## **Supporting Information for:**

## Unexpected spatial stability of water chemistry in headwater stream networks

Benjamin W. Abbott<sup>1,2,3</sup>, Gérard Gruau<sup>4</sup>, Jay P. Zarnetske<sup>1</sup>, Florentina Moatar<sup>5</sup>, Lou Barbe<sup>2</sup>, Zahra Thomas<sup>6</sup>, Ophélie Fovet<sup>6</sup>, Tamara Kolbe<sup>4</sup>, Sen Gu<sup>4</sup>, Anne-Catherine Pierson-Wickmann<sup>4</sup>, Philippe Davy<sup>4</sup>, Gilles Pinay<sup>2,7</sup>

<sup>1</sup>Brigham Young University, Department of Plant and Wildlife Sciences, Provo, USA

<sup>2</sup>Michigan State University, Department of Earth and Environmental Sciences, East Lansing, USA

<sup>3</sup>ECOBIO, OSUR, CNRS, Université de Rennes 1, 35045 Rennes, France

<sup>4</sup>OSUR, CNRS, UMR 6118, Géosciences Rennes, Université de Rennes 1, 35045 Rennes, France

<sup>5</sup>University François-Rabelais Tours, EA 6293 Géo-Hydrosystèmes Continentaux, Parc de Grandmont, 37200 Tours, France

<sup>6</sup>UMR SAS, AGROCAMPUS OUEST, INRA, 35000 Rennes, France

<sup>7</sup>MALY, Irstea, Lyon-Villeurbanne, France

|                                                                                        | Couesnon          | Rance       |
|----------------------------------------------------------------------------------------|-------------------|-------------|
| Area (km <sup>2</sup> )                                                                | 371 (4-371)       | 373 (7-373) |
| Forest (%)                                                                             | 6 (0-62)          | 7 (0-15)    |
| Urban (%)                                                                              | 6 (0-9)           | 2.3 (0-7)   |
| Arable land (%)                                                                        | 88 (37-100)       | 90 (81-99)  |
| Row crops (%)                                                                          | 55 (24-83)        | 77 (57-91)  |
| Pastureland (%)                                                                        | 33 (13-50)        | 14 (3-32)   |
| Hedgerow density (m ha <sup>-1</sup> )                                                 | 95 (87-102)       | 47 (32-63)  |
| Potential wetlands* (%)                                                                | 11.6 (6-23)       | 8.4 (6-17)  |
| Arable land in wetlands (%)                                                            | 91 (42-100)       | 90 (78-100) |
| Row crops in wetlands (%)                                                              | 39 (17-73)        | 55 (10-92)  |
| Pastureland in wetlands (%)                                                            | 52 (15-61)        | 38 (0-75)   |
| $Cows (km^{-2})^{\dagger}$                                                             | 160 (45-216)      |             |
| Pigs $(km^{-2})^{\dagger}$                                                             | 7 (6-335)         |             |
| Poultry $(\text{km}^{-2})^{\dagger}$                                                   | 590 (27-2360)     |             |
| Nitrogen input (kg yr <sup>-1</sup> km <sup>-2</sup> ) <sup><math>\dagger</math></sup> | 9000 (2370-14600) |             |

Table S1. Mean land cover and use (range for subcatchments)

\*Potential wetland area determined by topographic analysis (Medde

et al. 2014).

†Determined by field surveys in 2004 for the Couesnon. Nitrogen

input estimated by land use.

|                              |      |        |       |        |       |         |          | Arable    | Crops     | Pasture   |
|------------------------------|------|--------|-------|--------|-------|---------|----------|-----------|-----------|-----------|
| Couesnon                     | Area | Forest | Urban | Arable | Crops | Pasture | Wetlands | (wetland) | (wetland) | (wetland) |
| DOC                          |      | 0.44   | -0.41 |        |       |         | 0.48     |           |           |           |
| NO <sub>3</sub> <sup>-</sup> |      |        |       |        | 0.52  |         |          |           |           |           |
| DIC                          |      |        |       |        |       |         |          |           |           |           |
| PO4 <sup>3-</sup>            |      | 0.65   |       | -0.51  | -0.56 |         |          | -0.50     | -0.45     |           |
| SUVA <sub>254</sub>          |      | 0.74   |       | -0.71  | -0.55 |         |          | -0.68     | -0.49     |           |
| $NO_2^-$                     |      |        |       |        |       |         |          |           |           |           |
| SO4 <sup>2-</sup>            | 0.53 |        | 0.53  |        |       |         |          |           |           |           |
| Cl                           |      |        |       |        |       |         |          |           |           |           |
| F⁻                           |      |        |       |        | 0.41  |         |          |           |           |           |
| Br                           |      |        |       |        |       |         |          |           |           |           |
|                              |      |        | ** 1  |        | ~     | -       |          | Arable    | Crops     | Pasture   |
| Rance                        | Area | Forest | Urban | Arable | Crops | Pasture | Wetlands | (wetland) | (wetland) | (wetland) |
| DOC                          |      |        |       |        |       | -0.64   |          |           | 0.70      | -0.79     |
| NO <sub>3</sub> <sup>-</sup> |      | -0.45  |       | 0.58   |       |         |          | 0.43      |           |           |
| DIC                          |      |        |       |        | 0.73  | -0.90   | 0.50     |           | 0.84      | -0.83     |
| PO4 <sup>3-</sup>            |      |        |       |        | 0.66  | -0.78   |          |           | 0.75      | -0.70     |
| SUVA <sub>254</sub>          |      |        |       |        |       | 0.43    | -0.57    |           |           |           |
| $NO_2^-$                     |      |        |       |        | 0.68  | -0.82   |          |           | 0.79      | -0.77     |
| SO4 <sup>2-</sup>            |      |        |       |        | 0.62  | -0.77   |          |           | 0.80      | -0.79     |
| Cl                           | 0.52 |        | 0.48  |        |       |         |          | -0.45     |           |           |
| $\mathbf{F}$                 |      |        |       |        |       | -0.46   |          |           | 0.46      | -0.45     |
| Br⁻                          |      |        |       |        |       |         |          |           |           |           |

Table S2. Rank correlations between land use parameters and flow-weighted mean concentrations

All reported correlation coefficients are significant at  $\alpha = 0.05$  and bolded coefficients are significant at  $\alpha = 0.01$ .

|                               | Overall  |       | Q1* (<3.4) |       | Q2 (3.4-7.1) |       | Q3 (7.1-15) |       | Q4 (>15) |       |
|-------------------------------|----------|-------|------------|-------|--------------|-------|-------------|-------|----------|-------|
|                               | Couesnon | Rance | Couesnon   | Rance | Couesnon     | Rance | Couesnon    | Rance | Couesnon | Rance |
| DOC                           | 57       | 20    | 57         | 20    | 57           | 20    | 57          | 20    | 57       | 20    |
| NO <sub>3</sub> <sup>-</sup>  | 57       | 35    | 68         | 35    | 57           | 35    | 57          | 35    | 57       | 35    |
| DIC                           | 216      | 113   | 216        | 113   | 216          | 113   | 216         | 113   | 216      | 113   |
| PO <sub>4</sub> <sup>3-</sup> | 22       | 27    | 22         | 27    | 22           | 27    | 22          | 27    | 22       | 27    |
| SUVA <sub>254</sub>           | 68       | 20    | 68         | 20    | 68           | 20    | 68          | 20    | 68       | 20    |
| NO <sub>2</sub> <sup>-</sup>  | 48       | 27    | 48         | 27    | 48           | 27    | 48          | 27    | 48       | 27    |
| SO4 <sup>2-</sup>             | 68       | 18    | 68         | 18    | 68           | 10    | 68          | 15    | 68       | 18    |
| Cl                            | 68       | 113   | 68         | 113   | 68           | 10    | 68          | 113   | 68       | 113   |
| F                             | 48       | 113   | 48         | 113   | 48           | 113   | 48          | 113   | 48       | 113   |
| Br                            | 22       | 72    | 22         | 8     | 22           | 12    | 22          | 23    | 22       | 35    |

**Table S3.** Spatial scales (km<sup>2</sup>) of the collapse of spatial variance as determined by change point analysis

\*Hydrologic quartiles were determined from the observed range in daily discharge over the sampling period (2004-2007) and are reported in L sec<sup>-1</sup> km<sup>2</sup> based on discharge at the catchment outlets. Values that are different from the overall mean for a particular quartile are bolded.



**Figure S1.** Map of sampling points in the upper Couesnon and Rance catchments in northwestern France.



**Figure S2. A)** Flow-weighted mean values for chloride (Cl<sup>-</sup>), sulfate ( $SO_4^{2^-}$ ), specific ultraviolet absorbance at 254 nm (SUVA<sub>254</sub>), nitrite ( $NO_2^-$ ), fluoride ( $F^-$ ), and bromide ( $Br^-$ ) from 56 subcatchments in the Couesnon and Rance catchments (Fig. S1). Error bars represent bootstrapped non-parametric 95% confidence intervals of the mean for repeat samples from each subcatchment (n=6 for the Rance, n=18 for the Couesnon). The vertical colored bands represent statistical changes in spatial variance based on change point analysis implemented for each catchment separately. Values were scaled by subtracting the mean and dividing by the standard deviation to facilitate comparison of changes in variance and evaluate convergence towards the overall mean (the 0 line). **B**)

The relationship between temporal variability (CV of repeat samplings for each subcatchment) and spatial scale for water chemistry parameters. CVs are scaled by catchment to have a SD of 1 and a mean of 0.



**Figure S3.** Subcatchment leverage for the Couesnon and Rance catchments. Subcatchment leverage is the percentage of outflow concentration attributable to each subcatchment, assuming conservative transport and consistent specific discharge (Equation 1). While these assumptions clearly do not hold at some spatial scales and for some parameters (e.g.  $PO_4^{3-}$  and  $NO_2^{-}$ , which show clear evidence of in-stream retention or removal downstream of the catchments with high leverage), subcatchment leverage can provide a first-order estimation of solute sources and the distributed mass balance through the stream network.



**Figure S4.** Concentration-discharge relationships for the 26 subcatchments of the Couesnon and the 30 subcatchments of the Rance. Note the log scale on the x-axis.



Figure S5. Concentrations of chemistry parameters through time for subcatchments in the Couesnon catchment. Units are mg  $L^{-1}$  for all parameters but SUVA<sub>254</sub>, which is L mg  $C^{-1}$  m<sup>-1</sup>. Notice the relatively high subcatchment synchrony and structure (relative rank of subcatchments) for DOC and DIC, and the low synchrony and structure for SUVA<sub>254</sub> and

 $PO_4^{3-}$ . Lines between sampling dates are only shown to ease visual grouping of each subcatchment and are not meant to imply interpolation.



**Figure S6**. Concentrations through time for subcatchments in the Rance catchment. Units are  $mg L^{-1}$  for all parameters but SUVA<sub>254</sub>, which is L mg C<sup>-1</sup> m<sup>-1</sup>. As for the Couesnon, notice the relatively high subcatchment synchrony for DOC and DIC, and the low synchrony for SUVA<sub>254</sub> and PO<sub>4</sub><sup>3-</sup>.



Figure S7. A and B) Spearman's rank correlations  $(r_s)$  between individual samplings and the overall flow-weighted mean for the Rance catchment. A value of 1 means that the sampling

date perfectly predicts the flow-weighted mean concentration for the whole observation period. **C**) Daily discharge of the Rance River and timing of samplings.



**Figure S8.** The relationship between flow-weighted mean concentration and the coefficient of variation (CV) for each subcatchment in the Couesnon and Rance catchments. Linear regression lines shown for statistically significant relationships ( $\alpha = 0.05$ ) based on rank correlation.