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This paper describes a reflectivity forward operator developed for the validation and assimilation of W-band

radar data into regional Arome (Applications de la Recherche à l’Opérationnel à Méso-Echelle) class Numerical

Weather Prediction models. The forward operator is consistent with the Arome ICE3 one-moment microphysical

scheme and is devised for vertically pointing radars. A new neighbourhood validation method, called the Most

Resembling Column (MRC) method, is designed to disentangle spatial location model errors from errors in the

forward operator. This novel method is used to validate the forward operator using data collected in diverse

conditions by the airborne cloud radar RASTA (Radar Airborne System Tool for Atmosphere) during a two-

month period over a region of the Mediterranean. The MRC method is then applied to retrieve the optimal

effective shapes (i.e. the mean axis ratios) of the predicted graupel, snow and pristine ice, by minimising the

standard deviation between observations and simulations. The optimal mean axis ratio is approximately 0.7 for

snow and 0.8 for graupel. It is shown that treating snow and graupel particles as oblate spheroids with axis ratios

close to their optimal values leads to good agreement between the observations and simulations of the ice levels.

Conversely, there is a large bias if snow and graupel particles are considered to be either spherical or overly

flattened. The results also indicate that pristine ice can be approximated by a sphere, but this conclusion should

be taken cautiously since the amount of pristine ice particles is probably overestimated in the ICE3 microphysical

scheme.

Key Words: <cloud radar, forward operator, HyMeX, mesoscale convective simulations>

1. Introduction

Clouds are one of the main driving elements in the global water

cycle. They play a key role in the Earth’s energy balance, climate

and weather via their influence on the global radiation budget

(Stephens 2005). The need to observe and characterize the vertical

distribution and variability of clouds at a global scale was the
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starting point of a new generation of Earth observation systems

including cloud radars. By acquiring the vertical profiles of cloud

properties, millimetre-wavelength radars can fill the gap between

traditional meteorological centimetre radars (Lhermitte 1987;

Kollias et al.2007), which are insensitive to the smallest particles,

and lidars, which are strongly attenuated by optically thick clouds

(especially liquid clouds). In addition, compared to low-frequency

radars, millimetre-wavelength radars can be deployed much more

easily aboard spacecraft and aircraft because they require smaller

antennas to provide high spatial resolution measurements.

Cloud radars either operate in the Ka-band, at≈ 35 GHz,

or in the W-band, at≈ 95 GHz (Moranet al. 1998; Kollias

et al. 2007; Horie et al. 2000; Li et al. 2001; Wolde and

Pazmany 2005; Delanoëet al. 2013; Hagenet al. 2014). Even

though they are more attenuated by heavy precipitation, W-band

radars are more sensitive to thin clouds than Ka-band radars at

a given emitted power (Leinonenet al. 2015). In addition, W-

band radars are much smaller because the antenna size decreases

with the wavelength. W-band radars are recognised as economic

(especially frequency-modulated ones Delanoëet al. (2016)),

lightweight and compact instruments that accurately characterize

clouds and light precipitation (Kolliaset al.2007).

Since its launch in 2006, the W-band Cloud Profiling Radar

(CPR) on-board the CloudSat spacecraft (Stephenset al. 2002)

has led to significant improvements in our understanding of the

mechanisms linking clouds to climate at global scales. Following

this success, the EarthCARE satellite mission (Illingworthet al.

2015) is scheduled to be launched in 2019 with a Doppler

Cloud Profiling Radar, which will have a 7-dB higher sensitivity

due to its lower altitude. In addition, the high sensitivity of

W-band radars to cloud microphysical properties makes their

data extremely appealing for microphysical parameterization

validation and data assimilation in regional Numerical Weather

Prediction (NWP) models. However, due to the low revisit time

of polar-orbiting satellites, their data are of limited value for

km-scale short-range forecasting systems. Nonetheless, recent

technological breakthroughs might lead to a deployment of

ground-based W-band radar networks. For example, the BASTA

radar (Delanoëet al. 2016) is a lower-cost radar that can provide

high-quality measurements of phenomena such as fog and light

precipitation. To prepare for the future operational use of these

next-generation radars, data from W-band radar aboard research

aircraft are available from several field campaigns (Delanoë

et al. 2013; Fontaineet al. 2014; Protatet al. 2016). These

airborne radars have the advantage of collecting a large dataset

of measurements over land and sea at very fine scales.

The first step towards the use of cloud radar observations

for model validation and data assimilation is to design a proper

method to compare models with observations. There are two

different approaches to achieve such comparisons: either the

observations are inverted into model variables (Delanoë and

Hogan 2008, Protatet al. 2014) or a forward operator is used to

transform the model variables into synthetic observations (Haynes

et al. 2007; Bodas-Salcedoet al. 2008; Di Micheleet al. 2012).

Uncertainties are easier to assess and control in the forward

approach (Reitteret al.2011). Consequently, in the past few years,

several cloud radar forward operators have been developed for

model validation and/or data assimilation. Many of them have

been applied to NWP models with coarse horizontal resolutions

(Bodas-Salcedoet al.2008; Di Micheleet al.2012,≈ 40 km).

Very few studies have been devoted to kilometre-scale models

with more elaborate microphysical schemes. Iguchiet al. (2012)

simulated shipborne and spaceborne W-band radar reflectivity

using the Japan Meteorological Agency Nonhydrostatic Model

(JMA-NHM) with a horizontal grid of 3 km. The simulated

reflectivities were compared against observations for bin and bulk

microphysical schemes in a relatively small number of cases

(three precipitation events). This study highlighted the difficulty

of disentangling the differences due to spatial and temporal

mismatches between model forecasts and observations from the

differences due to the different microphysical schemes. These

errors increase with the spatial resolution. Uncertainties also arise

from the forward operator formulation. The relationship between

the reflectivity and the model variables is not straightforward,

especially at high frequency, because the reflectivity is sensitive

to the representation of the hydrometeors (Di Micheleet al.2012)

and, therefore, to the approximations made in the microphysical

scheme.

The primary objective of this paper is to present a cloud

radar reflectivity forward operator designed for model validation

This article is protected by copyright. All rights reserved.
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and data assimilation at kilometre scales (< 3 km). The current

study covers a two-month period with the airborne cloud radar

RASTA (Radar Airborne System Tool for Atmosphere) (Bouniol

et al. 2008, Protatet al. 2009, Delanoëet al. 2013). This

airborne radar can cover large distances over land and sea

while having a higher resolution than spaceborne instruments.

It is also less sensitive than spaceborne instruments to multiple

scattering and nonuniform beam filling due to its much smaller

footprint. Even though it was primarily designed for an aircraft

configuration, this forward operator is directly adaptable to

ground-based radars. The forward operator is consistent with the

microphysical scheme used in the high-resolution NWP model

Arome (Applications de la Recherche à l’Opérationnel à Méso-

Echelle) but can in principle be applied to any kilometre-scale

model. To distinguish errors in the operator (e.g. the shape and

dielectric properties) from the spatial location errors in the model,

a novel neighbourhood validation method, the Most Resembling

Column (MRC) method, was developed to evaluate and calibrate

forward operators designed for vertically pointing radars.

This paper is organized as follows. In Section2, the airborne

cloud radar RASTA and the NWP model Arome-WMed are

described. The cloud radar forward operator is detailed in Section

3. The MRC method devised to validate forward operators is then

presented in Section4. Finally, this new method is applied to

calibrate the radiative properties in the forward operator and to

assess the vertical consistency of the model simulations.

2. Cloud radar data and model simulations

This study takes advantage of the data collected by the airborne

cloud radar RASTA during the HyMeX first Special Observing

Period (SOP1), which took place from 5 September to 5

November 2012 over a region of the Mediterranean (Ducrocq

et al. 2014). The RASTA radar is first described in Section2.1,

and details about the data collected by RASTA during the SOP1

are then given in Section2.2. The mesoscale Numerical Weather

Prediction (NWP) model AROME-WMed is presented in Section

2.3.

2.1. RASTA radar

The airborne cloud radar RASTA is a monostatic Doppler multi-

beam antenna system operating at 95 GHz (Bouniolet al.

2008, Protatet al. 2009, Delanoëet al. 2013). The aircraft

platform used is the French Falcon 20 research aircraft from the

SAFIRE unit (Service des Avions Français Instrumentés pour

la Recherche en Environnement). This unique instrument allows

the documentation of the microphysical properties and the three

components of hydrometeor velocities quasi-continuously in time

and at a vertical resolution of 60 m (the pulse width is 400 ns).

RASTA has six Cassegrain antennas: three antennas pointing

in three non-collinear directions above and below the aircraft.

For each of these six antennas, the integration time is 250 ms.

Therefore, as the radar switches from one antenna to another, the

time resolution for each antenna is 1.5 s, which is approximately

equivalent to 300 m because the horizontal speed of the Falcon 20

is approximately 200 m s−1.

The horizontal resolution is also very high because the antenna

beamwidth equals 0.6° and 0.8° for the nadir-pointing and zenith-

pointing antennas, respectively. The pulse repetition frequency

equals 10 kHz, and therefore the maximum unambiguous distance

is 15 km. More details on the RASTA configuration during

HyMeX can be found in Bousquetet al. (2016).

This study focuses on the reflectivity measured by the

zenith- and nadir-pointing antennas. The nadir-pointing antenna

is slightly more sensitive than the zenith-pointing antenna. The

minimum detectable reflectivity at 1 km is approximately−27

dBZ for the nadir-pointing antenna and−26 dBZ for the zenith-

pointing antenna. This sensitivity is similar to that of CloudSat

(−30 dBZ, Mitrescuet al.2008).

W-band radars can provide valuable information concerning

cloud microphysical properties and light-to-moderate precipita-

tion (Kollias et al.2007). Nonetheless, the signal can be strongly

attenuated by heavy precipitation.

2.2. Period of study and radar data

The main goal of the HyMeX first Special Observing Period

(SOP1) was to document the heavy precipitation events and flash

floods that regularly affect northwestern Mediterranean coastal

This article is protected by copyright. All rights reserved.
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areas. During the two-month campaign, approximately 20 rainfall

events were documented in France, Italy and Spain (Ducrocq

et al. 2014). Specifically, the RASTA radar aboard the Falcon

20 collected data during 18 flights in and around mesoscale

convective systems.

Data were collected over land (nine flights) and over sea (six

flights). In three additional flights, the Falcon 20 flew over mixed

areas. In some of these flights, data were also collected over

mountains. The entire area covered by the Falcon 20 during the

SOP1 is represented by the black lines inFigure 1.

For the SOP1, the nadir antenna was calibrated using the ocean

surface return technique (Liet al. 2005). The data used for the

calibration were collected during one of the Megha-Tropiques

field campaigns that took place over the Indian Ocean in 2011

(Fontaineet al. 2014). The same calibration constant is used

for the SOP1 because the system configurations are similar. The

calibration accuracy is approximately 1 dB.

To characterise the set of observed vertical profiles during

the two-month campaign, a convective index was defined using

the vertical velocity measured by RASTA. A vertical column is

assumed to be convective if there are at least eight pixels (above

the melting layer) either with a vertical velocity greater than

2 m s−1 (updraft) or lower than−3 m s−1 (downdraft). Using

this index, 14.3% of the observed vertical columns can be defined

as convective (17,531 out of 122,403). This proportion is small

because the more convective regions were avoided to ensure the

safety of the aircraft crew. The rest of the data were collected

either in stratiform areas (72.6%) or in clear sky (13.1%).

Therefore, the data collected by RASTA during the SOP1 offer

a wide variety of conditions (stratiform, convective and clear sky)

over land, sea and mountainous regions.

2.3. The Arome-WMed NWP model

Arome-WMed (Fourriéet al. 2015) is a configuration of the

numerical weather prediction system Arome (Seityet al.

2011) that was specially designed for the SOP1. Arome-

WMed, which covers the entire northwestern Mediterranean

Basin, ran in real time during the SOP1 to plan the airborne

operations in advance, especially in the mesoscale convective

systems. Here we used the first reanalysis of the SOP1

with Arome-WMed, which assimilates more observations

than the real-time version. The first reanalysis fields of

Arome-WMed are available from the HyMeX database

(doi:10.6096/HYMEX.REANALYSIS_AROME_WMED_V1.2014.02.10).

The Arome-WMed domain is displayed inFigure 1.

Arome-WMed ran at a horizontal resolution of 2.5 km× 2.5 km

with 60 vertical levels ranging from approximately 10 m above

ground level to 1 hPa. In the model, the deep convection is

explicitly resolved and the microphysical processes are governed

by the ICE3 one-moment bulk microphysical scheme (Pinty

and Jabouille 1998). Six water species are predicted by Arome-

WMed (water vapour, rain, cloud liquid droplets, snow, pristine

ice and graupel). For each hydrometeor speciesj, the Particle

Size Distributions (PSDs) are expressed as generalized gamma

distributions multiplied by their total number concentrationsN0j .

The PSDs depend on the maximum particle diameters (expressed

in metres) and on the hydrometeor contentsMj (expressed in

kg.m−3). The general expression is given by

Nj(D) = N0j

αj

Γ(νj)
λ

αjνj

j Dαjνj−1 exp(−(λjD)αj ), (1)

where

λj =



 MjΓ(νj)

ajCjΓ
(
νj +

bj

αj

)





1
Xj−bj

, N0j = Cjλ
Xj

j .

The parametersαj and νj define the shape parameters of

the PSDs. The densities are calculated according to the mass–

diameter relationshipmj(D) = ajD
bj . The coefficients of the

PSDs and the mass–diameter relationships are given inTable 1.

As shown inTable 1, the cloud liquid droplet concentration

is three times higher over land than over sea (3 ∙ 108m−3 versus

1 ∙ 108m−3). Indeed, cloud droplet concentration increases with

aerosol number concentration and, therefore, is higher over land

than over sea (Squires 1958; Gultepe and Isaac 2004). For

snow, graupel and rain, the PSDs are reduced to exponential

distributions.

The Arome-WMed initial conditions are provided by the 00

UTC analysis. The three-dimensional variational (3DVar) data

This article is protected by copyright. All rights reserved.
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Figure 1. The Falcon 20 flight paths (black lines) during the HyMeX first Special Observing Period over the Arome-WMed domain. The altitude above sea level (in
metres) is represented by the colour shades.

Table 1. Coefficients of Particle Size Distributions and mass–diameter relationships as defined in ICE3 for snow, graupel, cloud liquid water, cloud pristine ice
and rain.

Type αj νj Cj [mXj−3] Xj aj [kg m−bj ] bj

rain 1 1 8 ∙ 106 -1 πρw
6 = 524 3

pristine ice 3 3 C (diagnosed) 0 0.82 2.5
graupel (wet and dry) 1 1 5 ∙ 105 -0.5 19.6 2.8
snow 1 1 5 1 0.02 1.9
cloud liquid droplet over land 1 3 3 ∙ 108 0 524 3
cloud liquid droplet over sea 3 1 1 ∙ 108 0 524 3

assimilation system of Arome-WMed (Brousseauet al. 2014)

ingests observations from a wide variety of instruments every 3

hours (e.g. satellite, GPS, reflectivity and radial velocity from

Doppler ground-based radars of the French network ARAMIS and

radiosonde).

The work performed here is the first step towards the

assimilation of RASTA data into the Arome model. Therefore,

only the 3-hour forecasts starting at 00 UTC, 03 UTC, etc., are

compared with the RASTA observations because they will be

used as the background for the analysis. Accordingly, the time lag

between the model forecasts and observations will be less than

± 1.5 hours. This is a good compromise between the analysis,

which contains uncertainties in the hydrometeors, and a longer

forecast, for which errors could become too large. Indeed, because

the hydrometeors are not included in the control variable, they are

gradually modified and are considered updated once the spin-up

time is completed (≈ 1 hour).

3. Description of the forward operator

The cloud radar forward operator described here can be used for

airborne and ground-based radars operating in the W-band. It is

suitable for a vertically pointing antenna but is adaptable to any

other pointing angle. The forward operator was designed for a

kilometre-scale NWP model with a bulk microphysical scheme.

Its input parameters are temperature, pressure, relative humidity

and the hydrometeor contents of the five hydrometeor species

(rain, snow, graupel, cloud liquid water and pristine ice) predicted

by the model. It returns the simulated reflectivity for the nadir-

and zenith-pointing antennas at each range gate. The attenuation

is also simulated.

This article is protected by copyright. All rights reserved.
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3.1. Radar equation

For each of the five types of hydrometeorj of particle size

distribution Nj , the reflectivity (in mm6 m−3) is computed by

integrating the backscattering cross sectionσj(D) (in m2) over

all the particle diametersD (in metres). At each gate at a distance

R (in metres) from the plane, the total reflectivity is then obtained

after summing over all types of hydrometeors (rain, pristine ice,

snow, graupel and cloud liquid water). The reflectivity, expressed

in logarithmic scale (dBZ) because the dynamic of the signal is

very large, is given by

Z(R) = 10 log10

(

1018 λ4

π5|Kw|2
l(R)

5∑

j=1

∫ Dmax

Dmin

σj(D)Nj(D, Mj(R))dD

)

, (2)

whereλ (in metres) is the radar wavelength (3.15 mm for the

cloud radar RASTA),Mj is the hydrometeor content (in kg m−3),

|Kw|2 is the dielectric factor of the liquid water, which equals

0.75 at 95 GHz at 10° C, andl(R) is the total two-way attenuation

computed along the path from the plane altitudehRASTA to the

range gate.

The attenuation is obtained according to

l(R) = exp



−2

∫ R

hRASTA

5∑

j=1

∫ Dmax

Dmin

Cej(D)Nj(D, Mj(R))dDdR



 ,

(3)

where Cej(D) is the extinction coefficient. Here, the

multiplying factor 2 accounts for the two-way paths. Attenuation

by moist air and hydrometeors is accounted for.

Attenuation by moist air can be important at the frequency

considered here, especially in the lowest layers of the atmosphere

(≈ 1dB km−1 below an altitude of 1.5 km). Therefore, the effect

on the total attenuation is stronger for a ground-based radar

because the attenuation caused by moist air in the lowest layers

propagates to the other gates along the two-way path. The Liebe

(1985) model is used to compute the attenuation by moist air.

At this frequency, even if the reflectivity (inEquation 2) due to

cloud liquid water is quite low, the effect on the total attenuation

(in Equation 3) can be strong (Di Micheleet al. 2012). In

Equation 3, attenuation due to rainfall is very strong and can

be of the order of tens of dB in heavy precipitation, completely

extinguishing the signal. Conversely, ice particles have a smaller

impact on the total attenuation (< 1 dB km−1).

It is assumed that multiple scattering effects are negligible.

For spaceborne radar, multiple scattering effects may impact

the reflectivity, especially during heavy convective precipitation

events (Battagliaet al. 2010; Bouniolet al. 2008). These effects

are less pronounced for airborne radars because their footprints

are much smaller than those of spaceborne radars (Battagliaet al.

2007). Therefore, multiple scattering effects are not simulated in

the cloud radar forward operator. Nonuniform beam filling effects

are also not simulated because the model resolution is coarser than

the observational resolution.

Radar sensitivity decreases with increasing range from the

radar. To ensure consistency with the observations, the minimum

detectable reflectivity is also simulated at each range gate.

Nj and Mj are given by the ICE3 microphysical scheme.

The single scattering and hydrometeor dielectric properties need

to be specified by making some assumptions in addition to the

microphysical scheme. The T-matrix method (Mishchenkoet al.

1996) is used to compute the radar back-scattering cross section,

σj , and the extinction coefficient,Cej .

3.2. Single scattering properties

Raindrops tend to have an oblate spheroidal shape when they fall

through the atmosphere. This shape is defined by the ratio of

the maximum diameter along the vertical axis to the maximum

diameter along the horizontal axis. Augroset al.(2016) conducted

a sensitivity study for a ground-based precipitation radar forward

operator using the same ICE3 microphysical scheme over the

SOP1. They found that the formulation from Brandeset al.(2002)

was best suited to model the raindrop shape. Therefore, this

formulation is used in our cloud radar forward operator. The axis

ratio r depends on the equivalent-volume drop diameterDeq (in

mm) and is forced to 1 for diameters smaller than 0.5 mm. This

formulation is given by

This article is protected by copyright. All rights reserved.
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r = 0.9951 + 0.02510Deq − 0.03644D2

eq

+ 0.005303D3
eq − 0.0002492D4

eq . (4)

The cloud liquid water particles can be considered to be

spherical, and Mie theory can be used to compute the single

scattering properties. Indeed, for a water content of 1 g m−3, the

diameter is less than 0.1 mm, which is more than 10 times smaller

than the wavelength (3.15 mm). Therefore, for cloud liquid water,

we use the T-matrix method with axis ratio equal to 1, which is

equivalent to using the Mie theory.

The T-matrix method can also be used for snow, graupel and

pristine ice. Ice crystals exhibit many different complex shapes

in nature (Korolevet al. 2000), and these differences depend

on their past evolution and the environment (Bailey and Hallett

2004). Therefore, a large number of scattering methods have

been developed to compute their single scattering properties.

For example, the Discrete Dipole Approximation (DDA, Draine

and Flatau 1994) has been widely used to model specific ice

crystal shapes (Hong 2007,Di Micheleet al. 2012). This method

requires high computation memory, especially for large particles.

Moreover, the model is unable to predict the particle shapes

(e.g. either dendrites, rosettes or columns for crystals), so an

assumption has to be made concerning the particle shapes. As

in the case of raindrops, an alternative is to use a spheroidal

model to define an effective shape and to employ the T-matrix

method. As particles fall through the atmosphere, they tend to

oscillate around the viewing angle. When the T-matrix method

is used, these oscillations are taken into account by using a mean

axis ratio, whose value is higher than the real one. Choosing a

mean axis ratio instead of modelling the oscillations (ie, specify

a canting angle and its distribution) allows the use of a smaller

number of free parameters and saves computation time. The

effective shape of the particle plays a critical role in computing

the backscattering cross section and the extinction coefficient, in

particular for nadir/zenith-pointing millimetre-wavelength radars

(Hogan et al. 2012). Therefore, in Section4.2, a variational

method is applied to retrieve the optimal axis ratio for the three

ice species: snow, graupel and pristine ice.

3.3. Hydrometeor dielectric characteristics

We decided to select the same hydrometeor dielectric charac-

teristics used in the polarimetric forward operator of Augros

et al. (2016), which was also designed for ICE3 but for ground-

based centimetre-wavelength radars. Indeed, to be consistent with

Arome, the mass–diameter relationships (mj = ajD
bj ) are taken

from the ICE3 bulk one-moment microphysical scheme. The

coefficientsaj andbj are given inTable 1.

For small diameters, the densities of the three ice species

(graupel, snow and pristine ice) can exceed that of pure ice

(912 g m−3). To avoid this unphysical effect, when their densities

exceed that of pure ice, the corresponding axis ratio is set to one

and the density is set equal to the value of pure ice. For a spherical

shape, this occurs for diameters smaller than 0.1 mm for snow,

3 μm for cloud primary pristine ice and 0.16μm for graupel.

The dielectric constant is calculated using the Debye model for

rainwater and cloud liquid water. For pristine ice, snow and dry

graupel, the Maxwell–Garnett (MG) formulation is employed

with ice inclusions in an air matrix.

In ICE3, graupel is the only ice species that can have a wet

growth mode. Therefore, a bright band was modelled when there

was wet graupel, following the work of Augroset al. (2016). The

dielectric function is calculated according to Matrosov (2008) and

depends on the fraction of liquid waterFw (Fw = Mr
Mr+Mg

, where

Mr and Mg are the hydrometeor contents of rain and graupel,

respectively). The dielectric function is then obtained via a linear

combination of the MG rule for inclusions of water in a dry

graupel matrixεgw and the MG rule for inclusions of graupel in a

water matrixεwg. It must be borne in mind that the melting snow

flakes undergo structural changes (ie, shape) during the melting

process (Kinteaet al.2015; Mitraet al.1990). Therefore, we have

less confidence in forward modelling the melting layer than the

cold and warm phases.

3.4. T-matrix lookup tables

To save computation time when the T-matrix method is employed,

T-matrix lookup tables are used for each species. Because this

simulator was developed for vertically pointing radars, the lookup

tables are calculated for an elevation angle of 90°(the incident

wave is perpendicular to the long axis of the spheroid).
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The scattering coefficients depend on the temperature,

hydrometeor content and liquid water fraction. Therefore, each

table contains the scattering coefficients for a given range of these

parameters (seeTable 2). Hydrometeor contents vary over an

interval from10−7 kg m−3 to 10−2 kg m−3. To model the bright

band, the liquid water fraction only varies for the wet graupel

when the temperature is between−10°C and+10°C.

An axis ratio equal to 1 is equivalent to using the Mie theory.

Therefore, when particles are considered to be spherical, we use

the T-matrix method with an axis ratio equal to 1, which is the

case for cloud liquid water. In addition, T-matrix lookup tables

were calculated for axis ratios ranging from 0.4 to 1 for pristine

ice and snow and from 0.5 to 1 for graupel. The T-matrix code

does not converge for wet graupel when the axis ratio is smaller

than 0.5.

4. Validation of the radar forward operator

The forward operator is now validated using RASTA observations

and the 3-hour Arome-WMed forecasts. To take the spatial

shifts between the observations and simulations into account

when validating the forward operator, a novel neighbourhood

validation method, called the MRC method, was conceived. This

method is described in Section4.1. In Section4.2, a variational

method is applied to estimate the effective shapes that best fit the

observations for the three ice species (graupel, snow and cloud

pristine ice). Further comparisons are then shown in Section4.3

to assess the vertical consistency of the results.

4.1. The Most Resembling Column (MRC) method

4.1.1. Description of the method

The aim of the MRC method is to help assess the degree of

realism of the forward operator and calibrate the properties

inside the operator. Traditional verification metrics that compare

simulated fields directly at observation points present several

challenges (Ebertet al. 2013), especially for high-resolution

NWP models. Grid-to-grid comparisons require a perfect match

between forecasts and observations, which is rarely the case. Such

a comparison would result in a bias, whose origin cannot be fully

attributed either to a spatial mismatch or to a lack of realism

within the forward operator. This section explores how spatial

and temporal mismatch issues can be overcome to calibrate and

validate the forward operator.

Over the last few years, a large number of spatial verification

methods have been designed to take into account spatial and

temporal mismatches in the verification of model forecasts (Casati

et al. 2008; Gillelandet al. 2009). For example, neighbourhood

methods (Roberts and Lean 2008; Amodeiet al.2015) can be used

to assess the skill of high-resolution models in predicting clouds

or precipitation occurring in a given spatial neighbourhood. Other

approaches, such as object-based methods (Daviset al. 2006),

are well suited to study how capable a model is of capturing

overall structures. However, these verification methods are two-

dimensional and a three-dimensional (3D) method is required

here because the synthetic observations are simulated in vertical

columns.

Other methods can be used to verify 3D forecast fields.

Typically, simulations and observations can be compared via their

Contoured Frequency by Altitude Diagram (CFAD, Yuter and

Houze 1995) within a given area (see for example Iguchiet al.

2012). CFADs represent the distribution of the reflectivity as a

function of the altitude. This is an effective way to obtain a

statistical view of how the ‘model + forward operator’ can capture

cloud vertical structures. If a full 3D structure is observed in a

sufficiently large area, the mismatched structures are more likely

to be captured by the model and expressed in the CFAD. However,

vertical cloud information is only available along the flight track

for the cloud radar RASTA. Therefore, some structures can be

missed in the RASTA observation dataset even though they are

simulated by the model. The Method for Object-Based Diagnostic

Evaluation (MODE, Daviset al. 2006), recently adapted for a

3D geometry by Milleret al. (2014), also requires a full 3D

description of distinct cloud objects in both the observations and

the simulations, which is not the case with the airborne cloud radar

RASTA.

In our case, each observed vertical profile along the aircraft

track should ideally be compared with the most resembling

vertical column simulated in the forecast field. None of the 3D

validation methods listed above are suitable for that purpose.
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Table 2. Minimum, step and maximum values for the diameterD, temperatureT and fraction liquid waterFw used to compute the T-matrix lookup tables for
each hydrometeor species.

Type D [mm] T [°] Fw [%]
rain 0.1;0.5;8 -20;1;40 100
cloud liquid water 0.005;0.01;1.5 -30;1;40 100
pristine ice 0.01;0.01;7.0 -70;1;10 0
dry graupel 0.05;0.15;10.0 -70;1;10 0
wet graupel 0.1;0.2;9.5 -10;1;10 0;10;100
snow 0.1;0.05;20 -70;10;1 0

The neighbourhood validation technique developed here is

derived from the one-dimensional (1D) Bayesian retrieval method

employed in the first step of the 1D+3DVar assimilation process

used to assimilate radar reflectivity in the Arome model (Caumont

et al. 2010; Wattrelotet al. 2014). The methodology behind

the MRC method is also similar to the Barkeret al. (2011)

construction algorithm, in which a 3D cloud scene is constructed

from passive satellite imagery and collocated 2D vertical

profiles of cloud properties. For each observed vertical profile,

model-equivalent vertical profiles are simulated within a given

neighbourhood around the observed location. The attenuation

is computed by positioning the aircraft at its altitude in all

considered vertical profiles. The simulated column for which the

standard deviation between the observations and simulations is

minimal is selected to validate and calibrate the forward operator.

Minimising the standard deviation instead of minimising the Root

Mean Square Error (RMSE), which was used in the 1D Bayesian

retrieval of Caumontet al. (2010) and the 3D cloud-construction

algorithm of Barkeret al.(2011), allows circumventing part of the

model and observation biases.

An illustration of the MRC method is given inFigure 2for a

portion of the flight of 29 September 2012. For each observed

vertical profile along the Falcon 20 track, the most resembling

simulated vertical profile is chosen in a 160-km-wide square

centred on each observation location. Vertical profiles are shown

for every four observation time-steps. The top panel shows the

observations, the middle panel shows the co-located simulations

and the retrieved vertical profiles are shown in the bottom panel.

The aircraft's altitude above sea level is indicated by the black

line. The single scattering properties are computed using the T-

matrix method and assuming all ice species and cloud liquid water

spherical (ie, axis ratior = 1). For raindrops, the axis ratio defined

in subsection 3.2is used.

Figure 2highlights the benefit of using the MRC neighbour-

hood method described above. Structures are much closer to the

observations in the retrieved profiles than in the co-located ones.

For example, at 13 UTC, while there are neither clouds nor

precipitation below an altitude of 6 km, the co-located simulated

profiles exhibit cloud structures at those levels. These structures

are no longer present in the retrieved profiles (bottom panel) at

approximately 13 UTC. Meanwhile, at 13:25 UTC, the MRC

method allows for the retrieval of the cloud structures that are

missing in the co-located profiles.

Therefore, using the MRC method, spatial mismatches can

be overcome. Each observed vertical profile is compared with

the most resembling simulated vertical profile in a given

neighbourhood. There is only one parameter that needs to be set

in this method: the size of the neighbourhood area used when

searching for the most resembling simulated vertical profile. This

is addressed in the next section.

4.1.2. Neighbourhood simulation domain size

For the sake of simplicity, the neighbourhood simulation domain

is defined by a square centred on the observation point. Because

the computation time increases with the size of the simulation

domain, it is time-expensive to have domain sizes that are too

large. Another reason for not having too large a domain is that

the profiles will become less representative further away, as the

meteorological environment can change over≈ 100 km scale. A

sensitivity study was performed to determine the optimal domain

size for the entire period of the study.

The validation process was performed for all flights for

neighbourhoods ranging from 0 km (i.e. co-located with the

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

Figure 2. Observed vertical profiles along the aircraft track (top panel) during Flight 17 on 29 September 2012. The corresponding co-located simulated profiles are in
the middle panel, and the retrieved simulated profiles are in the bottom panel. Time is on the x-axis and altitude is on the y-axis. The aircraft’s altitude above sea level is
indicated by the black line.

aircraft) to 160 km (i.e. a 320-km-wide square). This process is

repeated for all the observed vertical profiles available during the

3-hour time window centred on the forecast time. The comparison

was done as follows. RASTA reflectivities are discarded between

250 m below and 250 m above the aircraft, which corresponds

to the minimal measuring range of the nadir- and zenith-pointing

antennas. The vertical resolution of the model is coarser than

the vertical resolution of RASTA (60 versus 500 vertical levels).

Therefore, at each altitude level, the closest observation point

(in altitude) is taken for the comparison, so that the RASTA

observations match the vertical model grid.

Figure 3shows the standard deviation between the observed

and retrieved vertical profiles as a function of the simulation

domain size. The bootstrap confidence intervals were calculated

using the Bias-Corrected Accelerated Non-Parametric method

(BCa, see Efronet al. (1993) 14.3). This method requires a

set of independent data. Therefore, vertical profiles were only

sampled every 30 observation time-steps for all flights (≈ every

9 km). The results show that the standard deviation decreases

exponentially with the neighbourhood size. In addition, the error

bars get smaller when the domain size increases. The standard

deviation decreases rapidly between 0 km and 150 km and then

starts to tend towards a limit value (≈ 2 dB). With a 160-km-

wide square, the standard deviation is reduced to less than 5%

of its maximum value (≈ 8.45 dB). In addition, the error bars

remain approximately constant when the width of the square is

larger than 160 km. This size is also also reasonable compared to

typical scales of mesoscale variability. Therefore, we decided to

use a 160-km-wide square centred on each observation location

for the rest of the study.

4.2. Fitting modelled ice hydrometeor axis ratios to

measurements

In Figure 2, the reflectivity appears to be underestimated by an

order of 10 dB in the ice levels (above≈ 3.5 km). Such a bias

has also been seen in other studies (Hoganet al. 2012,Tyynela

et al. 2011) at the same frequency when Mie theory was used.

Therefore, it has been suggested that sphericity may not be a

valid approximation to compute single scattering properties for

vertically pointing radars.

As explained in Section3.2, the three ice species can be

modelled as oblate spheroids, each of them having their own axis
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Figure 3. Mean standard deviation (dB) between the observed and retrieved vertical profiles as a function of the width of the neighbourhood simulation domain (in km)
for all flights during the SOP1. The error bars represent the 90% bias-corrected and accelerated (BCa) bootstrap confidence intervals (see Efronet al.1993). (There are a
total of 3145 vertical columns.)

ratio. The aim of this section is to estimate the axis ratios that best

fit the observations for graupel, snow and pristine ice. Recall that

the raindrop’s axis ratio is defined using the Brandeset al. (2002)

formulation and that cloud liquid droplets are considered to be

spherical.

For ice species, many different values of the axis ratio can be

found in the literature. Hoganet al. (2012) chose an average axis

ratio of 0.6 but pointed out that this value may be influenced by

the type of cloud and by their past evolution. Korolev and Isaac

(2003) studied the distribution of ice particle axis ratios with a set

of 106 aircraft images collected in midlatitude and polar stratiform

clouds. Depending on the temperature, the average aspect ratio

of ice particles was found to range from 0.6 to 0.8. This range

of values is also consistent with the study of Garrettet al.

(2015) in which the median measured aspect ratio ranged from

0.6 to 0.85 depending on the extent of riming (e.g. aggregates,

moderately rimed and graupel categories). In addition, Matrosov

(2015) estimated ice particle axis ratios from Depolarization

Ratio measurements over mountains of approximately 0.5± 0.2

depending on the mass–diameter relationship. All these studies

suggest that choosing a single axis ratio for all ice species would

not be appropriate because they are all defined differently in the

ICE3 microphysical scheme.

Therefore, we decided to estimate three different axis ratios

for pristine ice (ri), snow (rs) and graupel (rg). It is assumed

that wet graupel particles have the same axis ratio as dry

graupel particles. For each triplet of axis ratios, simulations were

performed for all flights during the observing period. To isolate

spatial location errors, they were compared to the observations

using the MRC method described in Section4.1 with a 160-

km-wide box centred on each observation position along the

aircraft track. The optimal triplet of axis ratios was then retrieved

by minimising the standard deviation between observations and

simulations. For each combination of axis ratios, the standard

deviation between all observed and simulated vertical columns

was calculated. The standard deviation reaches its minimum for

an optimum triplet of axis ratios of:

• Graupel axis ratiorg = 0.8;

• Snow axis ratiors = 0.7;

• Pristine ice axis ratiori = 1.

In addition,Figure 4shows the standard deviation (on the y-

axis) between observations and simulations as a function of one
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the three ice species axis ratios (snow axis ratiors in Figure4a,

graupel axis ratiorg in Figure 4b and pristine ice axis ratiori

in Figure4c) when the corresponding two other ice species axis

ratios are fixed to a given value. Snow axis ratiors is the free

variable (on the x-axis) in Figure4a, graupel axis ratiorg is the

free variable in Figure4b and pristine ice axis ratiori is the free

variable in Figure4c. For these three Figures, data points are in

blue when the corresponding two other ice species are optimum

the axis ratios of, in red when they equal to 1 and in green when

they are low. The bootstrap confidence interval is also shown for

each standard deviation.

These figures demonstrate the sensitivity of the simulations to

the combination of therg, rs andri properties. Indeed, regardless

of the value of the snow axis ratio (rs) in Figure4a, if the pristine

ice and graupel are considered flattened (rg = 0.5 andri = 0.4,

green data points), the standard deviation is much larger than

when they are considered to be either spherical (red data points)

or with their optimal axis ratio values (rg = 0.8 andri = 1, blue

data points). The same conclusion can be drawn from Figures4b

and 4c where the variation is shown as a function of the graupel

(rg) and pristine ice (ri) axis ratios, respectively. Therefore, even

if the reflectivity is underestimated with the spherical assumption,

this approximation is still more appropriate than using axis ratios

that are too low.

When pristine ice and graupel are considered spherical (red data

points in Figure4a), above (below) a snow axis ratiors of 0.6, the

reflectivity is underestimated (overestimated), which explains why

the standard deviation increases when the snow axis ratio deviates

from this value ofrs. Even though it is slightly less pronounced

when the graupel and pristine ice optimal axis ratio values are

used (rg = 0.8 andri = 1, blue data points), a minimum standard

deviation is also obtained for a snow axis ratiors equal to 0.7.

The same behaviour is seen in Figure4b where the variation

is shown as a function of the graupel axis ratio (rg). An optimal

value of rg is reached and the effect is more pronounced when

the snow and pristine ice are considered to be spherical (red data

points). In addition, when both axis ratios are optimal (rs = 0.8

and ri = 1, blue data points), the standard deviation is minimal

for a graupel axis ratio equal to 0.8.

By contrast, Figure4c indicates that the optimal value for

the pristine ice axis ratiori is near 1. Indeed, regardless of

the values of the graupel and snow axis ratios, the standard

deviation decreases with increasing pristine ice axis ratio. This

result was unexpected because pristine ice exhibits many different

shapes in nature (Korolev and Isaac 2003), such as rosettes or

plate-like shapes (Liu 2008), for which the mean axis ratio is

expected to be smaller. To quantify the relative contributions

of the three ice species to the minimisation,Figure 5presents

the mean vertical profiles of snow (snowflake markers), graupel

(circle markers) and pristine ice (square markers) reflectivity over

the columns which have been retrieved via the MRC method when

ice particles are considered spheroidal with their optimal axis ratio

values.Figure 5shows that graupel is the ice species that mostly

contributes to the minimisation between altitudes of 3 km to 5-

6 km. Above an altitude of 6 km, the minimisation is mainly

dominated by snow. Pristine ice only starts to dominate over snow

above an altitude of about 9 km. Therefore, pristine ice is only

likely to dominate the radar signal in the upper parts of the clouds,

where the reflectivity is overestimated (seeFigure 2for instance),

probably because the microphysical scheme ICE3 produces too

much pristine ice. So the optimal pristine ice axis ratio is probably

overestimated (ri = 1 for a spherical particle) so as to give a lower

reflectivity in the upper parts of the clouds.

Figure 5. Mean vertical profiles of snow, graupel and pristine ice reflectivity (in
mm6.m−3) over all the vertical columns which have been retrieved via the MRC
method when when ice particles are considered spheroidal with their optimal
values of axis ratios (rg = 0.8, rs = 0.7, ri = 1). Snow is represented by the
snowflakes, graupel by the circles and pristine ice by the squares.)

The bootstrap confidence intervals in Figures4a, 4b and 4c

are sometimes as large as the difference between the standard
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Figure 4. Mean standard deviation (on the y-axis) between observations and simulations as a function of one the three ice species axis ratios (rs in Figure4a, rg in Figure
4bandri in Figure4c) when the corresponding two other ice species axis ratios are fixed to a given value. Snow axis ratiors is the free variable (on the x-axis) in Figure
4a, graupel is the free variable in Figure4b and pristine ice is the free variable in Figure4c. For these three Figures, data points are in blue when the corresponding two
other ice species are optimum the axis ratios of, in red when they equal to 1 and in green when they are low. The error bars represent the 90% bias-corrected and accelerated
(BCa) bootstrap confidence intervals (see Efronet al.1993).

deviations for two different successive evaluated axis ratios. These

large values can be attributed to the wide variety of data collected

by RASTA over all the flights. Applying the method to only one

flight can lead to a different triplet of axis ratios. For example,

for the IOP6 flight (24 October 2012), the optimum triplet of

axis ratios was 0.8 for graupel, 0.6 for snow and 1 for pristine

ice. In this specific case, the observed reflectivity exceeded 10

dBZ in a vertical layer more than 5-km wide with a model snow

content of up to 0.6 g m−3. The lower optimum snow axis ratio

obtained in this case can be explained by the largest particles

that, therefore, have lower axis ratios (Hoganet al. 2012). To

represent this property, a dependence on the reflectivity value or

the hydrometeor content could be taken into account to determine

the optimum axis ratios. However, the retrieval would become

much more complex because a total of at least six free parameters

would have to be estimated (one axis ratio plus one dependency

for each ice species).

In this study, the retrieved axis ratios for snow and graupel

are slightly higher than those usually reported. Indeed, Fontaine

et al. (2014) found a mean value of approximately 0.6 and the

interval of values reported by Matrosov (2015) was approximately

0.5± 0.2 depending on the mass–diameter relationship. The axis

ratios used by Putnamet al. (2017) are closer to our values (0.75

for snow and graupel); however, they model the oscillations of the

particles around the viewing angle. In our study, the oscillations

are not modelled; however, they are implicitly taken into account

via mean axis ratio values that are higher than the real ones.
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On average, using the retrieved optimum triplet of axis ratios

enhances the simulated reflectivity. This is demonstrated in

Figures 6 and 7 in which time–height cross sections of the

reflectivity are shown for RASTA observations (top panel),

spherical simulations (middle panel) and spheroidal simulations

(bottom panel) using the optimal values of the axis ratios. The

IOP6 flight (9 September 2012) is presented inFigure 6, and the

IOP16 flight (26 October 2012) is presented inFigure 7. In these

two cases, the vertical profiles of the reflectivity are closer to

the observations when snow and graupel are simulated as oblate

spheroids when their effective axis ratios are optimum (bottom

panel). Similar results are obtained for all flights during the

observing period; for all cases, it is found that there is much better

agreement between the observations and simulations when the

optimum effective axis ratios are chosen in the forward operator

to compute the single scattering properties.

4.3. Model–Observation comparison

In this section, vertical profiles of the reflectivity simulated with

the optimum triplet of axis ratios are compared with those of

the observations. To take into account spatial location errors, the

MRC method is used and observations are compared to the most

resembling simulated column found within a 160-km-wide box

centred on each observation location.

4.3.1. Contoured Frequency by Altitude Diagram (CFAD)

Contoured Frequency by Altitude Diagrams (CFADs, Yuter and

Houze 1995) are shown for the observations (Figure8a) and for

the reflectivity either simulated using the spherical assumption

(Figure 8c) or using the optimum triplet of axis ratios (Figure

8b). The CFADs were computed in bins of 1 dBZ for the

reflectivity and 500 m for the altitude. The number of points in

each reflectivity bin at each altitude level is represented by colour

shades.

For each observed vertical profile, the most resembling column

is not necessarily the same when the MRC method is applied to the

spheroidal simulations or to the spherical simulations. In all cases,

the best profiles (i.e. the most resembling profiles) are selected.

In general, the CFADs indicate that the model and observation

distributions have similar structures. Indeed, below an altitude of

approximately 3 km, most of the reflectivity lies between−10

dBZ and 10 dBZ in both the observations (Figure8a) and the

simulations (Figures8b and 8c). Above the bright band (∼ 3.5

km), the reflectivity is primarily distributed near 10 dBZ in the

observations, near 8 dBZ in the simulations when all ice species

are considered spherical and near 10 dBZ when their effective

axis ratios are optimum. Therefore, even though there is a bias

in the upper ice levels, the structures are close to each other in

both the observations and the simulations. This good agreement is

due to the MRC method, in which each observed vertical profile

is compared to the most resembling simulated one within the

simulation domain.

The CFADs are closer to the observations when the ice species

are modelled with their optimal axis ratio values (Figure8b) than

when they are assumed to be spherical (Figure8c). First, the

distribution of the reflectivity as a function of altitude has a more

continuous shape from the liquid water levels (below∼ 3.5 km)

to the ice levels (above∼ 3.5 km). Second, with the optimal axis

ratio values, most of the data are distributed around a value of

9–10 dBZ in the ice levels (above∼ 3.5 km), which is nearly

the same as in the observations. By contrast, with the spherical

approximation, the data are mostly distributed around 7–8 dBZ at

these levels.

This comparison demonstrates more realistic structures when

the optimum triplet of axis ratios is used in the cloud radar

forward operator to compute the model-equivalent profiles of the

reflectivity. Compared to the observations, the bright band is still

overestimated. This can be attributed to the overly simplified

assumptions in the modelling of the bright band in the forward

operator and in the microphysical scheme.

4.3.2. Mean vertical profiles

Figure 9 shows vertical profiles of the bias (left panel) and

the standard deviation (right panel) between the simulations and

observations for all flights. Simulations were carried out on all

flights every four time-steps (∼ 1.2 km), resulting in a total of

23,539 vertical columns. The curves are depicted in green when

the three ice species have small axis ratios (rg = 0.5, rs = 0.4 and

ri = 0.4), in red when the three are spherical and in blue when
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Figure 6. Time–height cross section during IOP6 (24 September 2012). RASTA observations are represented in the top panel, spherical simulations in the middle panel
and spheroidal (rg = 0.8, rs = 0.7 andri = 1) simulations in the bottom panel. Altitude (in km) is on the y-axis and time (in UTC) is on the x-axis. The aircraft’s
altitude above sea level is represented by the blue line.

Figure 7. Same asFigure 6for IOP16 (26 October 2012).

they all have their optimal axis ratio values (rg = 0.8, rs = 0.7

andri = 1).

The vertical profile of the bias (Figure 9, left panel) exhibits

a negative bias when the ice particles are spherical (red curve);

this is reduced when the ice particles have smaller axis ratios
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Figure 8. Cumulated distribution of the (b, c) simulated and (a) observed reflectivity as a function of altitude. Simulations were carried out on all flights every 6 s (a) with
the optimal triplet of axis ratios (rg = 0.8, rs = 0.7 andri = 1) and (b) when ice particles are considered spherical (rg = 1, rs = 1 andri = 1)

(green and blue curves). This is consistent with the tendency

of smaller axis ratios to increase the reflectivity for vertically

pointing radars. This underestimation of the mean reflectivity

when particles are considered spherical corroborates the previous

results for the time–vertical cross sections of the reflectivity

(Figure 6andFigure 7) and the CFADs (Figure 8).

In addition, the vertical profile of the standard deviation

(Figure 9, right panel) show that the simulations performed with

the optimum triplet of axis ratios are the best at each altitude

from 3.5 km to 12 km. Indeed, the standard deviation is quite

large for the spherical triplet of axis ratios. The standard deviation

decreases when the snow and graupel axis ratios decrease towards

their optimum values of 0.7 and 0.8, respectively. Finally, when

all axis ratios decrease towards smaller values (green curve),

the standard deviation increases again. Below an altitude of

approximately 3.5 km, the curves are slightly different even

though there are primarily raindrops and cloud liquid droplets at

these altitude levels. In all the simulations, raindrops are defined as

oblate spheroids, with axis ratios defined in Equation4 (Brandes

et al.(2002) formulation), and cloud liquid droplets are considered

to be spherical. Therefore, the differences between the curves are

attributed to the fact that changes in the ice particle shapes also

affect the extinction coefficient in the ice levels and, therefore, the

entirety of the vertical profiles of the reflectivity.

In Figure 9RASTA values at the noise level are also included in

the calculation, which explains why we only have a bias of about

1 dB with the spherical simulations.

When the radar reflectivity is only dominated by pristine ice in

the upper part of the clouds (above an altitude of≈ 10 km), even

though when the smallest pristine ice axis ratio is used (ie,ri = 1)

the reflectivity is overestimated. This indicates other biases in the
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Figure 9. Vertical profiles of the bias and the standard deviation (from left to right) between the simulations and observations for all flights during the observing period
(N = 23, 539). Simulations were carried out with the optimal triplet of axis ratios (rg = 0.8, rs = 0.7 andri = 1, blue curve), with small axis ratios (rg = 0.5,
rs = 0.4 andri = 0.4, green curve) and with all ice species considered spherical (red curve).

ICE3 microphysical scheme which tends to produce too much

pristine ice.

Note that there is a clear benefit of using the triplet of axis

ratios that have been retrieved globally by minimising the standard

deviation. Indeed, the simulations carried out with the retrieved

triplet of axis ratios (Figure 9, blue curve) have a smaller standard

deviation at each altitude level than the simulations carried out

with either smaller axis ratios (Figure 9, green curve) or a

spherical shape (Figure 9, red curve). In addition, there is a

reduction in the bias in the ice levels (from 3.5 km to 12 km).

5. Discussion and Conclusions

This paper describes a reflectivity forward operator that was

developed for the validation and the assimilation of cloud radar

data into Arome-class high-resolution NWP models. It was

designed in particular for vertically pointing W-band radars. The

forward operator takes as input the hydrometeor contents (rain,

cloud liquid droplet, pristine ice, graupel and snow), relative

humidity, pressure and temperature. It returns the simulated

reflectivity at each range gate from the radar and accounts for

hydrometeors and water vapour attenuation.

The forward operator is consistent with the ICE3 one-moment

microphysical scheme used in Arome. The T-matrix method

is employed to compute the single scattering properties. The

effective shape of the particle is either approximated by a sphere

or by an oblate spheroid defined by its axis ratio.

The forward operator was validated using data collected in

diverse conditions by the airborne cloud radar RASTA during

a two-month period over a region of the Mediterranean. To

disentangle spatial location errors in the model from errors in

the forward operator, a novel neighbourhood validation method,

the Most Resembling Column (MRC) method, was designed to

validate and calibrate the operator. This method allows us to

compare each observed vertical profile with the most resembling

simulated profile in a given neighbourhood. A 160-km-wide

square simulation domain centred on the observation location was

shown to be sufficient to reduce the effects of spatial mismatches.

This new method can be used for any forward operator designed

This article is protected by copyright. All rights reserved.
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for instruments measuring the vertical distribution of clouds and

precipitation (aboard spacecraft or ground-based).

The MRC method was then applied to retrieve the optimal

effective shapes (i.e. the mean axis ratios) of the predicted graupel,

snow and pristine ice, by minimising the standard deviation

between observations and simulations. Even though clouds do not

contain a significant quantity of spherical ice particles (Korolev

and Isaac 2003), the results indicate that pristine ice can be

approximated by a sphere. This discrepancy can be explained by a

bias in the ICE3 microphysical scheme which tends to produce too

much pristine ice. Therefore, to compensate this bias, the best fit

axis ratio is the one which gives the lowest reflectivity (ie,ri = 1

in our case). This spherical retrieval would not necessarily be the

same if the amount of pristine ice produced by the microphysical

scheme were more realistic. The optimum mean axis ratio is

approximately 0.8 for graupel and 0.7 for snow. Simulations

carried out with these optimal values were improved for all ice

levels (from 3.5 km to 12 km). The spherical approximation

leads to an underestimation of the simulated reflectivity by an

order of approximately 10 dB. Conversely, if the ice particles

are too flattened (i.e. having plate-like shapes), the reflectivity is

overestimated. Therefore, the axis ratios should be chosen to be

close to their optimal values to obtain good agreement between

observations and simulations.

In this study, the retrieved axis ratios were towards the higher

end of those reported in prior studies (∼ 0.5–0.8). Contrary to

most other studies, in this study the oscillation of the ice particles

around the viewing angle is not simulated explicitly. Instead, it is

taken into account by using an effective axis ratio, whose value is

supposed to be higher than the actual value. Also, one should bear

in mind that our confidence intervals are quite large.

Only one axis ratio can be retrieved per ice species. One

possibility would be to add a dependence either on the reflectivity

or on the hydrometeor content. It could also be interesting to

take advantage of the information provided by RASTA Doppler

measurements on the hydrometeor fall speed and, therefore, on

their sizes. In addition, the RASTA radar will soon be upgraded to

provide polarimetric data, which will be of particular interest for

characterizing the shapes of hydrometeors.

Prior studies pointed out that spheroids are not an ideal model

for snowflakes (Steinet al. 2015; Tyynelaet al. 2011). As an

alternative, more complex methods, such as the DDA, can be

used to account for non-sphericity (see for example Di Michele

et al. 2012, Iguchiet al. 2012). However, this study shows that

treating ice particles as oblate spheroids leads to good agreement

between observations and model simulations when the axis ratios

are properly specified. The same conclusion as stated by Hogan

et al. (2012) can be drawn: choosing a mean axis ratio to model

an effective shape is an efficient and convenient approximation at

this frequency for nadir/zenith-pointing radars.

The reflectivity forward operator developed here can be used

as a validation tool, for example to assess the benefits of a two-

moment microphysical scheme over a one-moment microphysical

scheme. This will be possible in the near future because a new

two-moment microphysical scheme (LIMA, see Viéet al. 2016)

is being implemented in Arome. This forward operator is also

the first step towards the assimilation of W-band radar data into

kilometre-scale NWP models. Currently, this type of data is not

assimilated in these models.

Acknowledgement

This work is a contribution to the HyMeX program supported

by MISTRALS, ANR IODA-MED Grant ANR-11-BS56-0005

and ANR MUSIC Grant ANR-14-CE01-0014. This work was

supported by the French national programme LEFE/INSU.

The authors acknowledge the DGA (Direction Générale de

l'Armement), a part of the French Ministry of Defense, for its

contribution to Mary Borderies's PhD. The authors are grateful

to Christian Chwala for providing the Python implementation of

the MPM millimetre wave propagation model. Two anonymous

reviewers are also gratefully acknowledged for their comments

that helped to significantly improve the quality of the paper.

References

Amodei M, Sanchez I, Stein J. 2015. Verification of the French operational

high-resolution model AROME with the regional Brier probability score.

Met. Apps22(4): 731–745, doi:10.1002/met.1510, URLhttp://dx.

doi.org/10.1002/met.1510.

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/met.1510
http://dx.doi.org/10.1002/met.1510


A
cc

ep
te

d 
A

rti
cl

e
Augros C, Caumont O, Ducrocq V, Gaussiat N, Tabary P. 2016. Comparisons

between S-, C- and X-band polarimetric radar observations and convective-

scale simulations of the HyMeX first special observing period.Quarterly

Journal of the Royal Meteorological Society142: 347–362, doi:10.1002/qj.

2572, URLhttp://dx.doi.org/10.1002/qj.2572.

Bailey M, Hallett J. 2004. Growth rates and habits of ice crystals

between -20◦ and -70◦C. Journal of the Atmospheric Sciences

61(5): 514–544, doi:10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.

CO;2, URL http://dx.doi.org/10.1175/1520-0469(2004)

061<0514:GRAHOI>2.0.CO;2.

Barker H, Jerg M, Wehr T, Kato S, Donovan D, Hogan R. 2011. A 3d

cloud-construction algorithm for the earthcare satellite mission.Quarterly

Journal of the Royal Meteorological Society137(657): 1042–1058, doi:

10.1002/qj.824.

Battaglia A, Ajewole M, Simmer C. 2007. Evaluation of radar multiple

scattering effects in Cloudsat configuration.Atmospheric Chemistry and

Physics7(7): 1719–1730.

Battaglia A, Tanelli S, Kobayashi S, Zrnic D, Hogan RJ, Simmer

C. 2010. Multiple-scattering in radar systems: A review.Journal of

Quantitative Spectroscopy and Radiative Transfer111(6): 917–947, doi:

10.1016/j.jqsrt.2009.11.024, URLhttp://dx.doi.org/10.1016/

j.jqsrt.2009.11.024.

Bodas-Salcedo A, Webb MJ, Brooks ME, Ringer MA, Williams KD, Milton

SF, Wilson DR. 2008. Evaluating cloud systems in the Met Office global

forecast model using simulated Cloudsat radar reflectivities.Journal of

Geophysical Research113, doi:10.1029/2007jd009620, URLhttp://

dx.doi.org/10.1029/2007jd009620.

Bouniol D, Protat A, Plana-Fattori A, Giraud M, Vinson JP, Grand N. 2008.

Comparison of Airborne and Spaceborne 95-GHz Radar Reflectivities and

Evaluation of Multiple Scattering Effects in Spaceborne Measurements.

Journal of Atmospheric and Oceanic Technology25(11): 1983–1995, doi:

10.1175/2008jtecha1011.1, URLhttp://dx.doi.org/10.1175/

2008JTECHA1011.1.

Bousquet O, Delanoë J, Bielli S. 2016. Evaluation of 3D wind observations

inferred from the analysis of airborne and ground-based radars during

HyMeX SOP-1.Quarterly Journal of the Royal Meteorological Society.

Brandes EA, Zhang G, Vivekanandan J. 2002. Experiments in Rain-

fall Estimation with a Polarimetric Radar in a Subtropical Environ-

ment. J. Appl. Meteor.41(6): 674–685, doi:10.1175/1520-0450(2002)

041<0674:eirewa>2.0.co;2, URLhttp://dx.doi.org/10.1175/

1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

Brousseau P, Desroziers G, Bouttier F, Chapnik B. 2014. A posterioridiag-

nostics of the impact of observations on the AROME-France convective-

scale data assimilation system.Quarterly Journal of the Royal Meteoro-

logical Society140(680): 982–994, doi:10.1002/qj.2179, URLhttp://

dx.doi.org/10.1002/qj.2179.

Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M,

Damrath U, Ebert EE, Brown BG, Mason S. 2008. Forecast verification:

current status and future directions.Met. Apps15(1): 3–18, doi:10.1002/

met.52, URLhttp://dx.doi.org/10.1002/met.52.

Caumont O, Ducrocq V, Wattrelot É, Jaubert G, Pradier-Vabre S. 2010.

1D+3DVar assimilation of radar reflectivity data: a proof of concept.Tellus

A 62(2): 173–187, doi:10.1111/j.1600-0870.2009.00430.x, URLhttp:

//dx.doi.org/10.1111/j.1600-0870.2009.00430.x.

Davis C, Brown B, Bullock R. 2006. Object-Based Verification of

Precipitation Forecasts. Part i: Methodology and Application to Mesoscale

Rain Areas.Monthly Weather Review134(7): 1772–1784, doi:10.1175/

mwr3145.1, URLhttp://dx.doi.org/10.1175/MWR3145.1.

Delanoë J, Hogan RJ. 2008. A variational scheme for retrieving ice cloud

properties from combined radar, lidar, and infrared radiometer.Journal of

Geophysical Research113(D7), doi:10.1029/2007jd009000, URLhttp:

//dx.doi.org/10.1029/2007JD009000.

Delanoë J, Protat A, Jourdan O, Pelon J, Papazzoni M, Dupuy R, Gayet

JF, Jouan C. 2013. Comparison of Airborne In Situ, Airborne Radar–

Lidar, and Spaceborne Radar–Lidar Retrievals of Polar Ice Cloud Properties

Sampled during the POLARCAT Campaign.Journal of Atmospheric and

Oceanic Technology30(1): 57–73, doi:10.1175/JTECH-D-11-00200.1,

URL http://dx.doi.org/10.1175/JTECH-D-11-00200.1.

Delanoë J, Protat A, Vinson JP, Brett W, Caudoux C, Bertrand F, Parent du

Chatelet J, Hallali R, Barthes L, Haeffelin M,et al. 2016. BASTA: A

95-GHz FMCW Doppler Radar for Cloud and Fog Studies.Journal of

Atmospheric and Oceanic Technology33(5): 1023–1038.

Di Michele S, Ahlgrimm M, Forbes R, Kulie M, Bennartz R, Janisková M,

Bauer P. 2012. Interpreting an evaluation of the ECMWF global model

with Cloudsat observations: ambiguities due to radar reflectivity forward

operator uncertainties.Q.J.R. Meteorol. Soc.138(669): 2047–2065, doi:

10.1002/qj.1936, URLhttp://dx.doi.org/10.1002/qj.1936.

Draine BT, Flatau PJ. 1994. Discrete-Dipole Approximation For Scattering

Calculations.J. Opt. Soc. Am. A11(4): 1491, doi:10.1364/josaa.11.001491,

URL http://dx.doi.org/10.1364/JOSAA.11.001491.

Ducrocq V, Braud I, Davolio S, Ferretti R, Flamant C, Jansa A, Kalthoff

N, Richard E, Taupier-Letage I, Ayral PA,et al. 2014. HyMeX-SOP1:

The field campaign dedicated to heavy precipitation and flash flooding in

the northwestern Mediterranean.Bulletin of the American Meteorological

Society95(7): 1083–1100.

Ebert E, Wilson L, Weigel A, Mittermaier M, Nurmi P, Gill P, Göber M, Joslyn

S, Brown B, Fowler T, Watkins A. 2013. Progress and challenges in forecast

verification.Meteorological Applications20(2): 130–139, doi:10.1002/met.

1392, URLhttps://doi.org/10.1002%2Fmet.1392.

Efron B, Tibshirani RJ,et al.1993. An introduction to the bootstrap.

Fontaine E, Schwarzenboeck A, Delanoë J, Wobrock W, Leroy D, Dupuy R,

Gourbeyre C, Protat A. 2014. Constraining mass–diameter relations from

hydrometeor images and cloud radar reflectivities in tropical continental

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1364/JOSAA.11.001491
http://dx.doi.org/10.1002/qj.1936
http://dx.doi.org/10.1175/JTECH-D-11-00200.1
http://dx.doi.org/10.1029/2007JD009000
http://dx.doi.org/10.1029/2007JD009000
http://dx.doi.org/10.1175/MWR3145.1
http://dx.doi.org/10.1111/j.1600-0870.2009.00430.x
http://dx.doi.org/10.1111/j.1600-0870.2009.00430.x
http://dx.doi.org/10.1002/met.52
http://dx.doi.org/10.1002/qj.2179
http://dx.doi.org/10.1002/qj.2179
http://dx.doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
http://dx.doi.org/10.1175/2008JTECHA1011.1
http://dx.doi.org/10.1175/2008JTECHA1011.1
http://dx.doi.org/10.1029/2007jd009620
http://dx.doi.org/10.1029/2007jd009620
http://dx.doi.org/10.1016/j.jqsrt.2009.11.024
http://dx.doi.org/10.1016/j.jqsrt.2009.11.024
http://dx.doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2
http://dx.doi.org/10.1002/qj.2572


A
cc

ep
te

d 
A

rti
cl

e
and oceanic convective anvils.Atmos. Chem. Phys.14(20): 11 367–

11 392, doi:10.5194/acp-14-11367-2014, URLhttp://dx.doi.org/

10.5194/acp-14-11367-2014.

Fourrié N, Bresson É, Nuret M, Jany C, Brousseau P, Doerenbecher A, Kreitz

M, Nuissier O, Sevault E, Bénichou H, et al. 2015. AROME-WMED, a real-

time mesoscale model designed for the HyMeX special observation periods.

Geosci. Model Dev.8(7): 1919–1941, doi:10.5194/gmd-8-1919-2015,

URL http://dx.doi.org/10.5194/gmd-8-1919-2015.

Garrett TJ, Yuter SE, Fallgatter C, Shkurko K, Rhodes SR, Endries JL.

2015. Orientations and aspect ratios of falling snow.Geophysical Research

Letters 42(11): 4617–4622, doi:10.1002/2015gl064040, URLhttp://

dx.doi.org/10.1002/2015GL064040.

Gilleland E, Ahijevych D, Brown BG, Casati B, Ebert EE. 2009.

Intercomparison of Spatial Forecast Verification Methods.Weather and

Forecasting 24(5): 1416–1430, doi:10.1175/2009waf2222269.1, URL

https://doi.org/10.1175%2F2009waf2222269.1.

Gultepe I, Isaac G. 2004. Aircraft observations of cloud droplet number

concentration: Implications for climate studies.Quarterly Journal of the

Royal Meteorological Society130(602): 2377–2390, doi:10.1256/qj.03.

120, URLhttps://doi.org/10.1256%2Fqj.03.120.

Hagen M, Hirsch L, Konow H, Mech FAM, Orlandi E, Crewell S, Groß S, Fix

A, Wirth M. 2014. Airborne remote sensing of cloud properties with the

german research aircraft HALO.

Haynes J, Marchand R, Luo Z, Bodas-Salcedo A, Stephens G. 2007.

A multipurpose radar simulation package: QuickBeam.Bulletin of the

American Meteorological Society88(11): 1723.

Hogan RJ, Tian L, Brown PRA, Westbrook CD, Heymsfield AJ, Eastment

JD. 2012. Radar Scattering from Ice Aggregates Using the Horizontally

Aligned Oblate Spheroid Approximation.Journal of Applied Meteorology

and Climatology 51(3): 655–671, doi:10.1175/jamc-d-11-074.1, URL

http://dx.doi.org/10.1175/JAMC-D-11-074.1.

Hong G. 2007. Radar backscattering properties of nonspherical ice

crystals at 94 GHz.Journal of Geophysical Research112(D22),

doi:10.1029/2007jd008839, URLhttp://dx.doi.org/10.1029/

2007JD008839.

Horie H, Okamoto H, Iwasaki S, Kumagai H, Kuroiwa H. 2000. Cloud

observation with CRL airborne cloud profiling radar (SPIDER). In:

Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS

2000. IEEE 2000 International, vol. 1. pp. 190–191 vol.1, doi:10.1109/

IGARSS.2000.860464.

Iguchi T, Nakajima T, Khain AP, Saito K, Takemura T, Okamoto H,

Nishizawa T, Tao WK. 2012. Evaluation of Cloud Microphysics in JMA-

NHM Simulations Using Bin or Bulk Microphysical Schemes through

Comparison with Cloud Radar Observations.Journal of the Atmospheric

Sciences69(8): 2566–2586, doi:10.1175/jas-d-11-0213.1, URLhttp:

//dx.doi.org/10.1175/JAS-D-11-0213.1.

Illingworth AJ, Barker HW, Beljaars A, Ceccaldi M, Chepfer H, Clerbaux

N, Cole J, Delanoë J, Domenech C, Donovan DP, et al. 2015. The

EarthCARE Satellite: The Next Step Forward in Global Measurements of

Clouds, Aerosols, Precipitation, and Radiation.Bulletin of the American

Meteorological Society96(8): 1311–1332, doi:10.1175/bams-d-12-00227.

1, URLhttp://dx.doi.org/10.1175/BAMS-D-12-00227.1.

Kintea DM, Hauk T, Roisman IV, Tropea C. 2015. Shape evolution

of a melting nonspherical particle.Phys. Rev. E92: 033 012, doi:

10.1103/PhysRevE.92.033012, URLhttps://link.aps.org/doi/

10.1103/PhysRevE.92.033012.

Kollias P, Clothiaux EE, Miller MA, Albrecht BA, Stephens GL, Ackerman

TP. 2007. Millimeter-wavelength radars: New frontier in atmospheric cloud

and precipitation research.Bulletin of the American Meteorological Society

88(10): 1608–1624, doi:10.1175/BAMS-88-10-1608, URLhttp://dx.

doi.org/10.1175/BAMS-88-10-1608.

Korolev A, Isaac G. 2003. Roundness and Aspect Ratio of Particles in

Ice Clouds.Journal of the Atmospheric Sciences60(15): 1795–1808,

doi:10.1175/1520-0469(2003)060<1795:raarop>2.0.co;2, URLhttp:

//dx.doi.org/10.1175/1520-0469(2003)060<1795:

RAAROP>2.0.CO;2.

Korolev A, Isaac G, Hallett J. 2000. Ice particle habits in stratiform

clouds.Quarterly Journal of the Royal Meteorological Society126(569):

2873–2902, doi:10.1256/smsqj.56912, URLhttp://dx.doi.org/

10.1256/smsqj.56912.

Leinonen J, Lebsock MD, Tanelli S, Suzuki K, Yashiro H, Miyamoto

Y. 2015. Performance assessment of a triple-frequency spaceborne

cloud–precipitation radar concept using a global cloud-resolving

model. Atmospheric Measurement Techniques8(8): 3493–3517, doi:

10.5194/amt-8-3493-2015, URLhttp://dx.doi.org/10.5194/

amt-8-3493-2015.

Lhermitte R. 1987. A 94 GHz Doppler radar for clouds observations.J. Atmos.

Oceanic Technol4: 36–48.

Li L, Heymsfield GM, Tian L, Racette PE. 2005. Measurements of

ocean surface backscattering using an airborne 94-GHz cloud radar-

implication for calibration of airborne and spaceborne W-band radars.

Journal of Atmospheric and Oceanic Technology22(7): 1033–1045,

doi:10.1175/JTECH1722.1, URLhttp://dx.doi.org/10.1175/

JTECH1722.1.

Li L, Sekelsky SM, Reising SC, Swift CT, Durden SL, Sadowy GA,

Dinardo SJ, Li FK, Huffman A, Stephens G, Babb DM, Rosenberger

HW. 2001. Retrieval of Atmospheric Attenuation Using Combined

Ground-Based and Airborne 95-GHz Cloud Radar Measurements.

Journal of Atmospheric and Oceanic Technology18(8): 1345–1353, doi:

10.1175/1520-0426(2001)018<1345:ROAAUC>2.0.CO;2, URLhttp:

//dx.doi.org/10.1175/1520-0426(2001)018<1345:

ROAAUC>2.0.CO;2.

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1175/1520-0426(2001)018<1345:ROAAUC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2001)018<1345:ROAAUC>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2001)018<1345:ROAAUC>2.0.CO;2
http://dx.doi.org/10.1175/JTECH1722.1
http://dx.doi.org/10.1175/JTECH1722.1
http://dx.doi.org/10.5194/amt-8-3493-2015
http://dx.doi.org/10.5194/amt-8-3493-2015
http://dx.doi.org/10.1256/smsqj.56912
http://dx.doi.org/10.1256/smsqj.56912
http://dx.doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-88-10-1608
http://dx.doi.org/10.1175/BAMS-88-10-1608
http://dx.doi.org/10.1175/BAMS-D-12-00227.1
http://dx.doi.org/10.1175/JAS-D-11-0213.1
http://dx.doi.org/10.1175/JAS-D-11-0213.1
http://dx.doi.org/10.1029/2007JD008839
http://dx.doi.org/10.1029/2007JD008839
http://dx.doi.org/10.1175/JAMC-D-11-074.1
http://dx.doi.org/10.1002/2015GL064040
http://dx.doi.org/10.1002/2015GL064040
http://dx.doi.org/10.5194/gmd-8-1919-2015
http://dx.doi.org/10.5194/acp-14-11367-2014
http://dx.doi.org/10.5194/acp-14-11367-2014


A
cc

ep
te

d 
A

rti
cl

e
Liebe HJ. 1985. An updated model for millimeter wave propagation in moist

air. Radio Science20(5): 1069–1089.

Liu G. 2008. A Database of Microwave Single-Scattering Properties for

Nonspherical Ice Particles.Bulletin of the American Meteorological Society

89(10): 1563–1570, doi:10.1175/2008bams2486.1, URLhttp://dx.

doi.org/10.1175/2008BAMS2486.1.

Matrosov S. 2008. Assessment of Radar Signal Attenuation Caused by

the Melting Hydrometeor Layer.IEEE Transactions on Geoscience and

Remote Sensing46(4): 1039–1047, doi:10.1109/tgrs.2008.915757, URL

http://dx.doi.org/10.1109/TGRS.2008.915757.

Matrosov SY. 2015. Evaluations of the Spheroidal Particle Model for

Describing Cloud Radar Depolarization Ratios of Ice Hydrometeors.

Journal of Atmospheric and Oceanic Technology32(5): 865–879, doi:

10.1175/jtech-d-14-00115.1, URLhttp://dx.doi.org/10.1175/

JTECH-D-14-00115.1.

Miller SD, Weeks CE, Bullock RG, Forsythe JM, Kucera PA, Brown BG,

Wolff CA, Partain PT, Jones AS, Johnson DB. 2014. Model-Evaluation

Tools for Three-Dimensional Cloud Verification via Spaceborne Active

Sensors.Journal of Applied Meteorology and Climatology53(9): 2181–

2195, doi:10.1175/jamc-d-13-0322.1, URLhttp://dx.doi.org/

10.1175/JAMC-D-13-0322.1.

Mishchenko MI, Travis LD, Mackowski DW. 1996. T-matrix computations

of light scattering by nonspherical particles: A review.Journal of

Quantitative Spectroscopy and Radiative Transfer55(5): 535–575,

doi:10.1016/0022-4073(96)00002-7, URLhttp://dx.doi.org/10.

1016/0022-4073(96)00002-7.

Mitra S, Vohl O, Ahr M, Pruppacher H. 1990. A wind tunnel and

theoretical study of the melting behavior of atmospheric ice particles.

iv: Experiment and theory for snow flakes.Journal of the Atmospheric

Sciences47(5): 584–591, doi:10.1175/1520-0469(1990)047<0584:awtats>

2.0.co;2, URLhttps://doi.org/10.1175/1520-0469(1990)

047<0584:AWTATS>2.0.CO;2.

Mitrescu C, Miller S, Hawkins J, L’Ecuyer T, Turk J, Partain P,

Stephens G. 2008. Near-real-time applications of cloudsat data.Journal

of Applied Meteorology and Climatology47(7): 1982–1994, doi:

10.1175/2007JAMC1794.1, URLhttp://dx.doi.org/10.1175/

2007JAMC1794.1.

Moran KP, Martner BE, Post MJ, Kropfli RA, Welsh DC, Widener

KB. 1998. An Unattended Cloud-Profiling Radar for Use in Cli-

mate Research.Bulletin of the American Meteorological Society

79(3): 443–455, doi:10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.

CO;2, URL http://dx.doi.org/10.1175/1520-0477(1998)

079<0443:AUCPRF>2.0.CO;2.

Pinty J, Jabouille P. 1998. A mixed-phase cloud parameterization for use

in mesoscale non-hydrostatic model: simulations of a squall line and of

orographic precipitations. In:Conf. on Cloud Physics. Amer. Meteor. Soc

Everett, WA, pp. 217–220.

Protat A, Bouniol D, Delanoë J, O’Connor E, May P, Plana-Fattori A, Hasson

A, Görsdorf U, Heymsfield A. 2009. Assessment of CloudSat reflectivity

measurements and ice cloud properties using ground-based and airborne

cloud radar observations.Journal of Atmospheric and Oceanic Technology

26(9): 1717–1741, doi:10.1175/2009JTECHA1246.1, URLhttp://dx.

doi.org/10.1175/2009JTECHA1246.1.

Protat A, Delanoë J, Strapp J, Fontaine E, Leroy D, Schwarzenboeck A,

Lilie L, Davison C, Dezitter F, Grandin A,et al. 2016. The Measured

Relationship between Ice Water Content and Cloud Radar Reflectivity

in Tropical Convective clouds.Journal of Applied Meteorology and

Climatology(2016).

Protat A, Young SA, Rikus L, Whimpey M. 2014. Evaluation of hydrometeor

frequency of occurrence in a limited-area numerical weather prediction

system using near real-time CloudSat-CALIPSO observations.Q.J.R.

Meteorol. Soc.140(685): 2430–2443, doi:10.1002/qj.2308, URLhttp:

//dx.doi.org/10.1002/qj.2308.

Putnam BJ, Xue M, Jung Y, Zhang G, Kong F. 2017. Simulation of

Polarimetric Radar Variables from 2013 CAPS Spring Experiment Storm-

Scale Ensemble Forecasts and Evaluation of Microphysics Schemes.

Monthly Weather Review145(1): 49–73, doi:10.1175/mwr-d-15-0415.1,

URL https://doi.org/10.1175%2Fmwr-d-15-0415.1.

Reitter S, Fröhlich K, Seifert A, Crewell S, Mech M. 2011. Evaluation

of ice and snow content in the global numerical weather prediction

model GMe with CloudSat.Geosci. Model Dev.4(3): 579–589, doi:

10.5194/gmd-4-579-2011, URLhttp://dx.doi.org/10.5194/

gmd-4-579-2011.

Roberts NM, Lean HW. 2008. Scale-Selective Verification of Rainfall

Accumulations from High-Resolution Forecasts of Convective Events.

Monthly Weather Review136(1): 78–97, doi:10.1175/2007mwr2123.1,

URL http://dx.doi.org/10.1175/2007MWR2123.1.

Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Mas-

son V. 2011. The AROME-France Convective-Scale Operational Model.

Monthly Weather Review139(3): 976–991, doi:10.1175/2010mwr3425.1,

URL http://dx.doi.org/10.1175/2010MWR3425.1.

Squires P. 1958. The Microstructure and Colloidal Stability of Warm Clouds.

Tellus 10(2): 256–261, doi:10.3402/tellusa.v10i2.9229, URLhttps://

doi.org/10.3402%2Ftellusa.v10i2.9229.

Stein TH, Westbrook CD, Nicol J. 2015. Fractal geometry of aggregate

snowflakes revealed by triple-wavelength radar measurements.Geophysical

Research Letters42(1): 176–183, doi:10.1002/2014gl062170.

Stephens GL. 2005. Cloud Feedbacks in the Climate System: A Critical

Review.J. Climate18(2): 237–273, doi:10.1175/jcli-3243.1, URLhttp:

//dx.doi.org/10.1175/JCLI-3243.1.

Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth

AJ, O’Connor EJ, Rossow WB, Durden SL, et al. 2002. THE CLOUDSAT

MISSION AND THE A-TRAIN. Bulletin of the American Meteorological

Society83(12): 1771–1790, doi:10.1175/bams-83-12-1771, URLhttp:

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1175/bams-83-12-1771
http://dx.doi.org/10.1175/JCLI-3243.1
http://dx.doi.org/10.1175/JCLI-3243.1
http://dx.doi.org/10.1175/2010MWR3425.1
http://dx.doi.org/10.1175/2007MWR2123.1
http://dx.doi.org/10.5194/gmd-4-579-2011
http://dx.doi.org/10.5194/gmd-4-579-2011
http://dx.doi.org/10.1002/qj.2308
http://dx.doi.org/10.1002/qj.2308
http://dx.doi.org/10.1175/2009JTECHA1246.1
http://dx.doi.org/10.1175/2009JTECHA1246.1
http://dx.doi.org/10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2
http://dx.doi.org/10.1175/2007JAMC1794.1
http://dx.doi.org/10.1175/2007JAMC1794.1
http://dx.doi.org/10.1016/0022-4073(96)00002-7
http://dx.doi.org/10.1016/0022-4073(96)00002-7
http://dx.doi.org/10.1175/JAMC-D-13-0322.1
http://dx.doi.org/10.1175/JAMC-D-13-0322.1
http://dx.doi.org/10.1175/JTECH-D-14-00115.1
http://dx.doi.org/10.1175/JTECH-D-14-00115.1
http://dx.doi.org/10.1109/TGRS.2008.915757
http://dx.doi.org/10.1175/2008BAMS2486.1
http://dx.doi.org/10.1175/2008BAMS2486.1


A
cc

ep
te

d 
A

rti
cl

e
//dx.doi.org/10.1175/bams-83-12-1771.

Tyynela J, Leinonen J, Moisseev D, Nousiainen T. 2011. Radar Backscattering

from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid

Models.Journal of Atmospheric and Oceanic Technology28(11): 1365–

1372, doi:10.1175/jtech-d-11-00004.1, URLhttp://dx.doi.org/

10.1175/JTECH-D-11-00004.1.

Vié B, Pinty JP, Berthet S, Leriche M. 2016. LIMA (v1.0): A quasi

two-moment microphysical scheme driven by a multimodal population

of cloud condensation and ice freezing nuclei.Geoscientific Model

Development9(2): 567–586, doi:10.5194/gmd-9-567-2016, URLhttps:

//doi.org/10.5194%2Fgmd-9-567-2016.

Wattrelot E, Caumont O, Mahfouf JF. 2014. Operational Implementation

of the 1D+3D-Var Assimilation Method of Radar Reflectivity Data in

the AROME Model.Monthly Weather Review142(5): 1852–1873, doi:

10.1175/mwr-d-13-00230.1, URLhttp://dx.doi.org/10.1175/

MWR-D-13-00230.1.

Wolde M, Pazmany A. 2005. NRC Dual-Frequency Airborne Radar for

Atmospheric Research.

Yuter SE, Houze RA. 1995. Three-Dimensional Kinematic and

Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency

Distributions of Vertical Velocity, Reflectivity, and Differential

Reflectivity. Monthly Weather Review123(7): 1941–1963, doi:

10.1175/1520-0493(1995)123<1941:tdkame>2.0.co;2, URLhttp:

//dx.doi.org/10.1175/1520-0493(1995)123<1941:

TDKAME>2.0.CO;2.

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
http://dx.doi.org/10.1175/MWR-D-13-00230.1
http://dx.doi.org/10.1175/MWR-D-13-00230.1
http://dx.doi.org/10.1175/JTECH-D-11-00004.1
http://dx.doi.org/10.1175/JTECH-D-11-00004.1

	1 Introduction
	2 Cloud radar data and model simulations
	2.1 RASTA radar
	2.2 Period of study and radar data
	2.3 The Arome-WMed NWP model

	3 Description of the forward operator
	3.1 Radar equation
	3.2 Single scattering properties
	3.3 Hydrometeor dielectric characteristics
	3.4 T-matrix lookup tables

	4 Validation of the radar forward operator
	4.1 The Most Resembling Column (MRC) method
	4.1.1 Description of the method
	4.1.2 Neighbourhood simulation domain size

	4.2 Fitting modelled ice hydrometeor axis ratios to measurements
	4.3 Model…Observation comparison
	4.3.1 Contoured Frequency by Altitude Diagram (CFAD)
	4.3.2 Mean vertical profiles


	5 Discussion and Conclusions

