kamigaichi (1998), who explained
that this property of the Green function is due to the layering of the Earth interior and the Earth surface cur-
vature. But eventually, this has little impact on our computed results.

The fit between observed and computed strain is generally good, especially on the phase of the ground dila-
tation. However, our computations do not always match the amplitude of the dilation recorded by the strain-
meters. We compare the observed and computed volumetric strain stacked either (1) for all the typhoons
recorded by each strainmeter or (2) for all the strainmeters recording for each typhoon. The best correlations
are found for case (1) with coefficients of determination (R2) close to one (supporting information Figure S2).
This shows that the misfit is strainmeter dependent (rather than typhoon dependent). This is restricted to
sites ZANB, HGSB, and TRKB, where the ratio between the observed to computed strain is 1.9 (R2 = 0.93),
1.8 (R2 = 0.97), and 0.7 (R2 = 0.89), respectively. At FBRB, this ratio is almost unity (0.9, R2 = 0.93). At sites
NTTB, CHMB, and SSTB, patterns of underestimation or overestimation between the observed to computed
strain ratio are unclear (R2 < 0.7), and we thus prefer to leave it equal to 1. Nonunity ratio may denote cali-
bration errors, which can be up to 30% due to tidal model errors (Langbein, 2010) as well as site effects such
as local geology and topography (Berger & Beaumont, 1976), which are not taken into account in our com-
putations. Nevertheless, the good correlation between the observed and computed strain suggests that all

Figure 2. (a) Volumetric strain data at ZANB borehole strainmeter (blue, dilatation is positive, compression is negative)
overlaid with computed strain variations considering the air pressure and nontidal ocean loading variations (green line)
and the same model to which is added the rainwater loading (red line), during typhoon Soulik, in 2013. (b) Surface air
pressure variation (green) and computed volumetric strain effect (black line). (c) Rainfall accumulated every 6 h (red) and
volumetric strain effect (black) computed under the Boussinesq elastic approximation. The sum of Figures 2b and 2c
strain curves is the red line in Figure 2a. The computed strains were multiplied by the amplitude ratio determined for ZANB
(1.9). (d–f) The same as Figures 2a–2c but for the typhoon Morakot in 2009, which brought much heavier rainfalls than
Soulik. Air pressure and rainfall data are taken from the weather station C0T9M0 (see Figure 1b for locations).
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geophysical sources of deformation are taken into account in the modeling. In the following, the computed
strain will be multiplied by this amplitude ratio between observed and computed strain.

We now consider the entire volumetric strain time series, spanning several days before and after the maxi-
mum surface air pressure drop, without distinction regarding the amount of rain that accompanies each
typhoon. Figure 2 shows typical records of surface air pressure, rainfall, and strain variations for typhoons with
little rain (Figures 2a–2c, Soulik, 2013) and heavy rain (Figures 2d–2f, Morakot, 2009) at ZANB site. A common
feature across these time series is a ground compression that usually starts in the day following themaximum
pressure drop or few hours earlier (Figures 2a–2d). As this compression only occurs when heavy rains are
recorded nearby, we argue that it is due to rainwater loading.

Figure 3a shows a complete analysis of all the typhoon-induced strain time series recorded at ZANB (all other
strainmeters results in Figure S3) and demonstrate the major influence of rainwater loading on ground defor-
mation. Among the 7 strainmeters sites and the 31 typhoons recorded (Figure 3b), the rainwater concentra-
tion model explains strain compression after the typhoon pressure drop. The RMS of the residuals between
observed and modeled volumetric strain is systematically reduced, by 81% on average over all typhoons and
strainmeters. Table 1 summarizes our results for each borehole strainmeter.

We conclude that every posttyphoon ground compression is explained by rainwater loading, both direct rain
above the instrument and indirect rainfall flowing down the watershed topography above each site. This
compression is highly site dependent considering the different context of each strainmeter. The simple
model accounts for the amplitude increase generated by the accumulation of surface water within the
watershed and its concentration toward the strainmeter sensitivity zone, also quantified by the rainfall
multiplicative coefficient in Table 1. At sites FBRB and TRKB, this model also explains the time delay between
the time of the rain and the time of the ground compression (~19 h for both sites, Figure S4). It corresponds to
the time needed for the rainwater. This suggests that these two sites are draining large areas compared to the
other sites; thus, rainwater falling afar will eventually need more time to flow toward FBRB and TRKB (we do
not consider NTTB and SSTB where just one and three typhoon-induced deformation were measured, hence
providing little statistical significance). Indeed, they both have larger watershed areas and Rf than ZANB,

Figure 3. (a) Summary of all the observed (blue) and computed (green and red) strain time series at site ZANB, for typhoons
from 2004 to 2013. Model A + O (green) is computed using the air pressure (A) and the non-tidal ocean loading (O) var-
iations. Model A + O + R (red) adds the effect of the rain (R) computed with a funnel model. The text above each comparison
plot gives the name of the typhoon, its year, and the set (upper radius of the funnel (in km)/Strickler coefficient) that best
explain the strain data. (b) Root-mean-square (RMS) of the residuals between the observed and computed strain time series
for A + O (green) and A + O + R (red) models, for all available borehole strainmeters data and typhoons comparisons. Both
panels show that the rainwater loading effect properly explains the compression after the typhoon pressure drop.
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CHMB and HGSB. This is also consistent with the fact that TRKB and FBRB record the largest ground
compression during typhoon with heavy rainfalls.

5. Discussion and Concluding Remarks

The strainmeters integrate the loading effect of the rainwater located in the ground above them. At the short
time scale considered in this study, a few days, the effect of rainwater is taken as a surface load. Poroelastic
processes typically generate amplitude change and time delays with respect to purely elastic deformation
(Schuite et al., 2015). Though, in this case, as surface water is involved, the typical time scales required for
water infiltration and pressure diffusion in saturated layers would be much longer than a few days observed
in this study. Finally, this model considers basic hydrological processes at short term time scales, which are
well translated on strainmeters by a purely elastic model. Poroelastic processes can be expected at longer
time scales, which are not the scope of this work.

The ground compression due to the rainwater commonly reaches several hundreds of nanostrain with max-
imum values of ~800 nanostrain at TRKB and FBRB. These amplitudes are comparable with those of local
earthquakes (Barbour & Crowell, 2017; Canitano et al., 2015), but coseismic strain changes occurs in a few sec-
onds and can thus be easily distinguished from typhoon-induced deformation, occurring at hourly to daily
time scales. However, slow slip earthquakes have both strain amplitudes and time scales (Linde et al.,
1996; Peng & Gomberg, 2010; Wang et al., 2008) that could possibly be altered, or even hidden, by rainwater
compression signals. In this study, we interpret the entire compression phase of the strain records as a rain-
water effect because their respective amplitude and timing agree very well and systematically for many
typhoons recorded with several strainmeters. As a result, the suggestion of slow earthquakes triggered by
typhoons (Liu et al., 2009) should be evaluated at the light of these new results. Nevertheless, due to the
ongoing intensification of landfalling typhoons (Mei & Xie, 2016), the quantitative assessment of their conse-
quences in terms of deformation and stress change in the crust, especially in active tectonics context, remains
a justified project. Global Navigation Satellite Systems (GNSS) is also a suitable tool for such a monitoring. The
air pressure drop can trigger fewmm of vertical displacements and around 1 mm of horizontal displacement.
Since GNSS is less sensitive than strainmeters, a strategy would be to stack measurements of a dense array of
receivers, to increase the signal-to-noise ratio. Working with subdaily rather than daily solutions should also
improve the analysis, because typhoons are rapid events (1–2 days). To finish, the tropospheric delay correc-
tion should be carefully computed since typhoon significantly influence it (Chiang et al., 2009). The rainwater
loading can also trigger similar or larger displacement, depending on the typhoon considered. In this case,
combined horizontal and vertical displacements will provide valuable information on the spatial distribution
and the amplitude of the rainwater load (Fu et al., 2013; Wahr et al., 2013).

To conclude, this study clearly demonstrates that large compressional signals in the few days following
typhoons can be systematically associated to the effect of rainwater elastic loading. Our simple hydrological
model satisfactorily approximates the processes by which rainfalls can flow laterally and concentrate above

Table 1
Summary of the Main Parameters at Each Borehole Strainmeter

Site Typhoons observed
Watershed
area (km2) Rf (km) KS

Rainfall multiplicative
coefficient

RMS
reduction

ZANB 26 12 5.6 ± 2.3 6.0 ± 4.7 4.0 ± 4.5 83%
CHMB 12 8 8.0 ± 3.8 9.2 ± 2.7 7.2 ± 5.4 65%
HGSB 12 9 7.4 ± 4.2 6.9 ± 4.0 3.5 ± 2.8 84%
FBRB 10 15 8.1 ± 3.6 2.9 ± 3.8 6.6 ± 4.3 84%
TRKB 8 26 8.7 ± 3.3 1.9 ± 3.3 6.5 ± 2.6 88%
SSTB 3 14 10.0 ± 5.4 6.8 ± 5.5 13.6 ± 10.5 86%
NTTB 1 13 15.0 1.0 18.1 80%

Note. The rainfall multiplicative coefficient is the ratio between the height of rainwater needed to explain the strain
change, that is, the height of rainwater that concentrates at the bottom of the funnel, and the actual rainwater amount
measured by local rainfall gauges. The reduction of RMS is computed between the model only accounting for the air
pressure change and the model accounting for the air pressure change and the rainwater loading. The drained area is
computed from the digital elevation model (DEM, 90 m resolution) of Taiwan using TopoToolbox (Schwanghart &
Kuhn, 2010; Schwanghart & Scherler, 2014).

Geophysical Research Letters 10.1002/2017GL075615

MOUYEN ET AL. TYPHOON-INDUCED GROUND DEFORMATION 6



strainmeter and deform the ground, both in time and amplitude. It could thus be easily further tested on
other borehole strainmeter records located in mountainous areas and help to separate hydrologic and tec-
tonic strain signals. In the meantime, this study also shows that borehole strainmeters are useful tools to
quantify the large amount of rainwater brought by typhoons or episodic heavy rainfalls, as well as the time
characteristics of lateral water flow and accumulation in valleys. These data are complementary to river dis-
charge and rainfall gauges measurements and may therefore benefit the development of distributed hydro-
logical models.
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