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Abstract: We present an analytical approach based on Cramer-Rao Bounds (CRBs) to inves-
tigate the uncertainties in estimated ocean color parameters resulting from the propagation of
uncertainties in the bio-optical reflectance modeling through the inversion process. Based on
given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of
ocean color parameters and any sensor configuration, directly providing the minimum estimation
variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here,
CRBs are explicitly developed using (1) two water reflectance models corresponding to deep
and shallow waters, resp., and (2) four probabilistic models describing the environmental noises
observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For
both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation
variances obtained using two published remote-sensing methods, while not requiring one to
perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge
on one or several geophysical parameters can improve the estimation of remaining unknown
parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR)
within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters.
Finally, CRBs are shown to provide valuable information on the best estimation performances
that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of
oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient
tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.
© 2017 Optical Society of America

OCIS codes: (010.4450) Oceanic optics; (100.3190) Inverse problems; (110.4234) Multispectral and hyperspectral
imaging; (280.0280) Remote sensing and sensors.
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1. Introduction

Optical remote sensing is of major importance to monitor optically deep and shallow waters from
air- and satellite-borne sensors. In the case of optically deep waters, it enables the estimation of
the inherent optical properties (IOPs) of the upper water layer, i.e., the spectral absorption and
backscattering coefficients. In addition to pure water, the IOPs can be related to three optically
active water constituents, namely, phytoplankton, colored dissolved organic matter (CDOM) and
non-algal suspended particles. Spatially- and temporally-resolved knowledge of these variables
is critical to understand biogeochemical processes such as carbon exchanges, phytoplankton
biodiversity shifts, and responses to climatic disturbances [1]. In the case of optically shallow
waters, optical remote sensing also enables the estimation of depth and bottom cover (both
potentially greatly affecting the water-leaving radiance), which has important implications, e.g.,
for monitoring coral reefs [2] or detecting seasonal changes in bathymetry [3]. Providing reliable
uncertainties (e.g., expressed in terms of mean absolute difference [4] or root mean square
deviation [5]) to remote-sensing products is an important task since such knowledge informs one
of the confidence level of these products, which is critical for many applications. For example,
knowledge of chlorophyll-a uncertainty is needed to characterize the uncertainty budget of
primary production algorithms [4]. Uncertainties are also required to guide the design of future
sensors [6], or to improve the predictions of ocean models through data assimilation [7]. Accurate
knowledge of uncertainties is especially critical for remote sensing of aquatic environments, since
water absorption often leads to low reflectances compared to other Earth surfaces such as soil or
vegetation, and therefore to high uncertainties.

First of all, it is worth reminding that the uncertainty in a given ocean color product has several
components, each of which arises from a particular stage of the whole calibration, measurement
and processing chain. When assessing uncertainties by comparing the actual product values
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measured in-situ with their satellite-derived estimates, one actually takes into account the
uncertainties related to, e.g., in-situ measurements, correction schemes (e.g., atmospheric
correction), bio-optical modeling, sensor noise and radiometric specifications, as well as those
induced by the inversion method [4,5,8,9]. Note that the uncertainty in the inversion of a particular
ocean color parameter usually depends on the actual parameter value itself: for example, in the
case of shallow water remote sensing, the uncertainties in the inversion of bathymetry and bottom
cover increase with depth since the bottom influence becomes negligible as depth increases.
Instead of providing a single uncertainty value for the whole range of possible parameter values,
a more informative approach consists in subdividing the parameter space and computing the
uncertainty for each subdivision [4, 8, 10]. For example, in [4], the authors characterized the
chlorophyll-a uncertainty of the AquaMODerate resolution Imaging Spectroradiometer (MODIS)
for eight optical water types, each of which is defined by a mean reflectance spectrum and a
spectral covariance matrix. The uncertainty can then be computed for each image pixel based
on the memberships to these water types. Still for optically deep waters, other approaches have
also been proposed to provide an uncertainty value for each estimate. In [11], the uncertainty is
derived from the results of more than 1,000 inversions performed for various spectral shapes
of phytoplankton, CDOM and suspended particle IOPs. In [8], it is obtained by propagating
uncertainties through the Quasi-Analytical Algorithm. In [1], it is based on the shape of the cost
function (that is used for model inversion) around the optimum through the use of the Jacobian
matrix.
Simulations have also widely been used to evaluate for some of the uncertainty components.

The two main advantages are that (1) one can generate as many simulations as needed, and (2)
there is no error in ground truth measurements, correction schemes and modeling, such that
only the uncertainties related to the sensor radiometric specifications, the noise model and the
inverse method, are evaluated. Such a separation is critical to quantify the influence of each
source of uncertainty [5, 6, 8, 9]. The use of simulations is especially interesting for shallow
water remote sensing because of the higher number of model parameters compared to deep
waters [6]. Simulated data have been used to compare sensors [12] or to identify the main factors
confounding the discrimination of coral reefs [6]. However, the number of parameters is such
that, for computational convenience, the analysis is often simplified by sampling the parameter
space and by using a few bottom covers, sensor configurations or signal-to-noise ratios (SNRs).
Most of the above mentioned approaches thus require remote-sensing data (either real or

simulated) to evaluate uncertainties, and the implementation of these approaches may be
computationally expensive. In addition, all of them depend on the inversion method, although
a wide variety of statistically- and physically-based methods have been developed for remote
sensing of optically shallow [13–21] and deep waters [1, 22–24]. Therefore, one cannot know to
what extent the uncertainties obtained using a given algorithm could be improved using another
one. As emphasized in [6], theoretical studies remain required to characterize the remote-sensing
uncertainties, but also to help the design of appropriate sensors.

In this context, the development of Cramer-Rao Bounds (CRBs) is relevant since CRBs provide
theoretical lower bounds for the variances of unbiased estimators [25]. For a given water column
and noise covariance matrix, the CRB analytical expressions thus directly provide the minimum
achievable variances in unbiased estimators for all targeted ocean color geophysical parameters.
Since CRBs only depend on the Fisher information related to the modeled reflectance data [25],
they are algorithm-independent and do not require one to invert remote-sensing data. Applications
of CRBs in remote sensing include polarimetric synthetic aperture radar interferometry [26] or
denoising of hyperspectral images [27], but, to our knowledge, they have not been fully developed
in the context of ocean color remote sensing. They have only been introduced in [28] for shallow
waters in a simple yet not realistic case (i.e., one unknown parameter, known bottom cover,
diagonal spectral covariance matrix). However, a more comprehensive study is still required
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to evaluate the interest of CRBs for aquatic remote sensing, as knowledge of such minimum
inversion uncertainties may be very useful, e.g., to design satellite-borne sensors or to provide
lower bounds for remote-sensing data assimilation within oceanic models.
In this paper, we use the reflectance model presented in Section 2 to develop the CRB

expressions for both optically deep and shallow waters (Section 3 and Appendix A). Three
applications are then presented in Section 4. First, the minimum uncertainties in the inversion of
ocean color parameters, as provided by the CRBs, are compared to the experimental estimation
standard deviations obtained using the LS (Least-Square) [1,14] andMILE (MaxImumLikelihood
estimation including Environmental noise) [21] methods (Section 4.2). Then, the CRBS are
used to investigate how perfect a priori knowledge on some model parameters can improve the
estimation of the remaining unknown parameters (Section 4.3). Finally, the CRBs are used to
predict the minimum uncertainties in the inversion of ocean color parameters for four sensor
configurations, namely, the HICO (Hyperspectral Imager for the Coastal Ocean), MODIS,
Sentinel-2 MSI (MultiSpectral Instrument) and Sentinel-3 OLCI (Ocean and Land Colour
Instrument) configurations (Section 4.4). Note that, unless otherwise stated, the term "inversion
uncertainty" does not hereafter correspond to the total uncertainty in a given ocean color product.
Instead, it refers to the uncertainty in the inversion of a given ocean color parameter, and results
from the propagation of uncertainties in the bio-optical modeling of reflectance (such uncertainties
being accounted for by the noise model presented in Section 2.1) through the inversion process.
The term "inversion uncertainty" is here seen as the estimator standard deviation, provided this
estimator is unbiased.

2. Modeling of subsurface remote-sensing reflectance

2.1. Noise probabilistic modeling

Similarly as in [21, 29, 30], the spectral variability of subsurface remote-sensing reflectance
rrs = [rrs(λ1), ..., rrs(λL)]t (where L is the number ofwavebands) is described using amultivariate
Gaussian distribution, i.e., rrs = µ + ns where µ and ns are L × 1 vectors. The mean subsurface
remote-sensing reflectance spectrum µ is parameterized using either a shallow (Section 2.2)
or deep (Section 2.3) water reflectance model. ns is a Gaussian vector with zero mean and
covariance matrix Γs that accounts for the environmental noise [31] (note that all the per-band
noise variances are given by the diagonal of Γs). The environmental noise includes all the sources
of above-water reflectance variability that are not accounted for by the bio-optical model µ
(e.g., sensor noise, variable residuals from atmospheric correction or effects related to the rough
water surface) and may be therefore scene-specific. In practice, it is generally estimated over a
homogeneous area of optically deep water.

2.2. Bio-optical modeling for optically shallow waters

For optically shallow waters, the mean subsurface remote-sensing reflectance µ(λ) at a given
wavelength λ is given by the semi-analytical model developed in [14, 15, 32]:

µ(λ) = rrs,∞(λ)
{
1 − exp

[
−

(
kd(λ) + kc

u(λ)
)

H
]}

+
1
π

[
Bρb,1(λ) + (1 − B)ρb,2(λ)

]
exp

[
−

(
kd(λ) + kb

u (λ)
)

H
]

(1)

where rrs,∞(λ) is the deep water reflectance, H is the depth, and the bottom albedo is given by
a linear mixture of two substratum albedos ρb,1(λ) and ρb,2(λ) with fractional covers B and
(1 − B), respectively. rrs,∞(λ) and the attenuation coefficients kd(λ), kc

u(λ) and kb
u (λ) are further
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related to the total absorption (a(λ)) and backscattering (bb(λ)) coefficients [14, 32]:

rrs,∞(λ) =
(
0.084 + 0.17

bb(λ)
a(λ) + bb(λ)

)
bb(λ)

a(λ) + bb(λ)
(2)

kd(λ) =
a(λ) + bb(λ)

cos θs
(3)

kc
u(λ) =

1.03
cos θv

(a(λ) + bb(λ))
(
1 + 2.4

bb(λ)
a(λ) + bb(λ)

)0.5
(4)

kb
u (λ) =

1.04
cos θv

(a(λ) + bb(λ))
(
1 + 5.4

bb(λ)
a(λ) + bb(λ)

)0.5
(5)

where θs and θv are respectively the solar and viewing zenith angles. Finally, the absorption and
backscattering coefficients are given by the sum of the contributions of optically active water
constituents, i.e., pure water, phytoplankton, CDOM and suspended particles [17]:

a(λ) = aw(λ) +
{
a0(λ) + a1(λ) ln[aφ(440)]

}
aφ(440) + ag(440)a∗g(λ) (6)

bb(λ) = bbw(λ) + bbp(550)b∗bp(λ) (7)

where aw(λ) and bbw(λ) are the absorption and backscattering coefficients of pure water [33,34],
a0(λ) and a1(λ) are empirical spectra [32], aφ(440) is the phytoplankton absorption coefficient at
440 nm, ag(440) is the CDOM absorption coefficient at 440 nm, a∗g(λ) = exp [−0.015(λ − 440)],
bbp(550) is the particle backscattering coefficient at 550 nm and b∗

bp
(λ) = (550/λ)0.5. Note

that, in the following, the known aw(λ), a0(λ), a1(λ), a∗g(λ), bbw(λ), b∗
bp
(λ), ρb,1(λ) and ρb,2(λ)

spectra were oversampled to 1 nm step before being spectrally-degraded according to each tested
sensor radiometric configuration (Section 4.1), assuming a rectangular spectral response for
each waveband. For a given sun-sensor geometry, the shallow water reflectance is thus fully
determined by the five geophysical parameters H, aφ(440), ag(440), bbp(550) and B.

2.3. Bio-optical modeling for optically deep waters

For optically deep waters, the mean subsurface remote-sensing reflectance is parameterized by

µ(λ) = rrs,∞(λ) (8)

with rrs,∞(λ) described by Eq. (2), Eq. (6) and Eq. (7). The deep water reflectance is therefore
determined by only three geophysical parameters, namely, aφ(440), ag(440), and bbp(550).

3. Development of Cramer-Rao lower bounds

Let us define ∆ as the vector of unknown ocean color geophysical parameters (i.e., H, aφ(440),
ag(440), bbp(550) and/or B) to be estimated from the remote-sensing observation rrs (either for
optically deep or shallow waters). According to [25], the variance of any unbiased estimator
∆̂i(rrs) of any element ∆i of ∆ is bounded as

E
[
(∆̂i(rrs) − ∆i)2

]
≥ [CRB(∆)]i,i (9)

where CRB(∆) is a square matrix with dimensions equal to the length of ∆. The CRB of ∆i
estimation thus corresponds to the ith element of the diagonal of CRB(∆). Further, the inverse of
CRB(∆) is the Fisher information matrix IF (∆) [25], whose element i, j is

[IF (∆)]i, j = E
[
∂ln(P(rrs |∆))

∂∆i

∂ln(P(rrs |∆))
∂∆j

]
(10)
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where P(rrs |∆) is the likelihood of observing rrs given ∆. In the multivariate Gaussian case with
mean µ and covariance matrix Γs (Section 2.1), Eq. (10) can be simplified [35]:

[IF (∆)]i, j =
1
2
tr

(
Γs
−1 ∂Γs

∂∆i
Γs
−1 ∂Γs

∂∆j

)
+
∂µ

∂∆i
Γs
−1 ∂µ

∂∆j
(11)

where tr is the trace operator. As Γs does not depend on unknown parameters, Eq. (11) becomes

[IF (∆)]i, j =
∂µ

∂∆i
Γs
−1 ∂µ

∂∆j
. (12)

When using the models described in Section 2, the determination of IF (∆) thus only requires
the calculation of derivatives ∂µ/∂∆i , as well as the estimation of the environmental noise
Γs. The components of ∆ are H, aφ(440), ag(440), bbp(550) and/or B in the case of shallow
waters (Section 2.2), while they are aφ(440), ag(440) and/or bbp(550) in the case of deep waters
(Section 2.3). The analytical expressions of the five derivatives are developed in Appendix A.
IF (∆) is then inverted numerically using a standard matrix inversion algorithm to obtain the CRB
matrix CRB(∆). Based on such a modeling, CRB(∆) only includes the uncertainties related to
the considered Fisher information (which depends on the bio-optical model, environmental noise
and sensor radiometric specifications), but not those related to, e.g., ground truth measurements,
systematic errors in correction schemes (e.g., atmospheric correction), or inverse methods.
In other words, CRB(∆) are the minimum uncertainties in ∆̂(rrs) due to the propagation of
uncertainties in the bio-optical model µ through the inversion process. Uncertainties in µ refer to
all the factors causing pixel-to-pixel reflectance variations that are not accounted for by µ, such
factors being instead described by the noise covariance matrix (in this paper, Γs).
Note that the CRBs provided in Section 4 are actually the square roots of CRBs, denoted
[CRB(∆)]i,i0.5 for parameter ∆i (see Eq. (9)). As shown in Eq. (9), [CRB(∆)]i,i0.5 has the same
nature as a standard deviation and it is thus expressed in the same unit as ∆i . From a practical point
of view, given a set of ocean color parameters ∆ and a noise covariance matrix Γs , [CRB(∆)]i,i0.5
directly provides the minimum estimation standard deviation that can be possibly (but not
necessarily) attained by any unbiased estimator ∆̂i(rrs).

4. Experiments and results

4.1. Estimation of environmental noise

A reliable estimate of the environmental noise matrix Γs based on real data is necessary to obtain
consistent CRBs. In this paper, four estimates of Γs were derived from images acquired by four
satellite-borne multi-, super- and hyperspectral sensors, namely Sentinel-2 MSI (MultiSpectral
Instrument), HICO (Hyperspectral Imager for the Coastal Ocean), Sentinel-3 OLCI (Ocean and
Land Colour Instrument) and MODIS (Table 1).

Table 1. Features of the remote-sensing images used to estimate the environmental noise.

Sensor Acquisition Location Spatial Spectral Number
date resolution (m) range (nm) of bands

MSI May 5, 2017 38◦45’N, 1◦22’E 60 443-783 7
HICO May 23, 2013 42◦50’N, 6◦30’E 90 404-799 70
OLCI July 6, 2017 43◦00’N, 10◦00’E 300 400-779 13
MODIS July 17, 2016 41◦00’N, 8◦00’E 1,000 412-678 10

Besides having different radiometric configurations, these sensors cover a wide range of spatial
resolutions, namely, 60 m for MSI (after downsampling the 10 and 20 m bands by averaging over
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square cells), 90 m for HICO, 300 m for OLCI full resolution and 1,000 m for MODIS reduced
resolution. While the spatial resolutions and the radiometric configurations of MODIS and OLCI
have been designed to monitor oceanic and coastal waters from regional to global scales, the high
spatial resolution provided by MSI is convenient to monitor coastal and inland waters from local
to regional scales. Incidentally, note that the inversion performances obtained using the original
10 m and/or 20 m resolution MSI bands (which are obviously noisier than the 60 m resolution
bands used in this paper) cannot be better than the CRBs of MSI shown in Section 4.4. Finally,
though being no longer operational, HICO was also included in this study because it provided
both high spatial and spectral resolutions as well as a high SNR, all of which are critical to study
shallow areas.

Fig. 1. Environmental noise estimation based on theMSI, HICO, OLCI andMODIS (columns
1 to 4, resp.) images (row 1), where unreliable pixels (e.g., land and clouds) are masked. For
each image, the white arrow in row 2 indicates the minimum of the modified ALCL-generated
image (corresponding to the most homogeneous area), where the Γs matrix (row 3) is
estimated. In row 3, the size of each uniformly colored area denotes the sensor bandwidths
at the corresponding wavebands (no spectral data measured in the black areas). Note that the
colorbar is the same for each row.

The satellite images used for Γs estimation were acquired over the Western Mediterranean
region. They were directly obtained at Level-2A (Fig. 1). The MSI bottom-of-atmosphere
reflectance image (dimensionless) was downloaded from the Copernicus Open Access Hub
(scihub.copernicus.eu/dhus/#/home) and converted into remote-sensing reflectance
by dividing it by a factor of π. Note that, although the Sentinel-2 Sen2cor toolbox used for
atmospheric correction was not originally designed for aquatic scenes, several recent studies
showed that it could allow satisfactory estimations of water reflectance [36, 37]. The HICO
remote-sensing reflectance image was provided by the Oregon State University, College of
Earth, Ocean, and Atmospheric Sciences (hico.coas.oregonstate.edu). The OLCI
marine product (dimensionless) was downloaded from the Copernicus Online Data Access
(coda.eumetsat.int) and converted into remote-sensing reflectance by dividing it by a
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factor of π. Finally, the MODIS remote-sensing reflectance image was obtained from the NASA
Ocean Color data archive (oceancolor.gsfc.nasa.gov).

While sunglint was found to have a negligible influence on the considered OLCI and MODIS
coarse spatial resolution data (especially due to the tilted viewing configuration of OLCI), it was
corrected for MSI and HICO data by using the algorithm proposed in [38]. For this purpose,
note that, for both MSI and HICO sensors, the near-infrared reflectance used in the deglint
algorithm was the band value at 842 nm for MSI, and the value averaged over the ten bands
located between 800 and 850 nm for HICO. Estimating the sunglint contribution outside the
spectral range where Γs was derived, ensures that the environmental noise is not underestimated
at all the considered wavebands (because the sunglint contribution is basically subtracted from
all these wavebands). Finally, subsurface remote-sensing reflectance data were obtained after
correcting for the air/water interface [23].
For each image, the Automated Local Convergence Locator (ALCL) method [39] was

implemented to find a homogeneous area of optically-deep water in the image, where Γs could
then be objectively and reliably estimated (Fig. 1). ALCL consists in finding an area where
the spectrally-averaged standard deviation of reflectance computed over a square cell does not
change when increasing the cell size. The ALCL criterion to be minimized is the slope of the
linear regression between the reflectance standard deviation and the cell size. In this paper, the
ALCL criterion was multiplied by the spectrally-averaged standard deviation of reflectance at the
maximum cell size in order to favor areas of low environmental noise. As shown in Fig. 1, such
a modified ALCL criterion takes higher values around coastal areas, where the water column
may be highly spatially variable. Note also the red squares on the modified ALCL-generated
maps of MSI and HICO that indicate the presence of boats and boat-induced waves (Fig. 1). On
the other hand, the modified ALCL criterion takes lower values over homogeneous deep water
areas (Fig. 1). Implementing an ALCL-like algorithm is critical as it ensures that, in the selected
area, the spectral variability is only due to the environmental noise and not to possible changes in
bathymetry, bottom type and/or water clarity.
The HICO configuration is used in Section 4.2, Section 4.3 and Section 4.4, because, as a

hyperspectral sensor, HICO can accurately characterize both deep and shallow waters due to its
large number of narrow wavebands. The other sensor configurations are used in Section 4.4.

4.2. Using CRBs to assess the performances of ocean color remote-sensing methods

4.2.1. Ocean color remote-sensing methods

In this study, the minimum inversion uncertainties provided by CRBs are compared to the
experimental estimation uncertainties obtained using two published methods [1, 14, 21]. Both
methods consist in iteratively optimizing a cost function that relates the measured reflectance
rrs and the model µ = µ(∆) (Eq. (1) and Eq. (8)) in order to derive the ocean color geophysical
parameters ∆. The widely used Least-Square (LS) estimator [1, 14] is given by

∆̂LS(rrs) = argmin
∆

[
(rrs − µ(∆))t (rrs − µ(∆))

]
. (13)

The MILE (MaxImum Likelihood estimation including Environmental noise) estimator [21]
utilizes the covariance matrix Γs and is given by the minimum of the Mahalanobis distance:

∆̂MILE (rrs) = argmin
∆

[
(rrs − µ(∆))tΓs

−1(rrs − µ(∆))
]
. (14)

4.2.2. Optically shallow waters

LS and MILE are compared based on a synthetic hyperspectral data set generated similarly as
in [21, 29, 30]. The wavebands considered here were those of HICO, as introduced in Section 4.1.
The water column influence was studied for various depth values, ranging from 0.5 to 15 m by 1 m
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step. All the remaining model parameters were fixed. In particular, we considered an intermediate
water clarity [40], i.e., aφ(440) = 0.05 m−1, ag(440) = 0.1 m−1, and bbp(550) = 0.01 m−1.
The bottom was defined as a linear mixture of 50% sand and 50% seagrasses, both reflectance
spectra being extracted from the data set presented in [21]. Finally, the solar and viewing zenith
angles were set to 35o and 0o, respectively. For each depth value, the “mvnrnd" MATLAB
function was used to randomly generate 2,000 noise-perturbed spectra using the model in Eq. (1)
as the mean vector and the HICO Γs matrix (Fig. 1) as the spectral covariance matrix. Each
spectrum was then inverted using LS and MILE to estimate the unknown vector of parameters
∆ = [H, aφ(440), ag(440), bbp(550), B]. Note that initialization was performed using a Latin
Hypercube Sampling scheme as detailed in [21]. For each depth value and each parameter ∆i ,
the experimental standard deviations of LS and MILE estimates (hereafter referred to as LS
and MILE inversion uncertainties) were calculated over the 2,000 samples and compared to
[CRB(∆)]i,i0.5 (Eq. (9)). Note that the optimization domain was not bounded since setting lower
and upper bounds amounts to introducing a priori knowledge within the inversion, which may
make the comparison with CRBs misleading when the inversion uncertainty is high. Preliminary
tests actually showed that bounding the optimization domain had a negligible effect on the
retrieval, the only non-negligible influence being observed for H and B estimations over quasi
optically deep waters. The experimental estimation biases (i.e., estimates of systematic errors)
are not presented here as they were found to be mostly negligible for every parameter and both
methods when H is lower than 10-15 m. Note that, for higher depths, compensations between H
and B may lead to non-negligible biases (that increase with H) for both parameters [21], thus
implying that the inversion uncertainty cannot be represented only by CRBs but also by biases.

Fig. 2. Square roots of CRBs of (a) H, (b) aφ(440), (c) bbp(550) and (d) B (all in [%])
versus depth for optically shallow water and HICO configuration. Other model parameters
are fixed: aφ(440) = 0.05 m−1, ag(440) = 0.1 m−1, bbp(550) = 0.01 m−1, and the bottom
is a mix of sand and seagrasses with B = 0.5. Various situations are considered: no a priori
knowledge (Section 4.2.2), and perfect a priori knowledge on H, on both H and B, or on
every parameter except the targeted one (Section 4.3.1). The LS and MILE experimental
standard deviations obtained without a priori knowledge are also displayed.

The results show that the CRBs obtained without a priori knowledge vary similarly to LS and
MILE inversion uncertainties (Fig. 2). For example, due to the decreasing bottom detectability,
the CRBs of H and B increase with depth and reach 17 and 85%, respectively, for H = 15 m.
Also, the estimation of water clarity parameters (i.e., aφ(440) and bbp(550) in Fig. 2) becomes
unreliable for very shallow waters as the bottom influence on water-leaving radiance overshadows
those of water constituents [12, 20]. Note that this would be even more critical if the bottom
intra-class variability (which is one of the most confounding factors for shallow water remote
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sensing [29]) could be taken into account in the modeling. The decrease in performance observed
for such shallow waters is markedly more visible for bbp(550) estimation (whose CRB reaches
60% for H = 0.50 m) because the spectral signatures of sand and particle backscattering are
similar, i.e., both increase the reflectance at all wavebands.

The results also show that the MILE inversion uncertainties almost equal the CRBs for every
parameter and H ≤ 10 m, i.e., the MILE estimator is efficient [25]. This result theoretically
demonstrates that no method can perform significantly better than MILE if the bio-optical and
probabilistic models are perfect. Note that such a conclusion may change when using actual
spectra for which the water column may be not accurately described by the models. For H ≥ 10 m,
progressively increasing biases may lead LS and MILE inversion uncertainties for H and B to
increase with depth faster than the CRBs.

4.2.3. Optically deep waters

LS and MILE are also compared based on a synthetic HICO-like hyperspectral data set
corresponding to optically deep waters. Unlike optically shallow waters for which depth and
bottom cover can vary independently from water clarity, optically deep waters generally show
correlations between phytoplankton, CDOM and suspended particle concentrations (especially
in the open ocean). In this paper, these correlations are taken into account by assessing LS and
MILE inversion uncertainties for the eight water optical types defined in [4]. For each type, the
mean subsurface remote-sensing reflectance spectrum provided in [4] was inverted using LS
and the model in Eq. (8). This resulted in eight sets of aφ(440), ag(440) and bbp(550) values
corresponding to an increasing turbidity, ranging from low-chlorophyll blue waters to turbid
sediment-dominated waters (Table 2). For each of these eight sets, the same methodology as for
shallow waters was then applied to generate 2,000 noise-perturbed spectra based on the HICO
Γs matrix, to invert the model (Eq. (8)) and to compute the experimental standard deviations
of aφ(440), ag(440) and bbp(550) estimates. Note that the experimental estimation bias was
negligible (i.e., well below 10%) for the three parameters and the two methods, thus making
CRBs appropriate indicators of minimum achievable inversion uncertainties.

Overall, for every water type, the CRBs obtained without a priori knowledge vary similarly to
LS and MILE inversion uncertainties (Fig. 3). In the case of absorbing components (Figs. 3(a) and
3(b)), the CRBs of aφ(440) and ag(440) depend on the ag(440)/aφ(440) ratio as noticed in [10].
For example, for types 1 to 3, the total water absorption in the blue-green domain is dominated by
CDOM for these simulations (Table 2), meaning that the CDOM influence overshadows that of
phytoplankton [10]. ag(440) (whose CRB ranges between 6 and 13%) can therefore be estimated
more accurately than aφ(440) (whose CRB ranges between 16 and 30%). Also, the retrieval
accuracies of aφ(440) and ag(440) increase with backscattering (see types 5 to 8 in Figs. 3(a) and
3(b)). As also demonstrated, e.g., in [41], higher backscattering indeed leads to higher reflectance,
and therefore, to higher SNR and improved estimation accuracies.
Particle backscattering (whose CRB is lower than 7% for every water type) can generally

be retrieved more accurately than aφ(440) and ag(440) (Fig. 3(c)), which is in agreement with
previous findings [10,11]. For a given value of bbp(550), the CRB of bbp(550) increases with
total absorption (see types 1 to 3 in Fig. 3(c)) due to the corresponding decreases in reflectance
and SNR. On the contrary, bbp(550) can be estimated more accurately for higher bbp(550) values
for the same reasons as for aφ(440) and ag(440), i.e., due to the increase in SNR (see types 5 to 8
in Fig. 3(c)).
Similarly to shallow waters, for the three parameters, the MILE inversion uncertainties are

closer to the CRBs than are the LS ones, demonstrating the interest of taking spectral covariance
into account when inverting the model based on HICO data [24]. Note that this is more
evident for bbp(550) estimation as also observed in [24]. This may be due to the fact that the
water-leaving radiance is affected more similarly over all wavebands by particle backscattering

                                                                                    Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS A11 



Table 2. aφ(440), ag(440) and bbp(550) estimated values for the water types defined in [4].
Water type aφ(440) (m−1) ag(440) (m−1) bbp(550) (m−1)

1 0.002 0.008 0.002
2 0.006 0.013 0.002
3 0.015 0.020 0.002
4 0.039 0.038 0.003
5 0.094 0.081 0.004
6 0.149 0.144 0.019
7 0.136 0.103 0.029
8 0.116 0.142 0.052

Fig. 3. Square roots of CRBs of (a) aφ(440), (b) ag(440) and (c) bbp(550) (all in [%]) for
optically deep water and HICO configuration, and for the eight water types defined in [4] and
corresponding to the parameter values shown in Table 2. Various situations are considered:
no a priori knowledge (Section 4.2.3), and perfect a priori knowledge on aφ(440), on
ag(440), on bbp(550), or on every parameter except the targeted one (Section 4.3.2). The
LS and MILE experimental standard deviations obtained without a priori knowledge are
also displayed.

than by phytoplankton and CDOM absorptions (due to locally strong absorption features).
The results obtained without a priori knowledge for both optically shallow (Fig. 2) and deep

waters (Fig. 3) show that, overall, the CRBs accurately describe the experimental estimation
standard deviations obtained from simulated reflectance data. Therefore, no simulations and
inversions will be performed in the following when investigating the influence of perfect a priori
knowledge on model inversion (Section 4.3) and when presenting the CRBs obtained for MSI,
OLCI and MODIS configurations (Section 4.4).

4.3. Using CRBs to assess the influence of a priori knowledge on model inversion

CRBs can be used to study how perfect a priori knowledge on some of the ocean color parameter(s)
improves the estimation of remaining unknown parameters [26]. For example, for shallow waters,
depth may be known from a LiDAR- or acoustic-derived bathymetric map, and used as an input
to the inversion algorithm. In the latter case, ∆ = [aφ(440), ag(440), bbp(550), B], so IF (∆) and
CRB(∆) become 4 × 4 matrices. Note that such a study can also provide useful information on
the interest of strictly bounding the optimization domain for one or several parameter(s) during
model inversion (if the water column is sufficiently well known a priori), so as to significantly
improve the estimation of remaining parameters.
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4.3.1. Optically shallow waters

Figure 2(b) shows that, for the considered simulation conditions, using perfect a priori knowledge
on H has little effect on aφ(440) retrieval. It has slightly more influence on bbp(550) estimation,
e.g., at 5 m, the CRB is about two-fold lower than that obtained without a priori knowledge
(Fig. 2(c)). However, the greatest gain in performance is obtained for B retrieval (Fig. 2(d)),
whose CRB is seven-fold lower at 15 m when using perfect a priori knowledge on H. Such
knowledge indeed prevents the compensations between H and B as mentioned in Section 4.2.2.
Combining optical data with acoustic or LiDAR data thus appears to be relevant to improve the
remote sensing of benthic habitats, confirming the results obtained in [42] based on real data.

Using perfect a priori knowledge on both H and B significantly improves the aφ(440) retrieval
for very shallow waters only (e.g., by a factor 1.6 for H = 1 m), for which the bottom has the
strongest influence (Fig. 2(b)). It has a much stronger influence on bbp(550) estimation, whose
CRB at 1 m depth is seven-fold lower than that obtained without a priori knowledge (Fig. 2(c)).
This improvement is mainly due to the similar spectral signatures of sandy bottoms and particle
backscattering (Section 4.2.2): knowing the former significantly enhances the retrieval of the
latter. Interestingly, this result theoretically proves the relevance of the Shallow Water Inversion
Model [19] that uses known benthic albedo and bathymetric maps as inputs to the inversion
algorithm to improve the remote sensing of water composition in shallow waters.

Ultimately, as expected, the highest increase in performance is obtained when all the parameters
except the one to be estimated are known.

4.3.2. Optically deep waters

Figures 3(a) and 3(b) show that, for the eight water types, the CRB of aφ(440) (resp., ag(440)) is
about two-fold lower when ag(440) (resp., aφ(440)) is known, and is close to the CRB obtained
with known ag(440) and bbp(550) (resp., aφ(440) and bbp(550)). In other words, the accuracy
of aφ(440) retrieval mainly depends on that of ag(440) retrieval and reciprocally. In particular,
such a result indicates that the use of long ultraviolet bands (characterized by low chlorophyll
absorption and high CDOM absorption) as suggested in [1] should be helpful in improving the
decoupling and retrieval of both absorbing components. Figures 3(b) and 3(c) also show that
the ag(440) and bbp(550) retrievals are uncorrelated, since knowledge on bbp(550) does not
improve ag(440) estimation and reciprocally. CDOM absorption indeed affects the water-leaving
radiance mainly in the blue-green domain while particle backscattering affects the radiance at all
wavebands, which allows both effects to be accurately identified.

4.4. Using CRBs to predict minimum inversion uncertainties for MSI, HICO, OLCI and
MODIS radiometric configurations

Beforehand, it is worth emphasizing that the CRBs of the four investigated sensors depend on
various factors, including not only their radiometric configurations (e.g., number and position of
wavebands, as well as their bandwiths) but also their spatial resolutions for example. Therefore,
the effects of these factors on CRBs cannot be distinguished from each other based on the
following results only. Furthermore, the environmental noise covariance matrices presented in
Fig. 1 may be scene-specific, leading in turn to somewhat scene-specific CRBs as well. These
important aspects must be kept in mind in the following when comparing the CRBs.

4.4.1. Optically shallow waters

In Fig. 4, CRBs are represented for the same depth range, water composition and bottom cover as
in Fig. 2. Overall, MODIS obtains lower CRBs than the other sensors for H, aφ(440), bbp(550)
and B. While this result indicates that MODIS can theoretically remotely sense shallow waters
with a satisfactory accuracy, the low spatial resolution considered here (1 km) generally makes
this sensor inappropriate for such applications due to the difficulty in properly focusing on coastal
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Fig. 4. Square roots of CRBs of (a) H, (b) aφ(440), (c) bbp(550) and (d) B (all in [%]) versus
depth for optically shallow water and MSI, HICO, OLCI and MODIS configurations. Other
model parameters are fixed: aφ(440) = 0.05m−1, ag(440) = 0.1m−1, bbp(550) = 0.01m−1,
and the bottom is a mix of sand and seagrasses with B = 0.5.

areas. Similar conclusions can be drawn about the CRBs of OLCI, although its higher spatial
resolution (300 m) may allow OLCI to characterize some large coastal areas.

Actually, only the spatial resolutions of HICO (90 m) and MSI (60 m) are adapted for shallow
water remote sensing. As a hyperspectral sensor, which has been shown to better identify the
influences of all parameters than multispectral sensors [10, 12], and despite its generally higher
noise variances per band for the considered scenes (Fig. 1), HICO provides significantly lower
CRBs than MSI (bearing in mind that HICO has a coarser spatial resolution). Such a result
emphasizes the great potential of HICO-like sensors for accurately characterizing coastal areas.
Though not being specifically developed for shallow water remote sensing, MSI provides

accurate inversion performances for H, B and, to a lesser extent, aφ(440), for H ≤ 5 mwith CRBs
generally lower than 25%. The high spatial and temporal resolutions offered by Sentinel-2 MSI
thus make it an outstanding opportunity to monitor environments such as shallow coral reefs (e.g.,
to detect coral bleaching) that are an important subject of on-going research within the Sen2Coral
ESA project, e.g., [43]. Except for bbp(550), MSI generally shows high CRBs when H > 5 m. In
this case, water absorption is such that the bottom is nearly invisible at the four wavebands beyond
650 nm (see the MSI wavebands in Fig. 1). For H > 5 m and the considered water and substrate
compositions, the influences of all the parameters except bbp(550) can be mainly observed in the
first three remaining wavebands. This means that, without a priori knowledge on H, aφ(440),
ag(440) and/or B, the inversion is ill-posed and thus leads to poor estimation results for these
four parameters. Meanwhile, bbp(550) can still be accurately retrieved because it also affects the
reflectance at the last four wavebands. Beyond a given limiting optical depth, further constraining
the inversion (e.g., by setting strict lower and upper bounds for some of the parameters to be
retrieved) is thus required to improve the overall retrieval (note that the relevance of strictly
bounding each parameter can be investigated as proposed in Section 4.3). It is worth emphasizing
that such a limiting optical depth (and more generally, all the CRBs shown in Fig. 2 and Fig. 4)
not only depends on depth, but also on water and substrate compositions. For example, the CRB
of H could be shown to decrease when the water clarity and substrate brightness increase.

4.4.2. Optically deep waters

In Fig. 5 and Fig. 6, the CRBs of aφ(440) and bbp(550) are plotted for a wide variety of oceanic,
coastal and inland waters. Note that this representation does not consider correlations between
parameters, so some of the presented aφ(440) and bbp(550) combinations are unlikely to occur
in natural waters, e.g., high aφ(440) and low bbp(550) [44]. Yet, Fig. 5 and Fig. 6 provide a
more comprehensive overview of the waters possibly encountered on Earth than the water types
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Fig. 5. Square roots of CRBs of aφ(440) (row 1) and bbp(550) (row 2) (all in [%]) versus
aφ(440) and bbp(550) for optically deep water and MSI, HICO, OLCI and MODIS (columns
1 to 4, resp.) configurations. ag(440) is set to 0.01 m−1. Isolines are represented every 5%.
White areas correspond to CRB values higher than 200%.

Fig. 6. Same as Fig. 5, but with ag(440) = 0.12 m−1.

defined in [4]. Note that the ranges of CRB values obtained for Case-1 clear oceanic and Case-2
coastal and inland deep waters [45] (Fig. 5, Fig. 6) are further emphasized in Table 3.
The CRBs of aφ(440) and bbp(550) show similar patterns for the four sensors. For a given

bbp(550) value, the CRB of aφ(440) (row 1 in Fig. 5 and Fig. 6) generally shows a bowl-shaped
pattern with respect to aφ(440). It is minimum at the value aφ,min(440), with aφ,min(440) slightly
greater than ag(440) (aφ,min(440) ≈ 0.03 m−1 for Fig. 5 and aφ,min(440) ≈ 0.15 m−1 for Fig. 6).
For aφ(440) < aφ,min(440), the CRB of aφ(440) increases due to the overshadowing influence of
CDOM (Section 4.2.3), while for aφ(440) > aφ,min(440), the increase is due to the decreasing
SNR and progressive reflectance saturation. For a given bbp(550) value, the CRB of bbp(550)
generally increases with aφ(440) and is less dependent on ag(440) than the CRB of aφ(440) (row
2 in Fig. 5 and Fig. 6). Finally, for a given aφ(440) value, the CRBs of aφ(440) and bbp(550)
decrease as bbp(550) increases due to the associated increase in SNR (Section 4.2.3).

Because of the convenient choice of wavebands as well as its coarser spatial resolution leading
to higher SNRs as compared to the other tested sensors (Fig. 1), MODIS mostly obtains the best
CRBs for aφ(440) and bbp(550), i.e., generally below 25%, for the two ag(440) values (Fig. 5
and Fig. 6). For Case-1 waters, the CRBs are even lower than 8% (Fig. 5 and Table 3), thus
demonstrating the strong potential of MODIS for mapping water clarity at the global scale.
Overall, for both ag(440) values, the CRBs of HICO and OLCI show rather similar patterns.
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Table 3. Ranges of square roots of aφ(440) and bbp(550) CRBs (all in [%]) observed
in Fig. 5 and Fig. 6 for Case-1 (0.005 ≤ aφ(440) ≤ 0.03 m−1, ag(440) = 0.01 m−1,
0.001 ≤ bbp(550) ≤ 0.003 m−1) and Case-2 (0.1 ≤ aφ(440) ≤ 1 m−1, ag(440) = 0.12 m−1,
0.01 ≤ bbp(550) ≤ 0.1m−1) deep waters andMSI, HICO, OLCI andMODIS configurations.

Case-1 clear oceanic waters Case-2 coastal and inland waters
aφ(440) bbp(550) aφ(440) bbp(550)

MSI (60 m) 27 - 216 4 - 16 3 - 45 1 - 27
HICO (90 m) 7 - 23 2 - 11 1 - 22 0 - 17
OLCI (300 m) 5 - 15 2 - 10 1 - 10 0 - 10
MODIS (1 km) 2 - 8 1 - 3 1 - 12 0 - 10

For Case-1 waters, the CRBs obtained for these two sensors range between 5 and 23% for aφ(440),
and between 2 and 11% for bbp(550) (Fig. 5 and Table 3). Their higher spatial resolutions as
compared to MODIS also allows them to conveniently monitor Case-2 coastal and inland waters.
For such waters, the CRBs of HICO and OLCI are, respectively, better than 22 and 10% for
aφ(440), while they are, respectively, better than 17 and 10% for bbp(550) (Fig. 6 and Table 3).
These results thus emphasize the potential of these two sensors for characterizing a wide range of
waters, ranging from oceanic clear waters to coastal and inland turbid waters. The comparable
CRBs obtained for OLCI and HICO also suggest that a lower SNR (e.g., due to a finer spatial
resolution) may be somewhat compensated for by a higher number of bands (potentially leading
to a higher amount of information).

Overall, MSI provides higher CRBs compared to HICO, OLCI and MODIS. For example, the
CRB of aφ(440) cannot be better than 27% for Case-1 waters, and even dramatically increases
up to more than 200% for very low values of aφ(440) and bbp(550) (Fig. 5 and Table 3). These
poorer performances are not only due to the finer spatial resolution of MSI (that limits the SNR),
but also to its lower number of bands and coarser spectral resolution in the chlorophyll-sensitive
400-700 nm domain (Fig. 1). However, MSI enables a more accurate aφ(440) retrieval over
Case-2 waters, the associated CRB ranging from 3 to 45% (Fig. 6 and Table 3). For such
turbid waters, the red-edge MSI band at 705 nm is critical to achieve these performances as it
enables the amplitude of the reflectance peak near 700 nm (that correlates with phytoplankton
concentration [44]) to be captured. Note that the good performances obtained for Case-2 waters
are in agreement with the recent results obtained in [46] using actual MSI data. Finally, it is worth
noting that the MSI CRB for bbp(550) is better than 27% for both Case-1 and Case-2 waters
(Fig. 5, Fig. 6 and Table 3). These results thus suggest that MSI could be used for detecting and
tracking sediment plumes and algal blooms at fine spatial and temporal scales. This is especially
important for monitoring coastal and inland waters that have a smaller geographic footprint
compared to the open ocean [47].

5. Conclusions and perspectives

This study focuses on the development and application of Cramer-Rao bounds (CRBs) for ocean
color remote sensing of deep and shallow waters. In both cases, the CRBs are computed using
standard probabilistic and bio-optical models that represent the variability of water subsurface
remote-sensing reflectance. Overall, CRBs are shown to provide valuable information about the
best inversion performances that may be expected for a given sensor configuration and a given
application. In this paper, CRBs are used to evaluate the efficiency of the LS and MILE inversion
methods and to investigate to what extent the use of perfect a priori knowledge on one or several
ocean color geophysical parameters can improve the estimation of remaining unknown parameters.
In addition, CRBs are used to predict the minimum uncertainties in the inversion of ocean color
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geophysical parameters for four sensor configurations, namely Sentinel-2 MSI, HICO, Sentinel-3
OLCI and MODIS. For example, for the above-defined Case-1 deep waters, the CRBs of OLCI
range from 5 to 15% for aφ(440), and from 2 to 10% for bbp(550). Also, for the above-defined
Case-2 deep waters, the CRBs of MSI range from 3 to 45% for aφ(440), and from 1 to 27% for
bbp(550). As demonstrated in this paper, CRBs vary with the values of ocean color geophysical
parameters in a very complex way for both deep and shallow waters. Since CRBs are based on
analytical expressions and do not require one to invert remote-sensing reflectance data, they can
be efficiently calculated for any set of parameters. Importantly, the proposed CRBs only depend
on the considered Fisher information related to the models presented in Section 2. Therefore,
uncertainties due to, e.g., ground truth measurements, inversion algorithm or systematic errors
in atmospheric correction and reflectance modeling, must be added when evaluating the total
uncertainty budget for a given ocean color geophysical product. Such additional uncertainties
explain the differences observed between the aφ(440) CRBs of MODIS (Fig. 5 and Fig. 6) and
the chlorophyll-a uncertainties presented in [4].
Many perspectives emerge from this study. CRBs have been demonstrated to be useful to

explore the potential of multi- and hyperspectral sensors for a given application (e.g., coral
reef remote sensing in shallow waters). Therefore, CRBs could not only be calculated for other
operational sensors, but also serve as a convenient basis to design forthcoming ones. For example,
deriving CRBs using environmental noise matrices estimated from different spectrally-degraded
versions of the same HICO image could allow one to compare sensors for the same amount
of measured photons and, therefore, to focus on the influence of the radiometric configuration
(number and position of wavebands, bandwidths). Alternatively, one could use CRBs to predict
the gain in estimation performance expected when degrading the spatial resolution of a given
satellite image (thus improving the SNR), if this resolution is not a limiting factor. Another
interesting prospect would be to assess the variability of CRBs when the environmental noise
changes across different scenes acquired with the same sensor. Perspectives also include (1)
determining CRBs for other bio-optical or noise models (e.g., deriving CRBs from the MILEBI
noise model [21] could allow one to include uncertainties in bio-optically modeled shallow water
reflectance that are not only due to the environmental noise but also to the bottom intra-class
variability), (2) integrating possible a priori information on parameter distributions (e.g., as
given by lower and upper bounds) into classical CRBs through the use of Bayesian CRBs, (3)
studying the influence of sun-sensor geometry on the inversion, or (4) investigating the capability
of remote sensing in differentiating various phytoplankton species or in discriminating various
bottom covers.

Appendix A: development of ∂µ/∂∆i derivatives

Calculating the partial derivatives of Eq. (1) with respect to depth H and fractional cover B yields
(omitting the wavelength dependence for the sake of clarity)

∂µ

∂H
= rrs,∞

(
kd + kc

u

)
e−(kd+kc

u )H − 1
π

[
Bρb,1 + (1 − B)ρb,2

] (
kd + kb

u

)
e−(kd+kb

u )H(15)

∂µ

∂B
=

1
π

[
ρb,1 − ρb,2

]
e−(kd+kb

u )H (16)

where rrs,∞ is the deep water reflectance, kd , kc
u and kb

u are the attenuation coefficients, and ρb,1
and ρb,2 are two substratum albedos.
The partial derivatives of Eq. (1) with respect to phytoplankton and CDOM absorption coefficients
at 440 nm, aφ(440) and ag(440), respectively, and particle backscattering coefficient at 550 nm,
bbp(550), (hereafter denoted, respectively, P, G and X for the sake of brevity [14, 17]) are
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calculated similarly for these three parameters. In the case of P, it is given by

∂µ

∂P
=
∂rrs,∞
∂P

(
1 − e−(kd+kc

u )H
)
+ rrs,∞

(
∂kd
∂P
+
∂kc

u

∂P

)
He−(kd+kc

u )H

− 1
π

[
Bρb,1 + (1 − B)ρb,2

] (
∂kd
∂P
+
∂kb

u

∂P

)
He−(kd+kb

u )H . (17)

Defining κ = a + bb and u = bb/(a + bb) with a and bb the total absorption and backscattering
coefficients, respectively, Eq. (17) requires us to calculate the derivatives of Eq. (2) to Eq. (5):

∂rrs,∞
∂P

= (0.084 + 0.34u) ∂u
∂P

(18)

∂kd
∂P

=
1

cos θs
∂κ

∂P
(19)

∂kc
u

∂P
=

1.03
cos θv

[
∂κ

∂P
(1 + 2.4u)0.5 + 1.2κ

∂u
∂P
(1 + 2.4u)−0.5

]
(20)

∂kb
u

∂P
=

1.04
cos θv

[
∂κ

∂P
(1 + 5.4u)0.5 + 2.7κ

∂u
∂P
(1 + 5.4u)−0.5

]
. (21)

Equations (18)-(21) also require us to calculate the derivatives of κ and u:

∂κ

∂P
=

∂a
∂P
+
∂bb
∂P

(22)

∂u
∂P

=
a ∂bb

∂P − bb ∂a∂P
(a + bb)2

. (23)

Since bb does not depend on P (Eq. (7)), we have ∂bb/∂P = 0. The last derivative is given by

∂a
∂P
= a0 + a1(1 + ln P). (24)

Equations (18)-(24) thus make it possible to calculate Eq. (17). Similarly to ∂µ/∂P, ∂µ/∂G and
∂µ/∂X can be derived using

∂a
∂G

= a∗g (25)

∂bb
∂X

= b∗bp (26)

the remaining derivatives ∂bb/∂G and ∂a/∂X being zero. Equations (15)-(26) fully determine
IF (∆) (Eq. (12)) and thus CRB(∆) = IF (∆)−1.
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