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Abstract 28 

Understanding how water and solutes enter and propagate through freshwater landscapes in 29 

the Anthropocene is critical to protecting and restoring aquatic ecosystems and ensuring 30 

human water security. However, hydrochemical variability is believed to increase moving 31 

upstream, hindering modeling and management of headwaters where most carbon and 32 

nutrients enter stream networks. We developed an analytical framework informed by 33 

landscape ecology and catchment hydrology to quantify spatiotemporal variability across 34 

scales, which we tested in 56 headwater catchments, sampled periodically over 12 years in 35 

western France. Unexpectedly, temporal variability of dissolved carbon, nutrients, and major 36 

ions was preserved moving downstream and spatial patterns of water chemistry were stable 37 

on annual to decadal timescales, partly due to synchronous variation of solute concentrations. 38 

These findings suggest that while concentration and flux cannot be extrapolated among 39 

subcatchments, periodic sampling of headwaters provides valuable information about solute 40 

sources and subcatchment resilience to disturbance. 41 

42 

 2 



Introduction 43 

How spatial and temporal variability change with scale is one of the fundamental 44 

problems of both ecology (Fisher et al. 1982; Horne & Schneider 1995; Altermatt 2013) and 45 

catchment hydrology (Blöschl et al. 1995; Shaman et al. 2004; McGuire et al. 2014). Because 46 

most ecological patterns change with spatiotemporal extent and grain of observation (Turner 47 

et al. 1989; Chapin et al. 1995; Kirchner & Neal 2013), an understanding of variance 48 

structure is necessary to scale predictions or implement effective interventions in dynamic 49 

landscapes (Haygarth et al. 2005; Lowe et al. 2006; Temnerud et al. 2010). For any 50 

ecosystem, variability in a biogeochemical stock or flux depends on on-site conditions and 51 

processes (e.g. temperature, redox state, biological activity, weathering) and lateral subsidies 52 

or debits from connected ecosystems (Chapin et al. 2006). Lateral fluxes are particularly 53 

influential in aquatic ecosystems such as stream networks, where delivery of carbon and 54 

nutrients from upstream and upslope environments is often orders of magnitude greater than 55 

production or removal at any given point in the stream (Lefebvre et al. 2007; Brookshire et al. 56 

2009). Agriculture and urbanization have fundamentally altered lateral fluxes of carbon and 57 

nutrients, causing eutrophication, toxic cyanobacteria blooms, and expansive hypoxic dead 58 

zones that erode the capacity of ecosystems to feed and water human societies (Gruber & 59 

Galloway 2008; Vörösmarty et al. 2010; Sutton & UNEP 2013; Withers et al. 2014). Over the 60 

past 50 years, global fertilizer application has increased 5-fold (Foley et al. 2011), and 61 

anthropogenic pressures on aquatic ecosystems are expected to intensify due to population 62 

growth and increasing meat consumption through the middle of the century (Seitzinger et al. 63 

2010).  64 

Despite substantial investment to reduce carbon and nutrient pollution at local, 65 

national, and international levels, results remain mixed (Jarvie et al. 2013; Dupas et al. 2016; 66 
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Jenny et al. 2016), partly because of difficulty monitoring and predicting water quality in 67 

complex freshwater landscapes (Isaak et al. 2014; Abbott et al. 2016; Meter et al. 2016). 68 

Most regulatory frameworks, such as the U.S. Clean Water Act, the European Water 69 

Framework Directive, and the Chinese Water Law impose limits on annual loads or mean 70 

concentrations in medium to large rivers (Andreen 2004; Hering et al. 2010; Liu & Yang 71 

2012). This is an appealing strategy because larger rivers integrate many small catchments, 72 

and from an estuarine or oceanic perspective, total nutrient load is the main metric of concern 73 

(Howarth 2008; Reed & Harrison 2016). However, there is growing evidence that to reduce 74 

these downstream nutrient fluxes, we need to understand sources and sinks in headwater 75 

catchments, where the vast majority of water and solutes enter aquatic ecosystems (Burt & 76 

Pinay 2005; Alexander et al. 2007; Bishop et al. 2008; Brookshire et al. 2009; McDonnell & 77 

Beven 2014).  78 

It is generally held that the amplitude and frequency of chemical variation in stream 79 

networks decrease moving downstream (Burt & Pinay 2005; Lefebvre et al. 2007; Creed et al. 80 

2015). For example, in catchments larger than 100 km2, riverine nutrient loads are 81 

deterministically associated with percentage of agricultural cover and associated nutrient 82 

inputs (Omernik et al. 1981; Jordan et al. 1997; Howarth 2008), but nutrient loads vary 83 

widely despite similar land cover in drainage basins smaller than 20 km2 (Burt & Pinay 2005; 84 

Lefebvre et al. 2007; Brookshire et al. 2009; Schilling et al. 2013). This breakdown of the 85 

relationship between land cover and nutrient load represents an important ecological unknown 86 

because 90% of global stream length occurs in catchments smaller than 15 km2 (Burt & Pinay 87 

2005; Bishop et al. 2008; Downing 2012). However, quantifying and improving water quality 88 

in headwater streams is easier said than done. New sensors of water chemistry produce high-89 

frequency data (Kirchner et al. 2004; Dupas et al. 2016; Ruhala & Zarnetske 2017), but they 90 

are too expensive to equip headwater catchments, which are thousands of times more 91 
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abundant than the larger rivers where most monitoring currently occurs. This headwater 92 

conundrum is particularly problematic for developing nations where the largest increases in 93 

nutrient pollution are occurring (Seitzinger et al. 2010), and where water quality problems 94 

most directly impact human health (Gundry et al. 2004). 95 

Occasional, spatially extensive sampling of headwater streams has long been used to 96 

complement high-frequency monitoring of downstream reaches (Kaufmann et al. 1991; 97 

Wolock et al. 1997; Temnerud & Bishop 2005). Such synoptic sampling is often interpreted 98 

to identify landscape parameters and ecosystem processes correlated with water chemistry, 99 

but its utility in predicting longer-term water quality is questionable, given the high temporal 100 

variability typical of small aquatic ecosystems (Kirchner & Neal 2013). In this context, we 101 

developed a new approach for analyzing spatiotemporal variance in stream networks. 102 

Specifically, building on theory from landscape ecology (Turner et al. 1989; Dent & Grimm 103 

1999; Hammond & Kolasa 2014) and catchment hydrology (Blöschl et al. 1995; Rinaldo et 104 

al. 1998; McGuire et al. 2014), we quantified the synchrony of hydrochemical changes, the 105 

stability of spatial patterns, and the spatial scales of water chemistry drivers. We tested this 106 

framework with a previously unpublished dataset from 56 catchments sampled periodically 107 

over 12 years in western France. We found that while spatial variance of water chemistry 108 

increased moving upstream, temporal variance was not systematically higher in the 109 

headwaters, partially because solute concentrations (e.g. carbon and nutrients) varied 110 

synchronously among sites. These dynamics created spatial patterns of water chemistry that 111 

were relatively stable on seasonal to decadal timescales, suggesting that the spatiotemporal 112 

variability of headwaters may not be as intractable as previously believed. Testing the 113 

generality of these patterns in different climatic and socioecological conditions could provide 114 

a pathway toward understanding terrestrial-aquatic connectivity and improving water quality 115 

throughout the river network. 116 
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Approach and methods 117 

Spatial variance thresholds and subcatchment leverage 118 

While pollutant sources have long been categorized dichotomously as point or non-119 

point (Carpenter et al. 1998), landscape patches contributing or retaining solutes or 120 

particulates occur on a size continuum that can change on event, seasonal, and interannual 121 

timescales (Basu et al. 2010; Liu et al. 2016). Assuming that spatial variability in water 122 

chemistry in a stream network depends primarily on the extent and connectivity of upstream 123 

sources, we hypothesized that the size of source and sink patches could be assessed by the 124 

spatial scale of the collapse (i.e. reduction) in spatial variance (Fig. 1). For a given parameter, 125 

this spatial variance threshold is expected to occur where subcatchment size matches the size 126 

of patches controlling solute production or removal (Fig. 1b), with downstream reaches less 127 

likely to have extreme concentrations because they integrate multiple source and sink patches. 128 

The spatial variability of concentration depends on the strength and connectivity of both 129 

source and sink patches superimposed on the structure of the stream network (Fig. 1). This 130 

framework is analogous to the representative elementary area concept (Blöschl et al. 1995; 131 

Hoef et al. 2006; Zimmer et al. 2013), though we do not assume that variance thresholds 132 

remain the same through time or across solutes.  133 

On an applied level, knowing the patch size and location of solute sources and sinks 134 

allows identification of subcatchments exerting a disproportionate influence on flux at the 135 

catchment outflow (Fig. 1c). Analogous to the concept of leverage in statistical regression, 136 

where a value’s relative influence on model behavior depends on its position in factor space, 137 

the leverage of a subcatchment on outlet chemistry can be defined in terms of concentration 138 

difference from the catchment outlet, subcatchment size, and specific discharge:  139 

Subcatchment leverage = (CS – CO) × AS/AO × QS/QO   [1] 140 
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where C is concentration, A is area, Q is specific discharge, S is subcatchment, and O is 141 

outflow. Subcatchment leverage has units of concentration, or percentage if normalized to 142 

outlet concentration, and can be interpreted as the contribution of the subcatchment to 143 

catchment-level mass flux. Alternatively stated, subcatchment leverage is the spatially 144 

distributed mass balance for each element. If specific discharge is similar between 145 

subcatchments, as is sometimes the case at the medium-catchment scale (Asano et al. 2009; 146 

Lyon et al. 2012; Karlsen et al. 2016), leverage can be estimated with only concentration and 147 

subcatchment area, which are easily measured even in remote or impoverished areas. Spatial 148 

variance thresholds tend to occur at the same spatial scales as the subcatchments with greatest 149 

leverage, where a large proportion of the subcatchment area is within a single source or sink 150 

patch (Fig. 1c). 151 

Subcatchment synchrony and spatial stability 152 

The usefulness of a synoptic assessment of variance thresholds and subcatchment 153 

leverage depends directly on the temporal persistence of the observed spatial patterns. 154 

Streams experience temporal variability in chemistry due to hydrologic pulses and 155 

fluctuations in biogeochemical activity (Rinaldo et al. 1998; Erlandsson et al. 2008; Raymond 156 

et al. 2016). As pulses move through stream networks, their downstream attenuation or 157 

preservation depends on the synchrony of pulse generation in subcatchments (Fig. 2a). If the 158 

chemistry of upstream subcatchments changes asynchronously, destructive interference 159 

reduces downstream temporal variance, but if change is synchronous, downstream temporal 160 

variance is preserved (Fig. 2b). Synchrony among subcatchments can be quantified by 161 

temporal covariance in water chemistry:  162 

Subcatchment synchrony = ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
     [2] 163 
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where x and y are the concentrations in the two subcatchments and n is number of repeat 164 

samplings.  165 

Even when concentrations vary synchronously among subcatchments, the relative 166 

spatial structure in the stream network can change if amplitudes are different (Fig. 2a). Spatial 167 

stability of water chemistry patterns can be directly calculated with the rank correlation (rs) 168 

between instantaneous and long-term subcatchment concentrations:  169 

  Spatial stability = covariance(RC𝑡𝑡,RC𝑡𝑡)
𝜎𝜎RC𝑡𝑡𝜎𝜎RC𝑡𝑡

      [3] 170 

where spatial stability is the correlation coefficient between the rank concentrations of 171 

subcatchments at the time of synoptic sampling (𝑅𝑅𝑅𝑅𝑡𝑡) and the rank of the long-term flow-172 

weighted concentrations or loads (𝑅𝑅𝑅𝑅𝑡𝑡), and σ is the standard deviation. Subcatchment 173 

synchrony and spatial stability are complementary because synchrony quantifies similarity in 174 

response to hydrologic and biological changes, revealing prevalence of source, transport, and 175 

processing controls (Moatar et al. 2017), and spatial stability quantifies the temporal 176 

representativeness of an instantaneous sampling. 177 

From an applied perspective, spatial stability in subcatchment water chemistry 178 

determines the sampling frequency necessarily to identify high-leverage subcatchments (Figs. 179 

2a and 1c) and evaluate predicted critical source areas (White et al. 2009; Heathwaite 2010; 180 

Liu et al. 2016), while subcatchment synchrony determines the representativeness of high-181 

frequency monitoring stations. In a synchronous catchment where pulses of pollutants are 182 

propagated in chorus (Fig. 2b), a single station anywhere in the network may capture the 183 

amplitude of water quality fluctuations. However, in an asynchronous catchment, destructive 184 

interference among subcatchments means downstream monitoring stations will underestimate 185 

extreme conditions in contributing subcatchments (Fig. 2b). Accurate quantification of 186 
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temporal variability is particularly important for aquatic organisms, because minimum and 187 

maximum concentrations or conditions (e.g. oxygen and temperature) are often more 188 

important to survival than mean values, and where shifts in extremes can indicate imminent 189 

state changes (Davis et al. 2010). Ultimately, these two indices are interrelated, because in 190 

more synchronous catchments the spatial stability is more resilient to temporal variability 191 

(Fig. 2c). 192 

Site characteristics and sampling design 193 

We quantified spatial variance thresholds, subcatchment leverage, subcatchment 194 

synchrony, and spatial stability in two sets of nested catchments in north-western France (Fig. 195 

S1). The Rance and Couesnon catchments are approximately 360 km2 and have over 80% 196 

agricultural land use, primarily pastureland for dairy cows, corn, and wheat (Table S1). 197 

Nutrient concentrations in the area are very high, frequently triggering estuarine algal blooms 198 

(Gascuel-Odoux et al. 2010; Perrot et al. 2014). The climate is oceanic with average monthly 199 

temperature ranging from 18°C in July to 5°C in December, and mean annual precipitation 200 

averaging 970 mm, a third of which occurs from October to December (Thomas et al. 2016).  201 

Starting in November 2004, repeat synoptic sampling occurred in 26 subcatchments of 202 

the Couesnon with an initial goal of identifying land use parameters driving differences in 203 

DOC and NO3
- concentrations. Detailed land use was determined for the entirety of each 204 

subcatchment and for the area of potential wetlands closest to the stream network (Medde et 205 

al. 2014). The subcatchments were sampled 13 times (approximately every two weeks), but 206 

when no clear correlations emerged with catchment characteristics (Table S2), sampling was 207 

abandoned in 2005. After identifying 30 comparable locations in the Rance catchment, 50 km 208 

to the west, sampling resumed in both catchments from May 2006 to January 2007. Sampling 209 

spanned over 90% of the observed range of daily discharge for the Couesnon and over 70% 210 
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for the Rance. In November 2015 and March 2016, we resampled 21 of the original 56 211 

subcatchments during the low- and high-flow periods, respectively. Because the outlet of the 212 

Rance is intermittently inundated by a small reservoir, we calculated outlet solute 213 

concentrations assuming conservative mixing of the three tributaries immediately upstream of 214 

the confluence with the reservoir. Calculated values agreed well with measured values for 215 

dates when the outlet was not inundated.  216 

Samples were filtered in the field with pre-rinsed 0.2 µm cellulose acetate filters 217 

(Millipore Millex-GV), and analyzed within a week. Quantified analytes had a wide range of 218 

reactivities and sources, and included many common water quality parameters. Anions (NO3
-, 219 

NO2
-, SO4

2-, Cl-, F-, PO4
3-, and Br-) were quantified by ion chromatography (DionexTM DX 220 

100; accuracy ± 2.5%) and dissolved organic and inorganic carbon (DOC and DIC) were 221 

quantified with a total carbon analyzer after coming to equilibrium with the atmosphere 222 

(Shimadzu TOC 5050; accuracy ± 5%). Specific ultra-violet absorbance at 254 nm 223 

(SUVA254), an indicator of DOC aromaticity and source (Weishaar et al. 2003), was 224 

calculated from absorption (UVIKON XS, Bio-Tek). For concentrations below the detection 225 

limit, we assigned values of ½ the limit of quantification, which affected less than 5% of all 226 

measurements except PO4
3-, NO2

-, and Br-, which had between 25 and 72% of sites below 227 

detection depending on the catchment and sampling. Despite these detection issues, which are 228 

common for these parameters, we retained them in the analysis because of their ecohydrologic 229 

relevance. 230 

Statistical determination of spatial and temporal variance 231 

We determined spatial variance thresholds among subcatchments using the pruned 232 

exact linear time (PELT) method (Killick et al. 2012), which compares differences among 233 

sequential data points (in this case ordered by subcatchment size) to partition the series into 234 
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clusters with statistically distinct variances (Jackson et al. 2005). PELT is computationally 235 

frugal and robust to unevenly spaced points (Jackson et al. 2005; Killick et al. 2012). We 236 

determined variance thresholds for each watershed independently using flow-weighted 237 

concentrations over the whole sampling period, and after binning the data into four groups 238 

separated by hydrologic quartiles to test how water discharge affected spatial variance (Table 239 

S2), using the “changepoint” package of R version 3.3.0 (R Core Team 2016). Following 240 

equations 1-3, we calculated subcatchment leverage, synchrony, and spatial stability with 241 

scaled data (subtracted catchment mean and divided by the standard deviation), which did not 242 

affect the statistical results, but facilitated comparison between parameters with different 243 

magnitudes. For subcatchment synchrony, we averaged the pairwise covariance between all 244 

subcatchments for each catchment and parameter. The resulting scaled covariance represents 245 

the joint variability across all subcatchments and sampling dates (i.e. the proportion of 246 

subcatchments and time steps where concentration changed in the same direction for a given 247 

parameter).  248 

Results 249 

Persistent thresholds of spatial variance and stable subcatchment structure 250 

While subcatchments had diverse land use and land cover (Table S1), relationships 251 

between catchment characteristics and flow-weighted concentrations were typically weak 252 

(non-significant or low correlations), and differed by catchment (Table S2). Catchment 253 

characteristics in potential wetlands near the stream network were not systematically better at 254 

predicting water chemistry than whole-catchment values (Table S2). Spatial variance in 255 

concentration decreased with increasing subcatchment size for all parameters, with 256 

concentrations trending towards the overall catchment mean, suggesting conservative 257 

propagation of headwater signals with limited in-stream modification (Figs. 3A, S2). Spatial 258 
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variance thresholds occurred between 18 and 68 km2 for most parameters, except for DIC in 259 

both catchments, and Cl- and F- in the Rance, which had thresholds from 113 to 216 km2 260 

(Figs. 3A, S2A). Variance thresholds were stable across flow conditions for 72 of the 80 261 

parameter by flow quarter combinations (Table S3), suggesting that patch locations and 262 

stream network topology determined spatial patterns, rather than changes in hydrology and 263 

biogeochemical processing. The relative scale of variance thresholds for different parameters 264 

among the two catchments generally followed the same patterns (e.g. larger for DIC, smaller 265 

for PO4
3-). Subcatchment leverage followed the expected pattern (Fig. 1c), with highest 266 

leverage at spatial scales just larger than variance thresholds (Fig. S3). Most parameters 267 

showed moderate to low leverage, with no single subcatchment accounting for more than 25% 268 

of outflow concentration. However, several subcatchments had extremely high leverage for 269 

PO4
3- and NO2

- (>1000%), indicating substantial retention or removal of these solutes before 270 

reaching the catchment outlet (Fig. S3).  271 

Despite large changes in discharge and concentration (Figs. S4-S6), subcatchment 272 

water chemistry showed strong spatial stability for most parameters, meaning the relative rank 273 

of subcatchment concentrations changed little across flow conditions (Figs. 4, S7). Spatial 274 

stability of water quality among subcatchments was particularly strong for DOC, DIC, NO3
-, 275 

and several anions (Fig. 5). The parameters with consistently low or variable spatial stability 276 

(PO4
3-, NO2

-, and Br-) had a large number of samples at or below the detection limit, 277 

artificially decreasing estimates of spatial stability. During the first storm after the summer 278 

low-flow period in 2005, spatial stability dropped substantially for most parameters, 279 

indicating a spatial reorganization of water quality in the Couesnon catchment (Fig. 4).  280 

Subcatchment synchrony (mean covariance among subcatchments), varied from less 281 

than 0.25 for some anions to 0.81 for DOC in the Couesnon (Fig. 5B), depending on the 282 
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consistency of concentration-discharge responses among subcatchments (Fig. S4). SUVA254 283 

was substantially less synchronous than DOC (Figs. 4-5), suggesting diversity in DOC 284 

sources despite synchronous fluctuations in bulk DOC concentration. Among parameters, 285 

spatial stability and synchrony were unrelated to temporal variance (Fig. 5), demonstrating 286 

that the overall magnitude of temporal variance did not determine spatial or temporal 287 

representativeness. Contrary to our hypotheses (Fig. 2), synchrony and spatial stability were 288 

unrelated (Fig. 5C), demonstrating that large differences in concentration among 289 

subcatchments can create spatial stability independent of synchrony. 290 

Clearer temporal signals at smaller scales and decadal stability in structure 291 

Temporal variance did not systematically decrease with increasing spatial scale (Figs. 292 

3B, S2B). Instead, temporal variance followed the same pattern observed for spatial variance 293 

of subcatchments (Fig. 3a), with greater diversity left of the spatial variance threshold and a 294 

convergence towards the catchment mean at the outlet. Subcatchments smaller than the spatial 295 

variance threshold showed greater range in variances, but they were equally likely to be more 296 

or less dynamic than the catchment outlets. Catchment outlets had temporal variances near the 297 

overall catchment mean for most parameters (Figs. 3B, S2B), suggesting variance damping 298 

(mixing of strong and weak signals) rather than destructive interference of opposing signals. 299 

However, NO3
-, SO4

2-, and Br- showed somewhat lower temporal variance at the catchment 300 

outlets, attributable to inconsistent or weak concentration-discharge responses among 301 

subcatchments (Fig. S4). Relationships between temporal variance and flow-weighted mean 302 

differed by parameter, with most biologically reactive parameters showing greater variance in 303 

subcatchments with low concentrations (Fig. S8). 304 

The repeat samplings in 2015 and 2016 were strongly correlated with the flow-305 

weighted mean concentration from 2004-2007 for most parameters, suggesting stability of the 306 
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spatial structure of water chemistry on decadal timescales (Fig. 6). The high-water sampling 307 

in the spring of 2016 was more representative of the 2004-2007 means for all parameters 308 

except NO3
-. DOC, PO4

3-, and NO2
- concentrations were lower across most subcatchments in 309 

2015 and 2016, but NO3
-, Cl-, SUVA254, and SO4

2- showed no systematic change (Fig. 6). 310 

Discussion 311 

Ecohydrologic explanations for observed patterns in variability 312 

While it is widely held that temporal variability is greater in headwater streams due to 313 

their size and reactivity (Vannote et al. 1980; Creed et al. 2015), we found that temporal 314 

variance did not systematically decrease with catchment size for most parameters, though the 315 

range of temporal variances did diminish. Three, non-exclusive phenomena could be 316 

contributing to this unexpected preservation of variability: 1. synchronous hydrologic 317 

variation among subcatchments, 2. source-patch homogeneity in small subcatchments, and 3. 318 

increasing variance from in-stream biogeochemical processes in larger subcatchments. First, 319 

water flow determines connectivity between stream and catchment, mediating what landscape 320 

components contribute particulate materials and solutes to the stream network at what times. 321 

Subsequently, hydrology controls the residence time of those particulates and solutes in 322 

different components of the stream network, determining exposure to biogeochemical 323 

transformation (Pinay et al. 2015; Abbott et al. 2016; Raymond et al. 2016). Hydrology is 324 

also the predominant mode of disturbance in most stream ecosystems (e.g. flood and drought), 325 

structuring the ecological community and its capacity to remove or retain carbon and nutrients 326 

(Widder et al. 2014; Dong et al. 2017). Consequently, some degree of synchrony is expected 327 

in a river system where storm events and changes in evapotranspiration are likely to affect 328 

multiple subcatchments near the same time. Moving upstream, the synchrony of hydrologic 329 

variability among nearby subcatchments is likely to increase (Hammond & Kolasa 2014; 330 
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Isaak et al. 2014), potentially counteracting the expected downstream decrease in temporal 331 

variance. Second, temporal variability could become more distinct upstream of spatial 332 

variance thresholds because of larger relative coverage of source or sink patches with distinct 333 

ecohydrologic characteristics. Differences in persistence and connectivity of the dominant 334 

patch could cause higher or lower temporal variability in small subcatchments. Several 335 

ecohydrologic characteristics have been identified that could mediate temporal variance at the 336 

spatial scales observed here, including variability in groundwater contribution and specific 337 

discharge (Burns et al. 1998; Sivapalan 2003; Lyon et al. 2012) and changes in subsurface 338 

contact time (Wolock et al. 1997). Third, in-stream biogeochemical uptake or mineralization 339 

of carbon and nutrients could create variability unassociated with source fluctuations, 340 

particularly for elements that limit biological activity (Mulholland 2004; McGuire et al. 2014; 341 

Dong et al. 2017). Diversity and activity of biological processes become more variable in 342 

smaller subcatchments (Alexander et al. 2007; Altermatt 2013; Widder et al. 2014), though 343 

the causality of links between biota and water chemistry is not clear. Regardless of the cause, 344 

the divergence of temporal variability regimes in small catchments has implications for 345 

developing statistical or mechanistic models of ecohydrologic behavior. Models 346 

parameterized with data from a single headwater catchment may be misleading given the 347 

diversity of the spatial and temporal dynamics even among adjacent headwater streams. 348 

Repeat synoptic sampling of nearby subcatchments should be routine at long-term or high-349 

frequency monitoring sites to assure representativeness of time series used in model 350 

calibration or scaling. 351 

The spatial patterns of most parameters were stable on decadal timescales, despite 352 

large changes in nutrient inputs to these catchments over the 12 years of sampling (Aquilina 353 

et al. 2012; Kolbe et al. 2016; Poisvert et al. 2017). One explanation for this unexpected 354 

spatial stability could be that subcatchments differ substantially in their resilience to solute 355 
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loading and disturbance. There are myriad characteristics that can alter retention or removal 356 

capacity of a subcatchment (Pinay et al. 2015; Kolbe et al. 2016), most of which are not 357 

measured or measureable at catchment scales. Ecological parameters that could influence 358 

subcatchment resilience include the distribution of preferential flowpaths in soils and aquifers, 359 

which determines residence times in different catchment components; the vertical and 360 

horizontal distribution of soil properties; differences in biogeochemical activity in the non-361 

saturated zone or groundwater; land-use history; and heterogeneity in near-surface geology. 362 

Because agricultural activity is not randomly distributed across the landscape, some of these 363 

same inherent characteristics indirectly control land use and associated nutrient loading and 364 

disturbance (Odgaard et al. 2013; Zabel et al. 2014; Thomas et al. 2016). For example, in our 365 

study area, differences in soil fertility and surface roughness have resulted in the preferential 366 

cultivation of subcatchments underlain by schist, which are also more prone to nutrient export 367 

than granitic catchments with thicker soils (Thomas et al. 2016). The combined effect of 368 

differences in resilience to nutrient loading and associated differences in disturbance regime 369 

could explain the observed spatial stability of water chemistry, and more generally, the 370 

breakdown in the relationship between nutrient inputs and outputs at the small catchment 371 

scale (Burt & Pinay 2005; Lefebvre et al. 2007; Brookshire et al. 2009; Schilling et al. 2013).  372 

Implications for monitoring and intervention  373 

While our methods cannot and do not attempt to quantify annual loads or high-374 

frequency dynamics (Kirchner & Neal 2013), the high spatial variability observed among 375 

small subcatchments coupled with the persistent spatial stability of water quality suggests that 376 

occasional synoptic sampling of subcatchments can provide valuable information for 377 

catchment characterization and management. Specifically, knowing the spatial structure of 378 

water quality and the typical grain size of source and sink patches in the landscape could 379 
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improve site selection for monitoring, restoration, and conservation efforts. Interventions 380 

applied at spatial scales larger than the variance threshold for the parameter of concern, where 381 

subcatchment size is much larger than the grain size of the pollutant drivers and sinks, would 382 

be suboptimal at best (treating non-offending areas) and at worst could unnecessarily disturb 383 

ecosystems or human activity.  384 

For parameters with high spatial stability, synoptic sampling can allow targeted 385 

intervention in the subcatchments with highest leverage, potentially yielding catchment-level 386 

improvements (Heathwaite 2010; Liu et al. 2016; Roley et al. 2016). Conversely, efforts to 387 

quantify loads with high-frequency monitoring would be most effective downstream of 388 

variance thresholds, where the channel integrates multiple patches. While these locations will 389 

underestimate the amplitude of temporal variability compared to the most dynamic smaller 390 

subcatchments (Temnerud et al. 2010), this bias is not necessarily greater than randomly 391 

selecting a subcatchment upstream of the variance threshold, where temporal variability could 392 

be much lower than at the catchment outflow (Figs. 3, S2). 393 

In catchments where water quality shows little correlation with observed land use (as 394 

is the case here), redistribution of agricultural activity based on subcatchment leverage could 395 

improve outflow water chemistry without decreasing agricultural yields. Aligning agricultural 396 

activity with subcatchment resilience could improve water quality even in the absence of 397 

mechanistic understanding of the proximate causes of that resilience (Musolff et al. 2015; 398 

Thomas et al. 2016). While this approach is not socioeconomically feasible in areas where 399 

agricultural activity is at capacity (Li et al. 2014), it could optimize land management choices 400 

where the extent or intensity of agricultural activity are changing, such as much of the 401 

developing world or areas of rural exodus (Thomas et al. 2016). We emphasize that when 402 

differences in subcatchment water quality are due to unmeasured differences in land use (e.g. 403 
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nutrient loading or disturbance) rather than subcatchment resilience to nutrient loading, blind 404 

redistribution of agricultural activity could have unforeseen consequences, degrading water 405 

quality in previously pristine subcatchments with no net improvement in catchment-level 406 

water quality. 407 

Testing the generality of subcatchment leverage, synchrony, and spatial stability 408 

We do not propose that the specific patterns of spatiotemporal variability observed 409 

here are general, and we recognize that our conceptual framework needs to be tested with 410 

more complete spatial time series of both chemistry and discharge in diverse environments. 411 

Spatial stability and synchrony of water chemistry likely differ by biome (Krause et al. 2014; 412 

Jantze et al. 2015), though evidence from relatively pristine catchments in temperate (Asano 413 

et al. 2009; Zimmer et al. 2013), boreal (Temnerud & Bishop 2005), and desert (Fisher et al. 414 

1982; Dong et al. 2017) regions suggest that the patterns observed here are not unique to 415 

agricultural ecosystems. Generally, we predict that ecosystems with less hydrologic 416 

variability will show greater chemical stability, while ecosystems with more pronounced 417 

seasonal or event-level hydrologic shifts will experience more reorganizations of 418 

subcatchment chemistry due to changes in source area, residence time, and flowpath (Godsey 419 

& Kirchner 2014). Likewise, because topography systematically influences vegetation, soil 420 

conditions, hydrology, and human activity (Duncan et al. 2013; Thomas et al. 2016), we 421 

expect topographic heterogeneity to reduce spatial variance thresholds, creating smaller but 422 

more distinct source and sink patches, and less stable spatial patterns. We also predict that 423 

limiting nutrients will have less spatial stability than non-limiting nutrients (Mulholland 2004; 424 

Doyle 2005; Dong et al. 2017), which are more evenly distributed in the landscape and less 425 

influenced by in-stream processes (Basu et al. 2010). However, there are plausible 426 

mechanisms that could counteract some of these predicted patterns. For example, synchrony 427 
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may be higher in ecosystems with greater hydrologic variability, and spatial stability could be 428 

greater in heterogeneous landscapes where absolute differences in concentration among 429 

subcatchments are larger. Indeed, the lack of correlation between spatial stability and 430 

synchrony observed here suggests that the magnitude of concentration differences between 431 

subcatchments strongly influences the representativeness of synoptic sampling. On a basic 432 

level, quantifying variance thresholds, spatial stability, and synchrony in contrasting 433 

ecosystems could elucidate links between spatial and temporal variability (Hammond & 434 

Kolasa 2014) to generate general understanding of how water, carbon, and nutrients move 435 

through freshwater landscapes (Ward et al. 2017) and cost-effectively inform management 436 

decisions in developing and developed countries. 437 

As a final note, we point out that this variance-partitioning approach in no way 438 

supplants the need for detailed, high-frequency investigation of concentration and flux 439 

dynamics at multiple scales (Isaak et al. 2014; Blaen et al. 2016; Ruhala & Zarnetske 2017). 440 

Such studies identify mechanisms ultimately responsible for the temporal and spatial 441 

variability revealed by periodic synoptic sampling. The growing number of tools for 442 

interpreting and predicting water chemistry in stream networks (Hirsch et al. 2010; McGuire 443 

et al. 2014) together with increasingly accessible historical datasets (Burt et al. 2011; 444 

Kirchner & Neal 2013) are laying the foundation for inter-catchment comparisons of 445 

spatiotemporal dynamics, potentially moving ecohydrology beyond descriptions of site-446 

specific heterogeneity (McDonnell et al. 2007; Krause et al. 2014; Abbott et al. 2016). To this 447 

end, the simple analyses presented here could be widely tested with existing high, medium, or 448 

low frequency datasets, including those unsuitable for other network-scale analyses (Hoef et 449 

al. 2006; Isaak et al. 2014; McGuire et al. 2014). The interpretation of periodic synoptic 450 

sampling in a framework of subcatchment leverage, synchrony, and spatial stability could 451 

complement high-frequency studies to improve management of socioecological systems and 452 

 19 



address problems that do not respect disciplinary boundaries between ecology, hydrology, and 453 

sociology. 454 

455 
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 729 

Figure 1. Example patterns of stream network chemistry for three hypothetical solutes 730 
distributed in equal quantity to the same 100 km2 catchment. A) The distribution of solute 731 
sources is represented by shading, where darker patches are strong net sources (100) and 732 
lighter patches make no net contribution (0). B) Simulated solute concentrations at the 733 
subcatchment sampling points based on the upstream distribution of solute sources. Though 734 
the three solutes have the same concentration at the catchment outlet, differences in source 735 
patch size alter the location of the collapse of spatial variance, represented by the vertical 736 
colored bars. C) The leverage of each subcatchment on catchment outflow concentration 737 
(Equation 1). Influence or leverage of a subcatchment on outlet chemistry depends on 738 
subcatchment discharge and difference from the outlet concentration. Note that in a real 739 
catchment the variance threshold for a given solute depends on the interaction between patch 740 
size, location, and strength, and the temporally dynamic extent of the hydrologic network 741 
including subsurface flowpaths. Quantifying the variance threshold could just as well reveal 742 
the grain size of retention or removal patches as source patches, since the same pattern would 743 
be expected for a system with a homogeneous solute source (e.g. atmospheric deposition or 744 
large-scale geologic source) but non-homogeneous retention capacity. 745 
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 747 

Figure 2. Synchrony among subcatchments determines expected patterns of spatial and 748 
temporal variability in water chemistry. A) Temporal change in concentration of a solute for 749 
five subcatchments of an asynchronous and synchronous catchment. Asynchronous 750 
subcatchments show little temporal covariance, while the synchronous subcatchments show 751 
complete covariance. B) The temporal coefficient of variation (CV) for a larger set of nested 752 
subcatchments in the two catchments. For the asynchronous catchment, temporal variance 753 
decreases moving downstream due to destructive interference of chemical signals, while there 754 
is no change in variance in the synchronous catchment. C) The predicted relationship between 755 
temporal variability (CV) and spatial stability (the rank correlation (rs) between an individual 756 
sampling and the long-term flow-weighted mean or flux) for multiple asynchronous and 757 
synchronous catchments. In the asynchronous catchments, the representativeness of a 758 
snapshot sampling (spatial stability) decreases strongly with temporal variability (CV) due to 759 
reshuffling of subcatchment rank. In highly synchronous catchments, spatial stability is more 760 
resilient to temporal variation. 761 
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 763 
Figure 3. Variability in concentration and temporal variance for subcatchments of differing 764 
sizes in the Couesnon (blue) and Rance (orange) catchments. A) Scaled, flow-weighted mean 765 
values for dissolved organic carbon (DOC), nitrate (NO3

-), dissolved inorganic carbon (DIC), 766 
and phosphate (PO4

3-) from 26 Couesnon subcatchments and 30 Rance subcatchments (Fig. 767 
S1). Error bars represent bootstrapped non-parametric 95% confidence intervals of the scaled, 768 
flow-weighted mean for repeat samples from each subcatchment (n=6 for Rance, n=18 for 769 
Couesnon). The vertical colored bands represent statistical changes in spatial variance among 770 
subcatchments based on change point analysis implemented for each catchment separately. B) 771 
The relationship between temporal variability (scaled CV of repeat samplings for each 772 
subcatchment) and catchment size. Concentrations and CVs for each catchment were scaled 773 
by subtracting the mean and dividing by the standard deviation to facilitate comparison of 774 
changes in variance and evaluate convergence towards the catchment mean (0 on the Y-axis). 775 
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 777 

Figure 4. A) and B) Spatial representativeness of individual synoptic samplings in the 778 
Couesnon River as quantified by spatial stability: the rank correlation (rs) between the 779 
snapshot subcatchment concentrations and flow-weighted means. A value of 1 means that the 780 
sampling date perfectly predicts the relative flow-weighted mean concentration of the whole 781 
observation period. C) Daily discharge of the Couesnon River and timing of samplings. See 782 
Fig. S6 for the same information for the Rance watershed. 783 
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 785 

Figure 5. Relationships among mean spatial stability (rank correlation coefficient (rs) of 786 
individual sampling concentrations and the flow-weighted mean), coefficient of variation 787 
(CV) as a metric of temporal variability, and subcatchment synchrony (covariance) among 788 
subcatchments for all measured parameters. Error bars represent the 95% confidence intervals 789 
of the mean. 790 

791 

 33 



 792 

 793 
Figure 6. Correlations between the flow-weighted mean concentration for 2004 to 2007 and 794 
individual samplings in 2015 and 2016 for the 21 resampled subcatchments. Significant rank 795 
correlations (α = 0.05) are reported in each panel. Points falling above the 1:1 line were 796 
higher in 2015 and 2016 than from 2004 to 2007 and points below the line decreased in the 797 
time between. 798 
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