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Abstract

Three-dimensional nonlinear finite Larmor radius (FLR)–Landau fluid simulations, which include some small-
scale r^( )k 1i kinetic effects, are performed to explore the nature of the sub-ion scale turbulence in the solar
wind and to investigate the role of Landau damping and FLR corrections. The resulting steady-state magnetic
power spectrum in the dispersive range display exponents that vary within a range of values compatible with
statistical results reported from in situ spacecraft measurements of solar wind turbulence as well as from
gyrokinetic simulations. The spectral slopes are shown to depend on the strength of the nonlinear effects and on the
scale at which turbulent fluctuations are driven in the simulations. The influence of Landau damping is addressed
by comparison with simulations where the double-adiabatic closure is imposed. The role of FLR corrections is also
analyzed. Comparison with in situ observations in the solar wind are performed to enlighten the influence of the
fluctuations power at different scales on the spectral slopes in the sub-ion range. Using diagnosis of both magnetic
compressibility and frequency-wavenumber spectra, it is shown that in spite of the evidence of the presence of fast-
magnetosonic modes, the magnetic energy is mostly distributed around the kinetic Alfvén waves and the slow
modes, in agreement with solar wind measurements. The observed large broadening about the linear dispersion
relations may reflect the presence of coherent structures.

Key words: acceleration of particles – magnetic fields – magnetohydrodynamics (MHD) – plasmas – solar wind –

turbulence

1. Introduction

Many laboratory and astrophysical plasmas such as the solar
wind, the Earth’s magnetosheath, and fusion devices are only
weakly collisional. In those plasmas, understanding turbulent
heating and acceleration of particles depends critically on the
nature of the processes that dissipate electric and magnetic
fluctuations at kinetic scales, rk 1i (Schekochihin et al.
2009). However, the physics underlying those critical scales are
not fully understood and remain subject to strong controversies.

The solar wind provides a unique opportunity to study
collisionless plasma turbulence thanks to the availability of
high quality in situ data from several operating spacecraft, such
us WIND, STEREO, Cluster, or Themis. Decades of observa-
tional studies have shown a -f 5 3 dependence of the power
spectrum density (PSD) of the magnetic field fluctuations in the
frequency range ~ - -[ ]10 , 104 1 Hz, generally interpreted as
evidence of the turbulent energy cascade in the inertial range.
These observations are consistent with strong Alfvénic
turbulence theory derived in the MHD limit (see review in
Bruno & Carbone 2005). When the energy cascade reaches the
ion scale, kinetic effects become important and are thought to
play a significant role in dissipating turbulence energy into
plasma heating. Indeed, the PSD of the magnetic fluctuations
measured in the solar wind show clear steepening to a-f ,
where a ~ [ ]2.3, 5 , near the ion scale(Goldstein et al. 1994;
Leamon et al. 1998b; Smith et al. 2006; Sahraoui et al. 2010).
That steepening has generally been attributed to an enhance-
ment of dissipation of the magnetic energy. However, the
actual dissipation mechanisms remain unclear, and different

processes have been proposed, such as cyclotron or Landau
damping of Alfvenic fluctuations (Goldstein et al. 1994;
Leamon et al. 1998a, 1999; Marsch 2006; Sahraoui et al.
2010); local plasma instabilities generated by, for example,
temperature anisotropy(Bale et al. 2009); or dissipation within
reconnecting current sheets(Markovskii & Vasquez 2011;
Huang et al. 2016). Using high time resolution of the Cluster/
STAFF instrument that allows one to access higher frequencies
of the spectrum, Sahraoui et al. (2010) showed that the
steepening to ∼f−4 is actually limited to a narrow scale range
r ~^ [ ]k 0.5, 3i , which was referred to as the transition range,

and that the spectrum flattens at smaller scales. Note that in
some cases, the transition range does not exist. At scales
smaller than the ion gyroscale and extending down to the
electron gyroscale, statistical studies using the Cluster/STAFF
observations showed that the PSD of the magnetic fluctuations
follow power-law-like scaling, with an exponent covering the
range ~ - -[ ]2.5, 3.1 and a peak near −2.8(Alexandrova
et al. 2012; Sahraoui et al. 2013). A similar distribution of
slopes at the sub-ion scales has been reported in planetary
magnetosheath turbulence(Huang et al. 2014; Hadid et al.
2015), despite the differences in the plasma parameters in the
two regions (e.g., the plasma β and temperature anisotropy) and
even when an inertial range has not been observed at the MHD
scales(Hadid et al. 2015; Huang et al. 2017a). This may
suggest a possible universal-like distribution of sub-ion scales
spectral slopes, although the spread in the values of the
exponents is larger than that reported in the inertial range
(Smith et al. 2006). In contrast, the slopes within the transition
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range seem to depend on the power of the fluctuations in the
inertial range and on the speed of the solar wind (slow versus
fast)—the higher the power, the steeper the spectrum(Smith
et al. 2006; Bruno et al. 2014). A similar dependence of the
spectral slopes both above and below the electron scales on the
forcing amplitude in the kinetic range has been reported in
three-dimensional PIC simulations of whistler turbulence, but
in the opposite sense, the higher the forcing amplitude, the
shallower the spectrum(Gary et al. 2012). We will return to
this point in Section 3.1.

Another still hotly debated question concerns the nature of
the plasma modes carrying the energy cascade down to the sub-
ion and electron scales. Although there is an increasing body of
observational evidence that strongly anisotropic Kinetic Alfvén
Wave (KAW) turbulence plays a leading role in that cascade (at
least in the solar wind; Bale et al. 2005; Sahraoui et al. 2009,
2010; Podesta & TenBarge 2012; Chen et al. 2013; Kiyani
et al. 2013), other studies suggest that other modes may exist
(at least as a minor component of the turbulence), such as
whistler or Bernstein modes(Gary et al. 2012; Podesta &
TenBarge 2012; Sahraoui et al. 2012), as already reported in
observational studies in the magnetosheath(Sahraoui et al.
2003), in the cusp region(Grison et al. 2005), and in the solar
wind(He et al. 2011; Klein et al. 2014).

On the other hand, existing numerical simulations yield very
different answers to the question as to which plasma mode (or
modes) dominates the cascade at kinetic scales, the main reason
being the differences in the numerical setups. Simulations of
3D incompressible Hall-MHD without a guide field showed the
coexistence of both whistler (right-handed) and Alfvén (left-
handed) modes with respective magnetic spectra scaling like
-k 7 3 and -k 11 3 (Meyrand & Galtier 2012). However, Hall-
MHD, being a fluid theory, does not contain any kinetic
damping, and therefore cannot adequately answer the question
of interest here. Three-dimensional PIC simulations (initialized
with waves fulfilling linear dispersion relation of whistler
modes) showed evidence for the dominance of whistler
turbulence at small scales with a transverse magnetic fluctua-
tion spectrum, hereafter denoted ^( )E B , scaling like ^

-k 3.1

(Chang et al. 2011; Gary et al. 2012). Two-dimensional
implicit PIC simulations, initialized with random fluctuations,
showed no clear (linear) plasma mode dominating turbulence at
electron scales(Camporeale & Burgess 2011). A similar
conclusion was reached by Parashar et al. (2010), who used
2D hybrid simulations initialized with Orszag-Tang vortex,
where dissipation is found to happen via magnetic reconnection
occurring within localized current sheets(Chasapis et al. 2015;
Huang et al. 2017b). However, 3D PIC simulations driven by
shear flow showed the coexistence of current sheets and waves
(KAWs and magnetosonic modes), suggesting that dissipation
occurs via reconnection and wave-particle interactions
(Karimabadi et al. 2013). Three-dimensional gyrokinetic
(GK) simulations, valid for low-frequency and strongly
anisotropic turbulence (w w ci and ^k k ; Schekochihin
et al. 2009; Tatsuno et al. 2009; Plunk et al. 2010; Howes et al.
2011), which include the physics of Landau damping and finite
Larmor radius (FLR) effects, showed a spectrum of transverse
magnetic energy µ^ ^

-( )E B k 2.8 for KAW-dominated turbu-
lence(Howes et al. 2011), where the dominant energy
dissipation mechanism is Landau damping(Howes et al.
2011; TenBarge & Howes 2013). Other GK simulations with
scales extending to rk̂ 50i , and which focus on collisional

dissipation effects, display a slightly steeper spectrum(Told
et al. 2015). However, since this model does not retain high
frequency modes (i.e., fast or whistler modes), it cannot fully
answer the question relative to the dominant plasma mode at
kinetic scales.
In this article, we use the FLR-Landau fluid (FLR-LF)

model(Passot & Sulem 2007; Passot et al. 2014; Sulem &
Passot 2015), inspired by a Landau fluid model of Snyder et al.
(1997; see also references therein) derived from drift kinetics
and valid at large scales only. The model is used to investigate
solar wind turbulence and compare the obtained results to
in situ solar wind observations from the Clustermission. The
FLR-LF model allows us to build bridges between fluid models
(e.g., Hall-MHD) that do not contain any kinetic effect, and
fully kinetic models that are computationally expensive.
Indeed, full kinetic simulations are generally limited to some
physical space (e.g., w w ci and ^k k in GK models), use
in some instances an unrealistic proton to electron mass ratio in
the range 25–100, or reduce the dimensionality of the problem
(1D or 2D simulations). The main advantage of the FLR-LF
model is that it uses a fluid approach (less computationally
expensive than the full kinetic models) while retaining the
essential kinetic effects relevant to describe the sub-ion scale
physics of the solar wind, namely linear Landau damping and
FLR effects. Moreover, the model allows one to reproduce
plasma instabilities (e.g., the mirror instability) that may be
generated in the plasma by ion temperature anisotropy. These
instabilities are frequently observed in the solar wind and
magnetosheath (Gary et al. 1993; Kasper et al. 2002; Marsch
et al. 2004; Sahraoui et al. 2004, 2006; Hellinger et al. 2006;
Matteini et al. 2007; Bale et al. 2009) and may drive different
waves in the dissipation range, which in turn can inject energy
into the electromagnetic turbulence (Sahraoui et al. 2006;
Schekochihin et al. 2009; He et al. 2011; Podesta & Gary
2011). In order to understand the role of each kinetic effect in
damping the turbulent fluctuations and heating the plasma, we
consider models with different physical complexities: (i)
compressible Hall-MHD with double-adiabatic closure for the
dynamical gyrotropic pressure equations (Chew et al. 1956),
(ii) Hall-MHD with Landau damping, and (iii) Hall-MHD with
Landau damping and FLR corrections (hereafter denoted CGL-
HMHD, LF, and FLR-LF, respectively). In the following
sections, we present the results of those comparisons with the
aim of addressing the following specific questions: (i) How do
the Landau damping and the FLRs affect the scaling of the
turbulent spectra at sub-ion scales? (ii) How are the spectral
slopes at the sub-ion scales affected by the fluctuation
amplitude at the driving scale? (iii) What is the nature of the
plasma modes involved in the cascade at those scales? (iv)
What is the nature of the coherent structures that form at kinetic
scales?

2. FLR-LF Simulations

2.1. The FLR-LF Model

The FLR-LF model extends anisotropic compressible Hall-
MHD by including low-frequency linear kinetic physics,
namely the Landau damping and FLR effects, which are
thought to play a key role in dissipating energy at small scales.
Interestingly, the simulations can be executed with varying
levels of physics, such as adding and removing Landau
damping and FLR effects. This enables us to explore the
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dominant physical mechanisms that are contributing to energy
dissipation at kinetic scales. The model is constructed in the
following way: the fluid hierarchy for the gyrotropic moments
is closed by evaluating the gyrotropic fourth rank cumulants
and the non-gyrotropic contributions to all the retained
moments, in a way consistent with the linear kinetic theory
within low-frequency asymptotics. In brief, the expression of
the various moments provided by the low-frequency linear
kinetic theory are combined to eliminate the plasma dispersion
functions as much as possible, while suitable Pade approxima-
tions are used when this is not possible(Passot & Sulem 2007;
Sulem & Passot 2015). The model reproduces correctly the
low-frequency linear kinetic theory at the ion scales (Passot
et al. 2012; Hunana et al. 2013). It is also consistent with a
weakly nonlinear gyrofluid description(Tassi et al. 2016). It
takes into account the electron Landau damping and can be
extended down to the electron spatial scales, a situation where
electron inertia and electron FLRs would however have to be
retained. Unlike the GK approach, the FLR-LF model captures
the fast mode dynamics up to the ion cyclotron frequency,
although the cyclotron resonance is not described. The model is
3D, which makes it very appropriate to study solar wind
turbulence, considering the inherently 3D nature of Alfvénic
turbulence(Howes 2015).

Although it is generally admitted that solar wind turbulence
in the inertial range is formed by ~90% of (incompressible)
Alfvénic fluctuations and ~10% of (passively advected)
compressible slow modes(Howes et al. 2012), the role of
density fluctuations in the turbulence dynamics is far from
being negligible. Indeed, compressible fluctuations were shown
to increase the energy cascade rate in the inertial range of solar
wind and magnetosheath turbulence(Carbone et al. 2009;
Banerjee et al. 2016; Hadid et al. 2017; L. Z. Hadid et al. 2017,
in preparation), and to modify the scaling of the magnetic
energy spectra at smaller scales(Alexandrova et al. 2008).
Theoretical study of reduced MHD predicts that slow modes
with l k 1mfp are effectively undamped (lmfp is the particle
mean free path), and are passively advected by the Alfvén wave
turbulence in the inertial range(Schekochihin et al. 2009).
Slow modes remain correlated along the field lines in the
absence of dissipation in the perpendicular direction. However,
at the ion Larmor radius scale and below, Alfvénic fluctuations
decouple from the slow modes, and Landau damping is
considered to significantly damp slow-mode turbulence linearly
(via parallel phase mixing). Previous study with FLR-LF
simulations for decaying turbulence found that linear Landau
damping is responsible for the significant damping of
magnetosonic waves(Hunana et al. 2011).

2.2. Simulations Setup

Since solar wind turbulence is generally thought to stem
from isotropic random-like fluctuations at scales of the order of
(or larger than) the correlation length, it can be justified to
utilize random forcing as a turbulence driver when simulating
turbulence in the inertial range. In contrast, our study focuses
on the turbulence cascade at ion scales, where turbulence
becomes strongly anisotropic (i.e., ^  k k ) and dominated by
KAWs(Bale et al. 2005; Sahraoui et al. 2010; Podesta &
TenBarge 2012). Therefore we drive our simulations with
counter-propagating KAWs that fulfill the linear dispersion
relation at the driving scale (chosen to be at the largest scales of
the simulation domain). This simulation setup is found to

efficiently couple the turbulent fluctuations and generate
steady-state turbulent cascade, as shown in GK simulation-
s(Howes et al. 2008, 2011).
In the present simulations, we introduced two thresholds in

order to constrain the the sum of kinetic and magnetic energies
to stay within a certain range. In the phase of increasing energy,
the system is driven until the upper threshold is reached.
Afterwards, the energy decreases and the forcing is turned on
again only when the lower threshold is crossed. In that way, the
forcing is not too impulsive. It turns out that in the stationary
regime, the forcing acts approximately 10% of the time of the
simulation. As a driving force we use

å w f= - +
< <

( ) ( ( ) · ) ( )k kF t x F t x, cos , 1i
n N

i n n n i n
1

,
0

KAW ,

where kn is the wave vector of the KAW and w ( )knKAW is the
associated frequency for the propagation angles used in the
present study (which vary between q = 80kB and q = 86kB ).
This frequency is calculated numerically by solving the
linearized FLR-LF equations, using the Maple software. The
three considered models are numerically integrated using a
Fourier spectral method in a 3D periodic domain. In the present
simulations, the direction parallel to the ambient magnetic field
is extended by a factor ∼6, compared with the perpendicular
direction in order to focus on the quasi-transverse dynamics.
Weak hyperviscosity and hyperdiffusivity are supplemented to
ensure the presence of a sufficient numerical dissipation, which
were verified not to affect the spectral exponents. Two different
scales of forcing corresponding to wavenumbers, =k̂ d 0.18f i

(small scale) and =k̂ d 0.045f i (large scale), are considered.
The FLR-LF simulations contain from 1283 for the small scale
forcing to ´512 2562 grid points for the larger scale forcing,
before aliasing is removed. The associated spectral ranges are

 rk̂0.18 7.8i and  rk̂0.045 7.8i , respectively, after
aliasing is removed, which in runs involving either large or
small-scale forcing corresponds to a perpendicular mesh size of
D =x̂ d0.27 i. For CGL-HMHD runs with small-scale forcing,
the spatial resolution is ´256 5122 , with a spectral range

 rk̂0.18 15.6i . For the CGL-HMHD runs with large-
scale forcing, the presence of waves and shocks requires a
larger resolution in the parallel direction ( ´512 10242 grid
points are used).
All the simulations presented here are done with plasma

b = 1i , and initially equal and isotropic ion and electron
temperatures ( r=di i). The displayed spectra are shown as a
function of k̂ di after integration on k dz i and time averaging
over a few outputs when the simulation reaches a quasi-
stationary state.
In the following discussion, we show the results from

various simulations using different levels of physics. This
includes runs using the full FLR-LF code, the LF code (i.e.,
without FLR corrections), and the CGL-HMHD code (no FLRs
and no Landau damping but with the Hall term in the Ohm’s
law). For all these runs, we investigate the role of the
nonlinearity parameter (ratio, at a given wavenumber k̂ , of the
typical nonlinear frequency to the wave frequency c º w

w
NL

w
,

which at MHD scales reduces to c º
d^ ^



k B

k B
k

0
) on the scaling of

the magnetic energy spectra at sub-ion scales. Furthermore, we
separately consider the role of the amplitude fluctuation dB̂ B
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and the wave vector anisotropy ^ k k at the driving scale. The
different parameters of the runs are summarized in Table 1.

3. Energy Spectra and Dependence
on the Forcing Amplitude

3.1. Numerical Simulations

3.1.1. Small-scale Driving

In this section, we first explore the dependence of the spectra
on the amplitude of the waves at the driving scale =k̂ d 0.18f i

for a fixed propagation angle q = 80kB . We choose three
different amplitude fluctuations d =B̂ B 0.2, d =B̂ B 0.13,
and d =B̂ B 0.08, where dB̂ B stands for the time-averaged
rms value of the dimensionless perpendicular magnetic
component. For the two largest amplitudes, the corresponding
values of the nonlinearity parameter of the FLR-LF runs are
c = 0.30, c = 0.25, while in the case of the smallest
amplitude, the value of χ is smaller but not constant throughout
the spectral domain, the regime being closer to weak turbulence
(for details, see Sulem et al. 2016). The results are shown in
Figure 1. The simulations show the development of a quasi-
stationary turbulence energy cascade at scales  rk̂0.3 8i .
A first remark is that all the CGL-HMHD runs yield a power-
law magnetic spectrum ^( )E B with a slope close to -7 3, in
some cases affected by small-scale bottleneck effects due to
hyperdiffusivity. This result is consistent with theoretical
predictions of turbulence based, for example, on incompres-
sible Hall-MHD(Galtier 2008) and phenomenological argu-
ments based on critical balance. This slope is similar to the one
obtained from the LF and FLR-LF codes, when the fluctuation
amplitude is the highest, d =B̂ B 0.2 (Figure 1, top). The
second remark is that, in contrast with the CGL-HMHD results,
the FLR-LF and LF results show a dependence of the spectral
slopes on the wave amplitude—the lower the amplitude, the
steeper the spectrum. A phenomenological model of the energy
cascade was developed to explain this result(Passot & Sulem
2015; Sulem et al. 2016). The third interesting result is that the
Landau damping alone leads to a significant steepening of the
spectra at the kinetic scales. While Landau damping seems to
actively participate in dissipating the magnetic energy, the FLR
corrections appear to balance this effect by populating the
spectrum with more power at high wavenumbers. This picture
can be intuitively expected, considering that lower amplitude
fluctuations imply weaker nonlinearities, and therefore a more
prominent role of dissipation. It does not, however, reproduce
solar wind observations, as will be discussed in Section 3.2.

The second set of runs consists in keeping the forcing
amplitude constant (d =B̂ B 0.08) and varying the angle qkB.
The results are shown in Figure 1 (bottom) and Figure 2. The

values of the nonlinearity parameter for the FLR-LF run with
q = 83kB (Figure 2, top) is c = 0.21, while for the case
q = 86kB (Figure 2, bottom), it is c = 0.3. Here, again, we
find similar features as in the previous runs: the spectral slopes
strongly depend on the propagation angles—the more oblique
the waves at the driving scale, the shallower the spectrum. This
result can be explained by similar intuitive arguments as noted
previously: more oblique angles imply higher ^ k k , which in
turn implies a prominent role of the nonlinearities (i.e., larger
values of χ) over the dissipation. Note, however, that linear
KAWs are weakly damped by the Landau resonance at high

Table 1
Driving Wavenumber k df i, Amplitude Level dB̂ B, and Angle qkB Used for

the FLR-LF, LF, and CGL-HMHD Runs

Runs k df i dB̂ B q ( )kB

AA 0.18 0.20 80
A 0.18 0.13 80
B80 0.18 0.08 80
B83 0.18 0.08 83.6
B86 0.18 0.08 86
LS1 0.045 0.13 83.6
LS2 0.045 0.08 83.6

Figure 1. Magnetic energy spectrum ^( )E B as a function of k⊥ (in -di
1 units)

for FLR-LF (red), LF (blue), and CGL-HMHD (green) models, with
=k̂ d 0.18f i for different initial wave amplitude: d =B̂ B 0.2 (top, run

AA), d =B̂ B 0.13 (middle, run A), and d =B̂ B 0.08 (bottom, run B80) and
at a fixed propagation angle q = 80kB .
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oblique angles than at moderate propagation angles(Sahraoui
et al. 2012). These two effects (stronger nonlinearities and
weaker Landau damping) may work together and lead to the
observed shallower spectra at high oblique propagation angles.

3.1.2. Large-scale Driving

The results of the previous section may legitimately raise
some concern about the proximity of the forcing scale
( =^ )k d 0.18if from the scales at which the turbulence spectra
were obtained (  rk0.3 8i ). The resulting lack of scale
separation may cause the power-law spectra reported pre-
viously to be dependent on the nonlinearity parameter χ. To
test this hypothesis, we performed a new set of simulations
where the driving scale is now shifted toward larger scales (i.e.,
to =^k d 0.045if ), which is four times larger than in the
previous runs. We considered two cases with both the full FLR-
LF and the CGL-HMHD models. In the first one, the amplitude
was fixed to d =B̂ B 0.08 and q = 83 .6kB . In the second case,
we kept the same angle qkB but changed the amplitude to
d =B̂ B 0.13. The results are shown in Figures 3 and 4 for the
FLR-LF and CGL-HMHD models, respectively. Interestingly,
we observe that the two FLR-LF runs provide similar spectral
slopes—close to -5 3 at large scales and −2.45 at small
scales. For the CGL-HMHD model, in the large amplitude
forcing case, a transition between the MHD range with a-5 3
magnetic spectrum and the sub-ion scales is still visible, but the

present resolution does not permit the observation of a clear
power-law in the latter range. The presence of the large-scale
shocks in this simulation indeed requires larger hyperviscosity
and hyperdiffusivity (larger by a factor of 10 compared with the
runs with Landau damping) at the present resolution. Note that
such shocks do not develop when turbulence is driven at
smaller scale, because of the enhanced dispersive effects.
In CGL-HMHD simulations where the driving is weaker
(Figure 4, bottom), the -5 3 range is less visible, but a clear
-7 3 sub-ion range is present. This suggests that this -7 3
spectrum is universal for the CGL-HMHD model. Another
conspicuous difference between the FLR-LF and the CGL-
HMHD models concerns the Bz spectrum ( )E Bz at large scale.
While it is flat at a relatively low forcing amplitude in the FLR-
LF simulation (Figure 3) due to Landau damping, much more
energy is carried by the largest scales for the CGL-HMHD
model (Figure 4). The signature of this observation in physical
space will be discussed in Section 4.
The behavior of the sub-ion range spectrum in the FLR-LF

simulations thus contrasts with the results reported in the
previous section: there is no clear slope variation when
changing the amplitude, as was the case with forcing at small
scales. Therefore the variation of the spectral slopes at the sub-
ion scales is due not only to the nonlinear parameter χ but also
to the choice of the driving scale. The effect of the fluctuations
at various scales on the spectral slopes can be directly verified
in the solar wind using spacecraft observations, which we
discuss in the following section.

Figure 2. Magnetic energy spectrum ^( )E B as a function of k⊥ (in -di
1 units)

for FLR-LF (red), LF (blue), and CGL-HMHD (green) models, with
=k d 0.18f i for the propagation angles q = 83kB (top, run B83) and

q = 86kB (bottom, run B86), and for a fixed wave amplitude d =B̂ B 0.08.
The case q = 80kB is given in Figure 1 (bottom).

Figure 3. Perpendicular ^( )E B (red) and parallel ( )E Bz (pink) magnetic energy
spectrum as a function of k⊥ (in -di

1 units) for the FLR-LF model for two
different run with a driving at large scales: d =B̂ B 0.13 and q = 83 . 6kB (top)
and d =B̂ B 0.08 and q = 83 . 6kB (bottom).

5

The Astrophysical Journal, 839:122 (11pp), 2017 April 20 Kobayashi et al.



3.2. Spacecraft Observations

We performed a large survey of the power spectra of the
magnetic fluctuations measured by the Clusterspacecraft in the
free-streaming solar wind (i.e., not connected to the bow
shock). We combined the data from the Fluxgate (FGM) and
the Seach-Coil magnetometers (STAFF-SC) onboard Cluster2
(merged at the frequency ∼1 Hz; Sahraoui et al. 2010). The
data allow one to cover the frequency range ~[ ]0.001, 10 Hz
corresponding to the MHD and sub-ion scales. When STAFF-
SC is in burst mode (BM), its waveforms are sampled at
450 Hz, which allows for exploring higher frequencies that
reach the electron scales(Kiyani et al. 2009; Sahraoui et al.
2009, 2010). Due to the limited available BM data in the solar
wind(Sahraoui et al. 2013), and because we are interested in
investigating scales comparable to the ion scale, we use
essentially the Clusterdata in normal mode (NM). This
significantly increases the size of our statistical sample in
comparison with that used in Sahraoui et al. (2013).

An example of the analyzed magnetic energy spectra is
displayed in Figure 5, which shows three ranges of scales with
differents spectral slopes: -f 1.64 at MHD scales, -f 3.58 in the
transition range (near the ion characteristic scale), and -f 2.57 at
the sub-ion scales. To compare the Clusterobservations with
the previous simulation results, we integrated the power of the
fluctuations in different bandwidths (marked in Figure 5):
[ ]0.01, 0.1 Hz, [ ]0.1, 0.5 Hz, and [ ]1, 2 Hz, which correspond
respectively to the spatial scales r ~ [ ]k 0.01, 0.11i , r ~k i
[ ]0.11, 0.5 , and r ~ [ ]k 1.1, 2.1i (using the Taylor hypothesis

and the average solar wind parameters: ~V 536 km s−1,
~T 22 eV and ~n 6 cm−3, ~B 7 nT). The resulting normal-

ized power W Wo (Wo is to the minimum observed integrated
power for each bandwidth) is then correlated to the spectral
slopes at the sub-ion scales. The results for the three
bandwidths are shown in Figure 6.
Figures 6(a) and (b) depict a similar trend than that reported

in Bruno et al. (2014)—the higher the power in the inertial
range, the steeper the spectrum—although here we obtain a
different nonlinear fit. This discrepancy may be due to the
difference in the size of the statistical samples used in the two
studies (here we used 760 intervals of 90 mn duration each).
Two more interesting features can be seen in Figure 6. First,
one observes no correlation between the slopes in sub-ion
scales 2 (blue circles) and the fluctuations amplitude calculated
in the three frequency bandwidths. This result is consistent with
our simulation results of Figure 3. Second, in Figure 6(c), for
which the power has been integrated in the frequency range
closest to the transition range, there is no clear correlation
between the spectral slopes and the fluctuations power at the
intermediate scales. This observation does not fully explain our
simulations results, since we do not observe the same trend in
the simulations and the spacecraft observations (i.e., the
simulations show that high amplitude fluctuations yield
shallower spectra at sub-ion scales). Nevertheless, it does
show that what seems to influence the spectral slopes in the
transition range is the fluctuations power in the inertial range.
To prove that in the numerical simulations would require using
a broader range of the fluctuations amplitude dB̂ B than that
used in the present simulations, and a broader dynamical range
to possibly evidence the transition range. However, the physics
of the transition range being poorly understood, input from
spacecraft observations will be needed to define appropriate
simulation setups and physical conditions to run such
simulations.

4. Nature of the Turbulent Fluctuations

The partition of the turbulent energy transferred from the
inertial range into ion and electron heat is an important
unresolved problem, because it is strongly related to which
species the energy ends up being and how this transition
occurs. Figures 7(a)–(d) show the perpendicular magnetic
energy as a function of ω and ∣ ∣k for run A with different angles
qkB. The FLR-LF dispersion relations are over-plotted for KAW
(dashed blue), slow (dashed–dotted purple), and fast (three
dots-dashed red) modes. We observe a maximum of energy at

Figure 4. Perpendicular ^( )E B (green) and parallel ( )E Bz (light green)
magnetic energy spectrum as a function of k⊥ (in -di

1 units) for the CGL-
HMHD model for two different runs with a driving at large scales:
d =B̂ B 0.13 and q = 83 . 6kB (top), and d =B̂ B 0.08 and q = 83 . 6kB

(bottom).

Figure 5. An example of power spectra of the magnetic fluctuations measured
by the FGM ( <f 1 Hz) and STAFF-SC ( >f 1 Hz) experiments onboard
Cluster2. Vertical dashed lines are the proton gyrofrequency, fci, and the
“Taylor-shifted” proton gyroradius and inertial length ( pr=rf V d2 ,d f i i,i i

).

6

The Astrophysical Journal, 839:122 (11pp), 2017 April 20 Kobayashi et al.



the smallest k and lowest ω region in Figure 7(c), which
corresponds to the injected KAWs (at a 80° angle). While the
results indicate that the energy is mostly distributed at higher

propagation angles, which is consistent with the theory of
KAW turbulence, one finds a clear signature of the generation
of the fast waves in KAW-driven turbulence with decreasing
qkB. The fast wave energy starts to be non-negligible at
intermediate angles around q ~ 60 and below (Figure 7(a)).
Nevertheless, turbulence energy is distributed mostly in KAW/
slow-mode regions (the energy distribution around the fast
wave branch being much smaller, by a factor ×10−1 or less,
compared with the KAW/slow counterparts at the ion
gyroscale). Noticeably, the energy distribution around the
KAW/slow modes is very broad, indicating strong nonlinea-
rities associated with the presence of coherent structures
(discussed later).
To further investigate the nature of the sub-ion scale

turbulence, we use the magnetic compressibility defined, for
each wavenumber k̂ , as d d d= + ^  ( )C B B B2 2 2 , where d B
and dB̂ are the parallel and perpendicular magnetic Fourier
modes. It is computed for different runs from Table 1 and
compared with the linear Vlasov–Maxwell solution for KAW,
obtained using the WHAMP code ( ~B 4.5 nT, b ~ 1.5i ,
b ~ 1.2e , q = 85kB ) and to Clusterobservations in the solar
wind used in Sahraoui et al. (2010). The results are shown in
Figure 8. The three models, FLR-LF (red), the LF (blue), and
the CGL-HMHD (green), show a magnetic compressibility
increasing with k⊥ and reaching isotropy (light black dotted
line, =C 1 3) around the ion scale. This result is in general
agreement with solar wind observations (black dotted line).
However, at the sub-ion scales, the spacecraft observations are
better reproduced by the FLR-LF results, while the CGL-
HMHD ones fit better C at large scales. This is probably
related to the fact that in the simulations, energy is injected in
the form of pure Alfvénic fluctuations, whereas in the solar
wind, a small fraction of compressible (fast or slow) waves can
be present at large scales.
Another interesting question to investigate is the influence of

Landau damping and FLR corrections on the magnetic
compressibility by comparing FLR-LF and CGL-HMHD
simulations. Figure 8 shows that for the FLR-LF simulations
(red lines), CP is small at large scales and approaches
equipartition at a scale slightly smaller than the ion Larmor
radius, as predicted by linear theory, while in the CGL-HMHD
runs (green lines), the compressibility is already significant at
the largest scales. This effect is possibly due to the presence of
fast waves, for which the linear theory predicts that the
magnetic compressibility is close to unity at large scales (see,
e.g., Figure 4 of Hadid et al. 2015). The slow increase of CP
visible for >k̂ d 5i in the case of the FLR-LF simulation is
probably due to the hyperdiffusivity. The continuous growth
observed in the case of the CGL-HMHD simulation seems,
however, to be physical. By comparing LF (blue) and FLR-LF
(red) simulations, a clear difference is visible at large scales,
where the presence of FLR corrections make the magnetic
compressibility significantly closer to the prediction of the
linear kinetic theory. Furthermore, while for the CGL-HMHD
description the driving scale has no conspicuous effect on C
(dotted or solid green lines), we note that in the case of the
FLR-LF model, we observed an enhanced magnetic compres-
sibility at intermediate scales for the small-scale driving (dotted
or solid red lines).
The differences between the two families of simulations are

also visible in physical space (Figure 9). Indeed, parallel and
perpendicular sections for the parallel magnetic fluctuations Bz

Figure 6. Clusterobservations in the solar wind showing the correlation
between the amplitude of the turbulent fluctuations measured within three
bandwidths, [0.0, 0.1] Hz (a), [0.1, 0.5] Hz (b), and [1, 2] Hz (c), with the
spectral slopes in the transition range (black), in the sub-ion scale 1 (red), and
in the sub-ion scale 2 (blue). See the definition in Figure 5.
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show the presence of short-scale waves and large-scale shocks,
only in the case of CGL-HMHD simulations. They are not
visible in the corresponding cross sections for FLR-LF
simulations, due to the action of Landau damping. In both
cases, we note the presence of sheets and filaments elongated
along the magnetic field lines. Nevertheless, the filaments are
less space-filling and rather isolated when compared with the
CGL-HMHD simulation, where fluctuations are fuzzier and

piled up behind shock waves. This observation is related to the
presence of relatively strong energy at large scale in the Bz

spectrum (see Figure 4). More fragmentation of the structures is
also observed in the case of the FLR-LF simulations because of
FLR effects. Confirmation of the coexistence of sheet-like and
filamentary structures is also seen at the level of the current
density, as shown for the FLR-LF simulation in Figure 10.
Density structures, also in the form of sheets, together with
quasi-planar ion velocity streamlines, perpendicular to the
ambient magnetic field, are shown in Figure 11. The ion flow is
quasi-two-dimensional and is only weakly compressible.

5. Discussion

This paper aimed to identify the effects of Landau damping
and FLR corrections on the dynamics of three-dimensional
Alfvén wave turbulence, with a special focus on the sub-ion
scales. The study is performed by using numerical simulations
of three different models, namely CGL-HMHD, LF, and FLR-
LF. The main observations concern the -7 3 universal CGL-
HMHD sub-ion spectrum of the transverse magnetic fluctua-
tions, which contrasts with both the LF and FLR-LF spectra,
whose slopes are observed to depend on the nonlinearity
parameter, and on the driving scale. This non-universality of
the spectral exponent is shown to be associated with Landau
damping. Note that FLR corrections have a tendency to
enhance the small-scale nonlinearities. They also ensure a
better fit of the magnetic compressibility with the prediction of
the linear kinetic theory. A question arises about the correlation
between the amplitude of the magnetic fluctuations and the

Figure 7. ^EB as a function of ω and ∣ ∣k di for q = 49 . 5 (a), 63° (b), 80° (c), and 84°. 96 (d), respectively, for the FLR-LF simulation of case A. FLR-LF dispersion
relations are over-plotted for KAW (dashed blue), slow (dashed–dotted purple), and fast (three dots-dashed red) modes.

Figure 8. Magnetic compressibility CP as a function of k⊥ (in -di
1 units) for

simulations LS2 of the FLR-LF model (red dashed) and the CGL-HMHD ones
(green dashed), and for run B3 in the FLR-LF (red solid), the LF (blue solid),
and the CGL-HMHD versions (green solid). FLR-LF simulations are consistent
with Vlasov theory (black solid). Clusterobservations in the solar wind (2010-
01-10, 06h15–06h25) are also displayed (black dots). In all cases, isotropy
(light black dotted) is reached at small scales.
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slope of the magnetic exponent in the sub-ion range. At this
level, the comparison with spacecraft observations is delicate.
First, from the theoretical side, the control parameter (i.e., the

nonlinearity parameter) is a combination of amplitude and
typical propagation angle, which is difficult to evaluate
accurately from spacecraft data(Sahraoui et al. 2010). Second,

Figure 9. Transverse (top) and longitudinal (bottom) sections of the Bz field for the CGL-HMHD (left) and FLR-LF (right) simulations in case LS2. Note the presence
in the CGL-HMHD simulation of short-scales waves mostly visible within the (blue) structures in the middle left part of the longitudinal section. Shocks are
conspicuous on both longitudinal and transverse sections.
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the observed spectrum in spacecraft data can display a much
steeper transition range (not present in simulations), whose
physics is still poorly understood. This led us to perform a new
analysis, using data measured by the Clusterspacecraft in the
solar wind, that covered several spectral ranges where wave
amplitude and spectral slopes are evaluated. When correlating
the wave amplitude measured in the inertial range with slopes
measured in all the ranges, including the transition one, we
found a tendency for steeper spectra at larger amplitudes, as in
Bruno et al. (2014). This correlation is the opposite of the one
found in simulations driven at scales close to the ion Larmor
radius. On the contrary, when observational slopes in the sub-
ion range, excluding the transition one, are correlated with
amplitudes measured closer to the ion Larmor radius, no clear
correlation is found. When the slopes are measured further
down in the sub-ion range (when a transition range is not
present at the ion scales), no correlation is found with the

fluctuation amplitude, regardless of the frequency bandwidth
where the amplitude measurement is performed. This observa-
tion can be linked to numerical simulation results with a forcing
at large scale (i.e., that included part of the MHD range), which
showed no evidence for a change of slope when varying the
driving amplitude.
Numerical simulations also enable one to investigate the

geometrical properties of the flow structures and the type of
waves that are present. Noticibly, in contrast with the CGL-
HMHD model, the FLR-LF one correctly reproduces the
variation with the transverse wavenumber of the observational
magnetic compressibility. Furthermore, the CGL-HMHD
simulations show the presence of small-scale waves and
large-scale shocks that contribute to structure the flow. These
fast waves are mostly damped in the FLR-LF simulations, and
are only visible at some oblique angles, as revealed by an
analysis of the frequency-wavenumber spectrum. In the FLR-
LF simulations, thin and rather isolated filamentary structures
aligned with the local magnetic field coexist with sheets.
This study demonstrates the need for Landau damping in

realistic simulations of the solar wind. More precise compar-
isons with spacecraft observations nevertheless require higher
resolution simulations, as the turbulence properties are very
sensitive to the type and spectral location of the driving
process. This type of study is planned together with a more
detailed analysis of the energy distribution among the various
types of waves and coherent structures.
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