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Abstract Mutual impedance experiments have been developed to constrain the plasma bulk properties,
such as density and temperature, of ionospheric and later space plasmas, through the electric coupling
between an emitter and a receiver electric antennas. So far, the analytical modeling of such instruments has
enabled to treat ionospheric plasmas, where charged particles are usually well characterized by Maxwellian
electron distributions. With the growth of planetary exploration, mutual impedance experiments are or will
be used to constrain space plasma bulk properties. Space plasmas are usually out of local thermodynamic
equilibrium; therefore, new methods to calibrate and analyze mutual impedance experiments are now
required in such non-Maxwellian plasmas. To this purpose, this work aims at modeling the electric potential
generated in a two-electron temperature plasma by a pulsating point charge. A numerical method
is developed for the computation of the electrostatic potential in a sum of Maxwellian plasmas. After
validating the method, the results are used to build synthetic mutual impedance spectra and quantify the
effect of a warm electron population on mutual impedance experiments, in order to illustrate how the
method could be applied for recent and future planetary space missions, such as Rosetta, BepiColombo,
and JUICE. In particular, we show how it enables to separate the densities and temperatures of two
different electron populations using in situ measurements from the RPC-MIP mutual impedance experiment
on board Rosetta.

1. Introduction

Mutual impedance probe experiments have been used in various ionized environments, from ionospheric
to interplanetary plasmas, to constrain plasma parameters such as the electron density, the electron
temperature, and the plasma drift velocity. From the 1970s, such experiments have been launched on the
ionospheric rocket CISASPE (Beghin & Debrie, 1972), as well as satellites such as Geostationary Earth Orbit
Satellite 1 (or GEOS-1) (Décréau et al., 1978), ARCAD-3 (Beghin et al., 1982), VIKING (Bahnsen et al., 1986),
Rosetta (Trotignon et al., 2007), and are planned for future space missions: BepiColombo (Trotignon et al.,
2006) and JUICE. These experiments included an active electrical probe usually made of two receiving and
two transmitting electric antennas. The probe operates close to the typical plasma frequencies which are typ-
ically found in the radio frequency (RF) range in space plasma environments. A RF electric field is induced in
the probed medium through the transmitters with the help of a frequency adjustable current generator. Then
the induced voltage (amplitude and phase) between the receivers is recorded as a function of the frequency.
The voltage acquired in the plasma is divided by the voltage acquired in vacuum to provide the so-called
response of the probe. More information about mutual impedance probes can be found in Storey et al. (1969)
and Storey (1998).

Plasma properties are determined from the response of the probe. In the following, we focus on the fre-
quency range close to the plasma frequency which enables to constrain the plasma density. The instrumental
response strongly depends on the electron velocity distribution function (evdf). Many theoretical works have
been published for the past five decades (Beghin, 1995; Grard, 1969; Navet et al., 1971; Pottelette et al., 1975;
Rooy et al., 1972), using different analytical approximations of the plasma dielectric function corresponding
to different plasma conditions, from the cold case to a hot plasma with different velocity distributions, some
of which are summarized in Chasseriaux et al. (1972). Both the collisional and collisionless cases have been
investigated. To better take into account the behavior of a thermal plasma on mutual impedance experiments,
including the Landau damping of the waves emitted by the transmitters, Beghin (1995) determined the
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analytical solution of the potential radiated by a point source in a collisionless Maxwellian plasma, using a
series expansion of the dielectric function.

Such approximations are consistent in ionospheric plasmas. However, interplanetary plasmas are usually col-
lisionless and therefore are characterized by non thermalized velocity distribution functions. In particular,
suprathermal electrons have been commonly observed in space plasmas, superposed to a Maxwellian-like
core (Pilipp et al., 1987). Such evdf are usually described by the superposition of two Maxwellian evdf, or by a
kappa function (Pierrard & Lazar, 2010).

Previous authors investigated the influence of suprathermal electrons on active experiments such as mutual
impedance probes. These previous approaches had the advantage to enable analytic computations of the
potential radiated in a plasma in specific plasma or geometric situations that are tractable analytically.

Grard (1997) investigated the influence of suprathermal electrons on mutual impedance probes by consid-
ering monoenergetic electron distribution functions. However, this approach does not include the influence
of thermal effects, such as Landau damping, on the propagation of the electric potential from the emitting
to the receiving antenna, which are known to strongly impact the mutual impedance spectra at frequen-
cies above the plasma frequency. In this work, we aim at developing a method that will allow to account for
the collisionless Landau damping of the potential radiated by the emitting antennas of mutual impedance
experiments.

Pottelette and Storey (1981) approximated the influence of two populations with Maxwellian distribution
using specific values for the temperature ratio and the hot-to-cold population density ratio. However, the
analytic dipole approximation used in this approach is valid in the limit of (i) an emitter-receiver distance
l much larger that the emitter-emitter and receiver-receiver distances and (ii) an emitter-receiver distance
much larger that the hot and cold Debye lengths. While such a configuration can be of strong interest in iono-
spheric plasmas (where the Debye length is much smaller than the experiment size), interplanetary plasmas
are often characterized by a Debye length that is not much larger than typical electric antennas, but rather of
similar size: in the solar wind, the Debye length is about 20 m at 1 AU, while it has been evaluated to be in the
30 cm to 1 m range for the cometary ionosphere probed by Rosetta (Odelstad et al., 2015). Moreover, active
electric antennas on board interplanetary spacecraft such as Rosetta, BepiColombo, and JUICE are designed
such that the emitter-receiver distances are of the order of the emitter-emitter and receiver-receiver distances,
in the 1–20 m range. It is therefore necessary to develop a method that also enables to model the radiated
electric potential at short distances from the emitter, at least at distances of the order of the Debye length
itself, as addressed in this work.

This study also intends to extend the work done for a collisionless Maxwellian plasma in Beghin (1995) to a
plasma composed of two-electron populations, modeled as the superposition of two isotropic Maxwellian
evdf. The series development proposed in Beghin (1995) for a Maxwellian evdf would be particularly tedious
in the case of a sum of two Maxwellian evdf. This is the reason why we decided to use a direct numerical inte-
gration of the potential radiated by a point source. We first validate the computation method by comparing
the numerical results to the analytical ones in the cases of a cold and a Maxwellian evdf plasma. Then, we
study a sum of two Maxwellian isotropic collisionless plasmas situation. We focus our study on the unmagne-
tized plasma limit, that is, to plasmas where the electron plasma frequency is much larger than the electron
cyclotron frequency. In the electrostatic regime close to the electron plasma frequency, both the ion dynamics
and the influence of the magnetic field can be neglected. We hereafter consider a fixed background of ions,
together with global neutrality. The plasma electrostatic sheath surrounding the probe immersed in the
plasma is neglected in this work. Its contribution to the response of the probe, necessary to properly model
mutual impedance probe data, will be studied in a future publication.

This paper is organized as follows. The theoretical expression of the potential induced by a pulsating point
charge in an isotropic plasma is recalled in section 2 for different evdf of interest. In section 3, the numerical
method used to compute the radiated electric potential in a plasma is presented and validated. In section 4,
we discuss the ideal response of a mutual impedance probe immersed in a sum of two Maxwellian evdf plasma
and compare it to a single-electron population plasma. Finally, the method is applied on a data set from the
Rosetta mutual impedance experiment RPC-MIP in section 5.3 to illustrate how the density and temperature
of the two different electron populations can be extracted. We conclude our study in section 6.
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2. Potential Induced by a Pulsating Point Charge in an Isotropic Plasma

The potential 𝜙 induced in an isotropic, homogeneous plasma by a pulsating point charge Q ⋅ exp (i𝜔t), at
frequency 𝜔, at a radial distance r from the charge (Chasseriaux et al., 1972) is given by

𝜙 (𝜔, r) = Q
4𝜋𝜀0

2
𝜋

lim
Im (𝜔)→0

∞

∫
0

sin (kr)
kr

dk
𝜀l (k, 𝜔)

(1)

with 𝜀l the longitudinal dielectric function of the plasma, k the wave vector, and 𝜀0 the vacuum permittivity
(see Beghin (1995), and reference therein, for more details).

In this section, we remind the expression of the longitudinal dielectric function in the cases of a cold and a
sum of Maxwellian plasmas, respectively, and we introduce the notations used in the rest of the work.

2.1. Cold Plasma
The cold plasma is the limit case of a Maxwellian plasma with an electron temperature Te=0. The dielectric
function in a cold collisionless plasma is given by

𝜀cold
l (𝜔) = 1 −

(
𝜔p

𝜔

)2

(2)

where the electron plasma frequency 𝜔p is defined by

𝜔p =

√
nee2

𝜀0me
(3)

with the electron density ne, the elementary charge e, the electron mass me, and the vacuum permittivity 𝜀0.
The dielectric function 𝜀l does not depend on the wave vector k in the cold plasma limit.

Using equation (1), the potential 𝜙 induced in a cold, collisionless plasma by a pulsating point charge Q(𝜔) at
frequency 𝜔 finally reads

𝜙 (𝜔, r) = Q
4𝜋𝜀0r

𝜔2

𝜔2 − 𝜔2
p

(4)

while𝜙0 =Q∕
(

4𝜋𝜀0r
)

is the potential induced by the pulsating point charge at a radial distance r in free space.
Finally, the potential induced in a cold plasma, normalized to the potential induced in vacuum, reads

𝜙

𝜙0
(𝜔) = 𝜔2

𝜔2 − 𝜔2
p

(5)

2.2. A Sum of Maxwellian Plasma
A sum of m Maxwellian evdf is characterized by electron density ni and the temperature Ti of each population.
These parameters provide the electron thermal velocity vth,i and the Debye length 𝜆D,i :

vth,i =

√
kBTi

me
(6)

𝜆D,i =

√
𝜀0kBTi

nie2
(7)

with kB the Boltzmann constant. We hereafter define the plasma frequencies 𝜔2
p,i =

ni e2

𝜀0me
, so that the (total)

plasma frequency reads 𝜔2
p =

∑m
i=1 𝜔

2
p,i . Moreover, we will make use of the ratios of density (resp. temperature)

with the first population 𝜇i =
N1

Ni
(resp. 𝜏i =

T1

Ti
) where Nj is the density nj normalized by the total density. For a

collisionless isotropic plasma with a sum of Maxwellian evdf, the dielectric function is given by

𝜀m
l (K ,Ω) = 1 −

m∑
i=1

Y2
i

Ω2
i

Z′(Yi) (8)
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where

K = k𝜆D,1 (9)

Ωi =
𝜔

𝜔p,i
(10)

𝜆D,i =
√

𝜇i

𝜏i
𝜆D,1 (11)

Yi =
Ωi√

2𝜇i∕𝜏iK
(12)

and Z′ is the first derivative of the plasma dispersion function Z (Fried & Conte, 1961). This function satisfies
the differential equation Z′ (y)=−2 (1 + y ⋅ Z (y)) and derived from the Faddeeva function w (or the scaled
complex complementary error function):

Z (y) = i
√
𝜋w (y) (13)

defined by

w (y) = exp
(
−y2

) ⎛⎜⎜⎝1 + 2i√
𝜋

y

∫
0

exp
(

t2
)

dt
⎞⎟⎟⎠ (14)

Normalizing the distance to the point source using the Debye length of the first population R= r
𝜆D,1

, the electric

potential reads

𝜙

𝜙0
(Ω, R) = 2R

𝜋
lim

Im (Ω)→0

∞

∫
0

sin (KR)
KR

1
𝜀m

l (K ,Ω)
dK (15)

In this study, we focus on a Maxwellian plasma (m=1) and a two-electron temperature plasma (m=2). For a
Maxwellian plasma, 𝜆D,1 is noted 𝜆D. For m= 2, the evdf is characterized by four parameters: n1 = nh, n2 = nc,
T1 = Th, and T2 = Tc which are, respectively, the electron density of the hottest electron population and the
electron density of the coldest one their corresponding electron temperatures.

The potential induced by a pulsating charge in a plasma (equation (15)) is required to compute the response
of a mutual impedance probe, as shown in the next section.

2.3. Response of a Mutual Impedance Probe
We hereafter consider a mutual impedance probe, composed of two electric monopole antenna receivers
and different electric emitters. The emitters inject a constant current I, acting as pulsating point charges, at
a given frequency 𝜔, while the receivers measure the (complex) amplitude of the electric potential at the
same frequency. A mutual impedance spectrum is build by varying, step by step, the emitted frequency.
The mutual impedance Z(𝜔) = ΔV(𝜔)∕I is then defined as the difference between the electric potential
ΔV(𝜔) = VR2

(𝜔) − VR1
(𝜔), radiated by the different emitters at frequency 𝜔 and measured by two receivers

R1 and R2 at this same frequency. To isolated the effect of the plasma on the potential radiated by the emis-
sion part of a mutual impedance probe, we work with the mutual impedance spectrum normalized to the
spectrum that is obtained in vacuum

H(𝜔) = ΔZ
ΔZ0

=
VR2

(𝜔) − VR1
(𝜔)

VR2 ,0
− VR1 ,0

(16)

where ΔZ and ΔZ0 represent the mutual impedance of a probe surrounded by a plasma and by the vacuum,
respectively, and VRi

(resp. VRi ,0
) is the voltage measured by the receiver Ri in the plasma (resp. in vacuum)

which are defined as follows:

VRi ,0
= 1

4𝜋𝜖0

∑
j=1

qj

dij
(17)

VRi
(𝜔) = 1

4𝜋𝜖0

∑
j=1

𝜙

𝜙0
(Ω, dij∕𝜆D,1)

qj

dij
(18)
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where qj is the charge of the jth emitter and dij is the distance between the receiver Ri and the jth emitter.
In this study, the mutual impedance probe is considered at electric charge equilibrium, that is,

∑
qj = 0. H(𝜔)

is called response in the rest of the paper.

2.4. Linear Eigenmodes
In this section, we remind the analytic approximations of the linear eigenmodes of cold, Maxwellian and
two Maxwellian electrostatic plasmas. They enable a simplified interpretation of the propagation of the
electric potential in a plasma and also enable to quickly locate the resonances that are observed in mutual
impedance spectra.

They can be found in classic plasma textbooks as poles of the dielectric function, computed in specific regimes
that are tractable analytically. The numerical integration described in the next section will allow to compute
the radiated potential without working in the range of parameters for which these analytic approximations
are derived. However we choose in this section to discuss those approximated electrostatic linear eigenmodes
in order to enable physical insight into the results presented in the rest of the paper.

1. In the cold plasma case, the dielectric is such that the only eigenmode mode is found at the plasma
frequency.

2. In the Maxwellian plasma case, at high enough frequencies, such that the ions can be considered at rest,
the least damped poles of the dielectric function are the Langmuir waves characterized in the large phase
velocity limit 𝜔∕k ≫ vth by the dispersion relation (Krall & Trivelpiece, 1973):

𝜔L(k) = 𝜔p

√
1 + 3(k𝜆D)2 − i

√
𝜋

8

𝜔p

(k𝜆D)3
e
− 1

2(k𝜆D)2
− 3

2 (19)

3. In a plasma characterized by a sum of two Maxwellian evdf, the Langmuir branch is modified in a way such
that the thermal correction is mainly influenced by the hot electron component (through the total elec-
tron pressure, which is roughly the hot electron pressure), while the waves oscillate at the (total) plasma
frequency. With vh (resp. vc) the thermal velocity of the hot (resp. cold) electron population and nh (resp. ntot)
the hot (resp. total) electron density, the associated complex frequency 𝜔L2 can be expressed in the limit
𝜔

k
≫vh ≫vc, (Buti & Yu, 1981), as

𝜔L2(k) = 𝜔p

√
1 + 3

(
nh

ntot

)2

(k𝜆D,h)2 − i

√
𝜋

8

𝜔p

(k𝜆D,h)3
e
− 1

2(k𝜆D,h)2 (20)

Moreover, a two-electron temperature plasma is characterized by the existence of another electrostatic mode:
the electron acoustic wave. In the limit vc ≪

𝜔

k
≪ vh (Gary, 1993), the electron acoustic mode is characterized

by the following dispersion relation:

𝜔EAW(k) = 𝜔p,c

√
1 + 3k2𝜆2

D,c −
1

k2𝜆2
D,h

− i

√
𝜋

8

𝜔p,c

(k𝜆D,h)3
(21)

In a two-electron fluid approximation and in the limit of an intermediate phase velocity vc ≪
𝜔

k
≪ vh, the

electron acoustic mode is such that the plasma essentially oscillates with the inertia of the cold electron pop-
ulation (wp,c term), under the effect of the restoring electric and the pressure gradient forces, where the total
pressure is dominated by the hot electron pressure. In the case of similar cold and hot electron pressure, the
electron acoustic mode would be heavily Landau damped (as shown by a kinetic treatment) and would not
propagate in the plasma anymore. Note that the electron acoustic mode in a two-electron population plasma
is somehow equivalent to the ion acoustic mode in an ion-electron plasma, for which the ions oscillate under
their own inertia and the effect of the restoring electric and the pressure gradient forces, where the pressure
is essentially the electron pressure to avoid a strong Landau damping of the ion acoustic mode.

These modes structure the electric potential radiated in an unmagnetized plasma characterized by a single
Maxwellian evdf and a sum of two Maxwellian evdf. In particular, they determine the resonances that shape
the mutual impedance spectra. These analytic approximations are used, in the numerical computation of the
radiated potential described in the next section, to identify the location of the poles of the dielectric function
in K-space.
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Figure 1. Real and imaginary parts of the (top) inverse of the dielectric
function on the Maxwellian limit for Ω=1.05 and a (bottom) sum of two
Maxwellian evdf for Ω=1.05, 𝜇=0.11, and 𝜏=100 with a zoom on the
neighborhood of the poles.

3. Computation of the Potential

This section describes the highlights of computation of the radiated poten-
tial, using the dielectric constant for both a Maxwellian and a sum of two
Maxwellian plasmas (section 3.1). On the Maxwellian limit, the numerical
method extends the approaches developed for previous mutual impedance
experiments (Beghin, 1995, and references therein). Written as an integral, the
radiated potential equation (15) is computed using a numerical integration.
The algorithm is validated in section 3.2.

3.1. Methodology
To compute numerically the radiated potential, the integral in equation (15)
is split as follows:

∫
+∞

0

1
𝜖l(Ω, K)

sin(KR)
KR

dK =∫
kmin

0

1
𝜖l(Ω, K)

sin(KR)
KR

dK

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I1

+∫
kmax

kmin

1
𝜖l(Ω, K)

sin(KR)
KR

dK

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I2

+∫
+∞

kmax

1
𝜖l(Ω, k)

sin(KR)
KR

dK

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I3

(22)

Integral I1 is evaluated analytically, under some conditions regarding the
choice of kmin, and integral I3 is shown to be negligible under some conditions
regarding the choice of kmax (Appendix A).

To evaluate I2 with a numerical integration, the dielectric and the sinc functions are calculated on an initial
K-space discretization, constrained by the conditions imposed on I1 and I3 (Appendix A).

The path of the numerical integration follows Im(K) = 0 so that K is a real number. However, in the complex
K plane, the weakly damped poles Ki of the dielectric function are located close to the path of integration.
In such cases, a specific numerical treatment is required to capture the strong variations of 1∕𝜀1

l , close to
the singularity associated to the Langmuir eigenmode described in section 2.4. The shape of these strong
variations, which occurs for frequency 𝜔 close to the plasma frequency 𝜔p, is illustrated in Figure 1 (top).
In order to accurately integrate numerically I2, it is compulsory to carefully discretize 1∕𝜀1

l in the close vicinity
of the pole, where the discrete K-space is refined as described in Appendix A.

For a sum of two Maxwellian evdf, the computation of the dielectric function is done in a similar way. A main
difference with the single Maxwellian case is the presence of another pole, associated to the electron acoustic
mode discussed in section 2.4, close enough to the integration path (along the real K axis) for certain values
of the parameters 𝜇 and 𝜏 to strongly influence the dielectric function. This is illustrated with the variation of
1∕𝜀2

l in Figure 1 (bottom), for both its real and imaginary parts, which shows the influence on the integration
path of the electron acoustic and the (modified) Langmuir poles. In general, the electron acoustic complex
pole is sufficiently far away from the real axis (path of integration), so that grid refinements are only required
in the close vicinity of the (modified) Langmuir pole.

3.2. Validation
In this section, we validate the numerical method described above, in the Maxwellian and a sum of two
Maxwellian cases.
3.2.1. Validation of the Computation for a Maxwellian EVDF
To validate our numerical computation for a Maxwellian evdf, (i) we use the known asymptotic limits of
the normalized electric potential 𝜙∕𝜙0 and (ii) we also compare the mutual impedance obtained from our
numerical computation to the one obtained in Beghin (1995) using a series expansion of the radiated electric
potential.

1. As described in Beghin (1995), the real part of 𝜙∕𝜙0 tends to the inverse of the cold plasma dielectric con-
stant 𝜀c, given by 𝜀c =

1
1−Ω−2 , while the imaginary part tends to 0. This is illustrated in Figure 2, showing these

asymptotic limits for Ω=0.90 (𝜀−1
c =−4.26) and Ω =1.50 (𝜀−1

c =1.80).
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Figure 2. Real and imaginary parts of 𝜙∕𝜙0 on the Maxwellian limit, for (left column) Ω = 0.9 and (right column)
Ω = 1.5 with analytical limits (dashed lines).

2. In order to evaluate the impact of the evdf on the response of a mutual impedance probe, an idealized
quadrupolar mutual impedance probe is considered, which geometry is shown in Figure 3, identical to the
one chosen in Beghin (1995). It is composed of two oscillating point charges used as emitters (Q+ and Q−)
and two potential receivers (R1 and R2). By considering q1=−q2, we have computed H(Ω) in the above
described geometry, for 𝜆D = 0.1 m. The corresponding spectra, obtained from our numerical integration,
are shown in Figure 4. They are identical, both in amplitude and phase, to those obtained in Beghin (1995,
Figure 10), where the dielectric function for Maxwellian evdf was approximated by a series expansion.

3.2.2. Validation of the Computation for a Two Maxwellian EVDF
The numerical computation for a two Maxwellian evdf has been validated as follows:

1. The cases 𝜏=1, whatever the choice of𝜇, all reduce to the Maxwellian case. We check both that the positions
of the Langmuir pole are identical and that the computation of the radiated potential of a point source
𝜙∕𝜙0 is identical to the one obtained from the computation obtained from Maxwellian evdf. This is shown
in Figure 5 (top), where the real positions of the Langmuir pole from a sum of two Maxwellian evdf case
(black squares) are the same as with the computation done in the Maxwellian case (blue circles). Both are
shown to asymptotically tend toward the long-wavelength analytical approximation from the Langmuir
dispersion relation equation (19) (red line), that is, for a wave frequency close to the plasma frequency. Note
that the distances are normalized to the Debye length 𝜆D in the Maxwellian case, while they are normalized
the Debye length of the hot population 𝜆D,h in the two Maxwellian case.

Figure 3. Example of quadrupolar mutual impedance probe made from
two conducting spheres and two potential sensors, identical to the one
described in Beghin (1995).

2. We also validate the numerical computation in the case of a sum of two
Maxwellian evdf, by comparing the position of the electron acoustic pole
obtained numerically to the analytical approximationΩEA0 in the limit𝜇≪𝜏

(Gary, 1993), that is given from equation (21):

Ω2
EA0 = Ω2

c

(
1 + 3K2 𝜇

𝜏
− 1

K2

)
(23)

The validation is shown in Figure 5 (bottom), where the position of the elec-
tron acoustic pole from the numerical computation (black squares) tends
toward the expected analytical approximation (red line) when Ω tends
toward 0.
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Figure 4. (left) Normalized response in modulus and (right) normalized response in phase for 𝜆D = 0.1 m on the
idealized mutual impedance probe geometry (Figure 3) considered by Beghin (1995).

In a two-electron temperature plasma, the spatial variation of the electric potential radiated by a pulsating
point charge is shaped, in a first approximation, by the superposition of the waves described in section 2.4.
This is illustrated in Figure 6, for the potential computed at Ω=1.10 where both the electron acoustic and
the (modified) Langmuir modes coexist with different wavelengths. The Langmuir wavelength is larger than
the electron acoustic wavelength in this case, and the radiated electric potential appears as a short-
wavelength oscillation (associated to a radiated electron acoustic wave), modulated by a longer-wavelength
oscillation (associated to a radiated Langmuir wave).

3. Finally, to further validate our numerical method, we compare our sim-
ulations with the mutual impedance spectra computed analytically in
Pottelette and Storey (1981) for a double-dipole probe immersed in a
Maxwellian or a two-electron temperature plasma. These comparisons are
done for the perpendicular arrangement of a double-dipole probe, using
the same parameters. Although the numerical integration is limited near
the plasma frequency, the resulting spectra, shown in Figure 7, are identical
to those reported in Figure 9 in Pottelette and Storey (1981). In particular, a
local minimum is observed for the two cases near Ω = 1.30. Note that the
analytic dipole approximation is valid in the limit of (i) an emitter-receiver
distance l much larger that the emitter-emitter and receiver-receiver dis-
tances d and (ii) an emitter-receiver distance much larger that the hot and
cold Debye lengths: l ≫ d and l ≫𝜆D,c, 𝜆D,h. For interplanetary spacecrafts,
such as Rosetta, BepiColombo, and JUICE, the active electric antennas
do not satisfied the configurations (i) and (ii). It is therefore necessary to
develop a method that enables to take into account the mutual impedance
experiments in interplanetary plasmas.

Figure 5. (top) Position of Langmuir pole for the numerical computation
in the case of a Maxwellian evdf (blue circles) and a sum of two
Maxwellian evdf (black squares, using 𝜇=100, 𝜏=1), together with
the long-wavelength analytical approximation from the Langmuir
dispersion relation equation (19) (red line). (bottom) Position of the
electron acoustic pole from the numerical computation in the case of
a sum of two Maxwellian evdf (black squares, 𝜇=1, 𝜏=100), together
with by the analytical approximation of the electron acoustic dispersion
relation equation (21) (red line).

4. Application to Mutual Impedance Experiments

In this section, we make use of the plasma dielectric computed numerically
as shown in the above section for different electron velocity distributions to
build up synthetic spectra expected from mutual impedance experiments.
We focus on mutual impedance spectra in a two-electron temperature plasma
and compare them to the Maxwellian and cold plasma cases.

4.1. Mutual Impedance Spectra for Different Thermal Electron
Populations
To better understand the influence of a evdf on mutual impedance measure-
ments, in particular the influence of a hot electron population, it is worth
comparing the theoretical spectra expected for a quadrupolar probe embed-
ded in a cold, Maxwellian, or a sum of two Maxwellian plasma. To this purpose,
we consider a quadrupolar probe with the geometry shown in Figure 3 and

GILET ET AL. POTENTIAL IN A TWO-TEMPERATURE PLASMA 8
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Figure 6. Real and imaginary parts of the electric potential 𝜙∕𝜙0
(blue and red lines, respectively) radiated at frequency Ω=1.10 in a
two-electron temperature plasma 𝜇=0.11 and 𝜏 = 100, together
with 𝜀c the asymptotic analytical limit of Re(𝜙∕𝜙0) (dashed line).

show the associated mutual impedance spectra for different electron velocity
distribution functions in Figure 8.

The mutual impedance resonance is expected at the plasma frequency for
a cold plasma (blue curve), and close to the plasma frequency (depending
on the emitter-receiver distance) for a single-temperature electron plasma
(green curve). The behavior of the mutual impedance spectra above the
plasma frequency is dominated by the influence of the less damped electro-
static mode that propagates in a Maxwellian plasma: the Langmuir waves.
Those waves propagate at frequencies𝜔>𝜔p and are at the origin of destruc-
tive interferences on the receiving dipole that appear as local minima in the
spectrum.

In a two-electron temperature plasma (orange and red curves), a second res-
onance appears at frequencies 𝜔 < 𝜔p, more specifically close to the cold
plasma frequency𝜔p,c (vertical black dotted line in both cases). It is associated
to the propagation of another electrostatic mode that can propagate in two-
electron temperature plasmas: the electron acoustic waves. This behavior has
important consequences on the interpretation of mutual impedance exper-

iments in collisionless plasmas. It implies that mutual impedance measurements in a plasma containing
suprathermal electrons may be partially blind to the total plasma density but still provide a measure of the
cold plasma density instead.

4.2. Mutual Impedance Spectra in a Two-Electron Temperature Plasma
The instrumental response of mutual impedance experiments in a two-electron temperature plasma strongly
depends on the temperature and density ratios. To quantify it, the amplitude and phase of the mutual
impedance spectra are computed in Figures 9 and 10, respectively, using the same geometric configuration
as above, for different hot-to-cold temperature 𝜏 and density 𝜇 ratios, keeping the hot Debye length fixed
𝜆D,h= 0.10 m. The temperature ratio increases from left to right, while the density of the cold population
increases from bottom to top.

When the density of the hot electron component is much smaller than the cold component, the mutual
impedance spectra show a clear, single maximum close to the plasma frequency (Figure 9, first row) associ-
ated to a phase rotation of 180∘ (Figure 10, first row). This is similar to what would be expected for a single
Maxwellian plasma, where the influence of the hot population is seen in the amplitude and phase of the
mutual impedance spectra at frequencies above the plasma frequency, through the thermal correction of the

Figure 7. Normalized response, expressed in logarithmic scale as
20 log10 (|Z(Ω)∕Z0|) for the Maxwellian case with 𝜆D =0.01 m in black
line on the double-dipole considered by Pottelette and Storey (1981)
and for a sum of two Maxwellian evdf with 𝜇=0.01, 𝜏=100 and
𝜆D,h =0.70 m in black dashed line.

modified Langmuir waves (equation (20)). This thermal correction depends
on the total electron pressure and is therefore strongly dominated by the hot
electron component.

When the density of the hot electron component is of the order of the cold
component (second to fourth rows, for instance 𝜇=1 and 2.33), a second
resonance, associated to the existence of the electron acoustic mode, arises
below the plasma frequency, at a frequency close to the cold plasma fre-
quency (black vertical lines). The phase of the mutual impedance spectra is
characterized by large rotations around the cold plasma frequency, up to
several times 360∘, as shown in Figure 10, second and third rows (in other
words, the total phase shift is a multiple of 2𝜋 when crossing the cold plasma
frequency). The phase shift increases with 𝜏 , while it decreases with Nh above
a certain value. Note that a cutoff appears at the frequency corresponding to
the frequency of the electron acoustic wave adapted to the receiving antenna
(red vertical dotted lines).

Figure 2.5 in Gary (1993) summarizes the domain of existence of electron
acoustic waves in the (𝜏, 𝜇) parameter plane. In particular, it shows that (i) the
electron acoustic mode merges with the Langmuir mode for large cold elec-
tron ratio and (ii) the electron acoustic mode is strongly damped when the
temperature ratio is not large enough, or for a too small cold electron ratio.
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Figure 8. Normalized responses in power on the idealized mutual
impedance probe (Figure 3) for different parameters 𝜇 and 𝜏 : cold
electrons (blue), Maxwellian electrons (green), and a sum of two
Maxwellian electrons configurations: 𝜇=1, 𝜏=100 (orange) and 𝜇=1,
𝜏=500 (red).

The mutual impedance spectra in Figures 9 and 10 are shown in the same
(𝜏, 𝜇) parameter plane to enable a direct comparison and interpretation: the
resonance close to the cold plasma frequency is only observed in the domain
of existence of the electron acoustic mode. In particular, it explains why
no such low frequency resonance is observed for 𝜏 = 10 (panels in the first
column) or for 𝜇 = 0.11 (panels in the first line).

5. Discussion and Conclusion

This study illustrates the influence of the electron velocity distribution func-
tion, in particular when considering cold, Maxwellian or a two-electron tem-
perature electron plasma, on the instrumental response of mutual impedance
experiments.

For that, the electrostatic potential radiated by a pulsating charge, written as
an integral, is computed using a numerical integration on a sum of Maxwellian
plasmas. To properly account for the weakly damped poles of the dielectric
function located close to the path of integration, a method of grid refine-
ment is proposed. The mutual impedance has been then computed on a
probe made from two conducting spheres and two potential sensors. We have
compared and validated the computation in the Maxwellian case with Beghin

(1995), which used a series expansion of the radiated potential, to support the computation in a sum of
Maxwellian evdf.

In this work, we have assumed each emitter to be a point charge. We hereafter show that this hypothesis
enables to tackle more complex geometries, and in particular, finite-size emitters.

Figure 9. Amplitude of the normalized mutual impedance spectra, expressed in logarithmic scale as 20 log10 (|Z(Ω)∕Z0|), based on the probe configuration
shown in Figure 3 for different temperature ratios 𝜏 = 10, 100, 500, and 1000, from left to right, and cold electron density ratios Nc = 0.1, 0.3, 0.5, 0.7, and 0.9,
from bottom to top. The hot Debye length is fixed 𝜆D,h =10 cm. The red vertical dotted lines show the position of the electron acoustic pole, adapted to the
receiving antenna, computed with the analytical dispersion relation equation (23). The black vertical lines show the cold plasma frequency 𝜔p,c .
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Figure 10. Phase in degree of the normalized mutual impedance spectra, corresponding to the amplitudes shown in Figure 9.

5.1. Influence of the Finite Probe Size on the Radiated Potential
Instead of a point source pulsating charge, if we consider the tip of an emitter as a sphere of radius a, the
potential rewrites (Chasseriaux et al., 1972):

𝜙a

𝜙0
(Ω, R) = 2R

𝜋

∞

∫
0

sin (KR)
KR

sin
(

Ka∕𝜆D

)
Ka∕𝜆D

dk
𝜀l (K ,Ω)

(24)

The influence of the added term sin(Ka∕𝜆D)∕(Ka∕𝜆D) is significant when the ratio a∕𝜆D > 1. The Debye length
being much larger than the size of emitters in typical interplanetary plasmas, the radiated potential 𝜙a∕𝜙0 is

Figure 11. Amplitude of the radiated electric potential spectrum,
expressed in logarithmic scale as 20 log10(|𝜙∕𝜙0(Ω, a∕𝜆D)|), for
a = 0.03 m and 𝜆D = 0.3 m, computed by equation (24) (squared black
line) and by the Discrete Surface Charge Distribution (blue line).

of the order of 𝜙∕𝜙0. We have also compared the radiated potential emitted
by a finite-size spherical emitter of radius a, using both (i) the analytic expres-
sion 𝜙a∕𝜙0 (equation (24)) and (ii) the potential computed by the classical
Discrete Surface Charge Distribution (DSCD) method (Béghin & Kolesnikova,
1998), using a sum of point charges located on a sphere of radius a, each of
which emits a point source potential𝜙∕𝜙0. The results are shown in Figure 11:
the DSCD method, which uses a sum of point charges, enables to reproduce
the signal emitted by a finite-size source. It is therefore possible to extend the
computation of the mutual impedance by taking into account a non punc-
tual probe geometry, and/or the spacecraft itself to allow to measure the
interaction with the spacecraft body (Geiswiller et al., 2001).

5.2. Practical Implications on Mutual Impedance Experiments Operated
in Two-Electron Temperature Plasmas
This work has important practical implication regarding the interpretation of
mutual impedance experiments data in a two-electron temperature plasma.

In the case of a two-electron temperature plasma, we have shown that two
resonances can be found. First, a resonance located close to the total plasma
frequency, as in the case of a single-electron temperature plasma. Second,
another resonance appears close to the cold plasma frequency when the
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Figure 12. RPC-MIP in phase SDL operational mode.

temperature ratio is large enough (about 10 to 50, depending on the density
ratio) and the hot electron population large enough (typically above 20%).
The position of the resonance at the total plasma frequency can therefore
be used to estimate the total electron density, as in a single-electron temper-
ature plasma.

In a Maxwellian plasma, the electron temperature can be derived from a
destructive interference pattern, located at frequencies larger than the plasma

frequency and appearing as local minima in the spectrum. This interference pattern is associated to the ther-
mal correction in the Langmuir waves dispersion relation (section 2.4). This method, detailed, for instance, in
Trotignon et al. (2007), can only be applied when the Debye length is much smaller than the emitter-receiver
distance ratio (typically an order of magnitude below). In a two-electron temperature plasma, a similar
approach, based on a destructive interference pattern, can hardly be used. Indeed, the thermal correction in
the (modified) Langmuir waves dispersion relation for a two-electron temperature plasma depends on the
hot electron temperature. Therefore, a similar approach would be limited to cases where the hot Debye length
is much smaller than the emitter-receiver distance ratio, which is very unlikely to happen in typical inter-
planetary plasmas for standard instrumentation. This implies that a direct measurement of the core electron
temperature, based on these local minima, is not possible in a two-electron temperature plasma. Instead, a
direct comparison of the shape of mutual impedance spectra is required (section 5.3).

Note that for a large parameter range, the resonance at the total plasma frequency may be flattened, while
the main resonance in the mutual impedance spectra may be located close to the cold electron plasma fre-
quency instead. In that case, there could be a risk of misinterpreting this single resonance with the well-
known resonance at the total plasma frequency, which would result in a systematic error in plasma density
measurements. In such a case, the behavior of the phase of the mutual impedance spectra can be necessary
to identify the nature of the resonance and therefore enable a careful interpretation of mutual impedance
spectra in the case of a two-electron temperature plasma to extract the plasma density.

Such behaviors strongly depend on the geometric configuration of the quadrupolar antenna, that is, on
the relative distances between emitters and receivers. The choice of the geometry of quadrupolar mutual
impedance probes is therefore crucial when operated in collisionless plasmas. The quadrupolar antenna con-
figuration used in this study and shown in Figure 3 is therefore not optimal to distinguish between hot and
cold plasma parameters. In some other spatial configurations, both resonances at the plasma frequency and at
the cold plasma frequency are clearly identified, which enables to constrain the cold-to-hot density and tem-
perature ratios. Below, we discuss such a more optimal configuration, used by the MIP instrument on board
Rosetta, and we illustrate how we can distinguish between hot and cold plasma parameters.

5.3. Mutual Impedance Spectra Observed by Rosetta
The European Space Agency’s Rosetta spacecraft has followed during more than 2 years the comet
67P/Churyumov-Gerasimenko from Summer 2014 to the end of September 2016 (Glassmeier et al., 2007).
The mutual impedance probe MIP (Trotignon et al., 2007) on board Rosetta has measured the total electron
density of the coma. The MIP antenna is a 1 m long bar with two receiving and two transmitting electrodes
immersed in the cometary plasma. The emission frequencies range between 28 kHz and 3.5 MHz, where the
plasma frequency is expected to be located. The cometary plasma can be approximated as unmagnetized
in the MIP frequency range of operation, because the typical electron cyclotron frequency is orders of mag-
nitude smaller than the typical plasma frequency. The assumptions made in this study therefore hold in a
cometary plasma.

MIP-acquired responses in the so-called “phase SDL operational mode” are well reproduced by the ideal con-
figuration presented in Figure 12 where point emitters E1 and E2 operate in phase with respective charge,
normalized by the charge q2, Q1 =0.75 and Q2 =1, whereas point emitter E3 which can be understood as the
spacecraft electrostatic influence pulses with a normalized charge Q3 = −1.75. Note that a modeling taking
into account the probe geometry and the entire spacecraft is currently under development. During part of
the Rosetta mission, two well-defined resonances have been observed in the mutual impedance spectra mea-
sured by MIP, consistent with what is expected in a two-electron temperature plasma. An example of such MIP
spectrum is given in Figure 13 (black lines with asterisks). Note that (i) there is a known instrumental interfer-
ence around 266 kHz (red shaded part of the spectrum) and (ii) spacecraft charging effects need to be taken
into account at low frequencies (grey shaded part of the spectrum); future works will be dedicated to this task.

GILET ET AL. POTENTIAL IN A TWO-TEMPERATURE PLASMA 12



Radio Science 10.1002/2017RS006294

Figure 13. Amplitude of the mutual impedance spectra observed by
MIP on board Rosetta on 23 May 2016 at 11h30 (black line with
asterisks) and amplitude of a synthetic mutual impedance spectra
computed in a two-electron temperature plasma (blue line with
asterisks) corresponding to Nh = 0.36, 𝜏 = 103, and 𝜆D,h = 0.46 m. In
both cases the amplitude of the normalized mutual impedance spectra
are expressed in logarithmic scale as 20 log10 (|Z(Ω)∕Z0|). The part in
grey is not modeled, and the known interferences are in the red part.

The rest of the spectrum, above 300 kHz, shows two well-defined resonances,
consistent with what is expected in a two-electron temperature plasma.
To distinguish between the hot and cold plasma populations, we have com-
puted a best fit of the observed MIP spectra with simulated mutual impedance
spectra, computed for the corresponding geometry, shown in blue line with
asterisks. The best fit, computed in the density and temperature ratios param-
eter space, is found for Nh = 0.36, 𝜏 = 103, and 𝜆D,h = 0.46 m. With a plasma
frequency fp≃600 kHz, the density and the temperature of the two-electron
populations can be derived. For this case, with the sensitivity of the compar-
ison method, nh = 1500±150 cm−3, nc ≃ 2730±150 cm−3, Th = 6 ± 1.5 eV,
and Tc =0.06±0.01 eV. The derived temperatures are consistent with the typ-
ical temperatures of warm and cold cometary electrons measured with the
Langmuir Probe during the Rosetta mission (Eriksson et al., 2017).

6. Conclusions

We have shown that even a small proportion of suprathermal electrons can
strongly modify different characteristic observational features from mutual
impedance experiments, especially the evaluation of the electron tempera-
ture and in some cases the identification of the plasma frequency from which
the plasma density is derived.

In the near future, we are confident the work described in this paper will allow to better interpret Rosetta
RPC-MIP data in cases where the cometary plasma is characterized by a mix of cold and warm electrons.
We also expect that this work will enable to better constraint the observation of mutual impedance exper-
iments dedicated to space plasma in future planetary exploration missions, such as the future mutual
impedance experiments PWI-AM2P that will fly on board the MMO spacecraft of the BepiColombo mission to
Mercury (Trotignon et al., 2006), and RPWI-MIME that will fly on board the JUICE spacecraft to Jupiter and its
moons, in particular Ganymede.

Finally, since space plasma are seldom thermalized, suprathermal electrons are often observed with large tails
in the velocity distribution, which is not well described with Maxwellian function. Future works will be ded-
icated to generalizing the numerical approach described in this paper to nonthermal electron distributions
that include suprathermal tails in the velocity distribution such as kappa distributions, in order to extend the
applicability of mutual impedance experiments to such plasmas.

Appendix A: Computation of the Integral (22)

This section explains in more details the computation of the integral on the radiated potential expression
(15). With some conditions on the integral limits, the integral I1 (equation (22)) can be evaluated analytically
while I3 can be negligible for both Maxwellian and a sum of two Maxwellian cases. These conditions give the
initial discretization of the K-space and R-space for the computation of I2 using a classical numerical integra-
tion (section 3). As said in the section 3.1, a grid refinement is required for frequency 𝜔 close to the plasma
frequency 𝜔p to capture the strong variation of 1∕𝜀l .

A1. Numerical Computation of I1
On one hand, for allΩ, when K → 0, Im(1∕𝜀l) tends toward 0 and Re(1∕𝜀l) converges to the inverse of dielectric
function associated to the cold plasma limit, given by 𝜀c =

1
1−Ω−2 . Figure A1 shows theses limits for Ω = 0.9

and 1.5.

On the other hand, for K ⋅ R ≪ 𝜋, sin(K R)∕K R ≃ 1. Therefore, the integral I1 can be approximated by

2R
𝜋 ∫

kmin

0

1
𝜖l(Ω, K)

sin(KR)
KR

dK ≈ 2R
𝜋

kmin

1 − Ω−2
(A1)

for kmin≪𝜋∕rmax where rmax is the maximum considered distance in the computation of the oscillating charge.
rmax depends on the configuration of the probe and the Debye length. In our study, we have chosen rmax = 103

allowing to compute a mutual impedance for Debye length of the order of centimeter for the RPC-MIP
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Figure A1. Re(1∕𝜀1
l
) and Im(1∕𝜀1

l
) for (left) Ω = 0.90 and (right) Ω=1.5 for K ∈[10−5, 105] in log scale, with the

asymptotic limit 𝜀c =
1

1−Ω−2 when K → 0 (dashed line).

probe configuration. To satisfy equation (A1), kmin is equal to 10−5 in the Maxwellian case and so that
kmin ⋅ rmax =10−2. For a sum of two Maxwellian evdf, we observe a numerical noise close to kmin =10−5 due to
the smallness of Y2

c for some parameters of 𝜇 and 𝜏 . kmin is then equal to 10−4. Note that the contribution (A1),
added to the computation of the radiated potential 𝜙∕𝜙0, becomes nonnegligible at large distances from the
oscillating charge.

A2. Numerical Computation of I3
Regarding the third term in equation (22), for K large enough (K ≫ Ki with Ki the normal modes of the
plasma defined such that 𝜀l(Ki) = 0), Re(1∕𝜀l)→ 1 and Im(1∕𝜀l)→ 0 (Figure A1). Therefore, integral I3 can be
approximated by

∫
+∞

kmax

sin(KR)
KR

dK (A2)

provided that kmax ≫ Ki.

First, for fixed K , integral (A2) increases when R tends toward 0. Assuming that the distance to the charge
source rmin is fixed, it is necessary to take a large kmax to be able to neglect the integral (A2). In our study, we
have chosen kmax = 105 and kmax ⋅ rmin = 103. Second, taking kmin = 10−5 and kmax = 105 requires to use a
logarithmic scale for K . With ΔK the distance between two consecutive points in K-space, sin(KR)∕KR cannot
be computed properly forΔK ⋅R>𝜋. We have chosen to compute the integral only over K satisfyingΔK ⋅R< 𝜋∕6
to avoid spurious numerical artifacts (Figure A2). For each distance R to the emitter, the maximum value of K
that satisfies this condition, Keff

max, must be larger than the projections of the Langmuir pole on the integration
path. As shown in Figure 5, the projection of this pole is smaller than K =1 for Ω until 2fp. We have therefore

Figure A2. Comparison between sin(x)∕x (orange line) and its discretization (blue asterisks) for the numerical method
with (left) Δx =𝜋 and (right) Δx =𝜋∕6.
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Figure A3. Comparison between an initial discretization (blue asterisk—10 points) on K-space (105 points in log scale
on [10−5, 105]) and refined (red point—933 points) discretization by the bisection method on the representation of
(left) Re(1∕𝜀1

l
) and (right) Im(1∕𝜀1

l
), for Ω=1.05 kmin =10−5 and kmax =105, with a zoom on the neighborhood of the

Langmuir pole.

chosen Keff
max >2. The smallest Keff

max is associated to the largest distance rmax; therefore, we need to take the
number of points on K-space, NK , high enough (here chosen to be 105) to satisfy Keff

max(rmax)> 2 with rmax =103.
For the sum of two Maxwellian evdf, we consider for large distances R that the electron acoustic pole is already
damped. Using the Dirichlet integral, the higher (2R∕𝜋)I3, corresponding to the case Keff

max = 2 and R = 103, is
on the order of 10−4. The relative error of the computed𝜙∕𝜙0(Ω, 103), given by |10−4∕𝜀c|, is smaller than 10−2

for Ω> 0.05 and on the order of 1 for Ω < 0.02.

A3. Numerical Computation of I2
To evaluate I2, the dielectric function 𝜀m

l , given by equation (8), has been computed using the relation (13)
between the plasma dispersion function Z and the Faddeeva function w, given by equation (14), implemented
on the Faddeeva package (Johnson, 2012). This package uses the method of Poppe and Wijers (1990) and
Zaghloul and Ali (2012) to compute the Faddeeva function. The dielectric and the sinc functions are calcu-
lated on an initial K-space discretization (105 points in log scale on [10−5, 105]) constrained by the conditions
imposed on I1 (Appendix A1) and I3 (Appendix A2). I2 is computed with a classical numerical integration,
using a trapezoidal rule (Press et al., 2007). As said in section 3.1, the discrete K-space needs to be refined
in the close vicinity of the weakly damped pole. The first step of the grid refinement is finding the location
of the projection on the real axis of the least damped pole K1. To this purpose, we use a secant method
(Press et al., 2007) to identify the zero of the real part of the dielectric function. The iterative method is ini-
tialized by the long-wavelength analytical approximation of the Langmuir wave vector KL at the considered
frequency using equation (19):

KL =
√

Ω2 − 1
3

(A3)

At convergence, this procedure enables to find a precise location of projection of K1 on the real axis, defined
as ksec, which can significantly differ from KL at frequencies well above the plasma frequency.

The next step is refining the K-space to capture the strong variations of 1∕𝜀m
l . ksec being an approximation

of the maximum of Im(1∕𝜀m
l ), we uniformly discretize values of Im(1∕𝜀m

l ), called yi until the approximated

maximum. Using a bisection method (Press et al., 2007) on the function f = g

(
1
𝜀m

l

)
− yi , with g the real or

imaginary part, we find the corresponding values on K-space. For this method, the starting range [a, b] on
K-space must be satisfied (i) the opposite signs of f (a) and f (b) and (ii) the uniqueness of the zero of f . A second
grid refinement step can be applied for practical reasons. An example of this new discretization is illustrated
on Figure A3 for Re(1∕𝜀1

l ) and Im(1∕𝜀1
l ) at Ω = 1.05, showing the initial mesh (blue asterisks) together with

the refined mesh (red points).

For a sum of two Maxwellian evdf, the refinement method is essentially the same as described in the previ-
ous section, with two slight changes. (i) The starting point of the secant method, to approximate the location
of the (modified) Langmuir pole, is now taken from the approximation of the zero of Re(𝜀2

l ), which is directly
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Figure A4. (a) Weak and (b) strong scaling (black dashed lines) for the parallelization of the computation of the radiated
potential for a sum of two Maxwellian plasmas (section 2.2) compared with the optimal scaling (red lines).

found on an initial, not yet refined, grid. (ii) To ensure bijection in the considered K range, the bisection
method is initialized far enough from the projection of the location of electron acoustic pole. For this paper,
computations of the radiated potential on the Maxwellian case have been carried out for two hundred fre-
quencies Ω in the range [0.01, 0.99]∪ [1.03, 2], for K ∈ [10−5, 105] in log scale with 10,0000 points, with a grid
refinement of 3,000 points when Ω ∈ [1.03, 1.08], and for R ∈ [10−2, 103]. In the range Ω ∈ [1, 1.02], the least
damped pole K1 is too close to the real axis to enable a proper discretization of 1∕𝜀1

l , limited by the numerical
noise. Indeed, the step of the grid refinement is of the order of the precision of routines used in the code. For a
sum of two Maxwellian evdf, it is possible also to compute the radiated potential for Ω smaller than 1.03 for a
selected parameters 𝜇 and 𝜏 . The serial computation on a PC lasts about 750 s for 2,000 points on the R-space.
The algorithm has been written in Fortran 90 with an interoperability with C++ for the Faddeeva package.

A4. Scalability of the Parallel Computing
While the computation of the radiated electric potential for a Maxwellian evdf depends only on the fre-
quency of the oscillating point charge and the distance to this charge, the computation of the radiated electric
potential for a multi-Maxwellian evdf also depends on the density and temperature ratios (resp. 𝜇 and 𝜏).
To efficiently compute it on the much larger four-parameter space in the case of two Maxwellian evdf, the
algorithm has been parallelized with OpenMP, a multithreading tool. The outputs are parallelized as well;
the ratio between sequential and parallelize regions is therefore very small. To analyze the performance of
this parallelization, a weak scaling and a strong scaling have been calculated (Figure A4). The weak scaling
shows the computation performance decrease associated to memory access. For instance, with 20 threads,
the computation CPU time raises by 20%. The strong scaling gives the acceleration of the parallelization and
the optimal number of processors. For 20 threads, the computation is 15 times higher than the sequential
one. The algorithm have run on a maximum of 20 threads in the cluster of the région Centre, France, named
Artemis (CaSciModOT project).
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