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Abstract: Although underground dinosaur tracksites inside anthropic cavities such as mines or tunnels 
are well-known throughout the world, footprints inside natural karstic caves remain extremely 
rare. The Malaval Cave (Lozère, southern France) is well-known by speleologists for the 
abundance and the exceptional quality of acicular and helictite aragonite speleothems. Recent 
palaeontological prospecting inside this cave allowed the discovery of tridactyl dinosaur tracks. 
Here, a detailed study of theropod footprints was for the first time conducted inside a natural 
karstic cave, using photogrammetric imaging technique. Tracks from the Malaval Cave are 
located inside the “Super-Blanches” galleries. More than 26 footprints were identified. They 
are Hettangian in age (Lower Jurassic) and preserved as both in situ convex hyporeliefs 
and ex situ concave epireliefs. Tree morphotypes are distinguished, (i) “Dilophosauripus-
Kayentapus” morphotype, (ii) “Eubrontes” morphotype, and (iii) “Grallatorid” morphotype. 
Sedimentological and mineralogical analyses of the tracksite indicate that the depositional 
environment varied from periodically emergent subtidal to intertidal/supratidal flat marsh. This 
work highlights the great interest and importance of palaeoichnological prospecting in karst 
caves. This is particularly true for the Causses Basin where hundreds of natural cavities were 
reported by speleologists in the formations yielding dinosaur traces.
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INTRODUCTION

Underground dinosaur tracksites inside anthropic 
cavities (e.g., clay underground quarries or coal 
mines, tunnels of railways) are well-known in several 
countries such as Australia (e.g., Cook et al., 2010) 
and United-States (e.g., Peterson, 1924; Parker & 
Balsley, 1989; Parker & Rowley, 1989; Lockley & 
Hunt, 1995). In Europe, such palaeoichnological sites 
are less common, but reported in few localities from 
France (e.g., the Fondamente Cave; Sciau, 2003), Italy 
(Belvedere et al., 2008; Petti et al., 2011), and Sweden 
(Ahlberg & Siverson, 1991; Gierliński, & Ahlberg, 
1994). In contrast, although some outdoor tracksites 
were reported near the entrance of karstic caves (e.g., 
the Sataplia Cave, Georgia; Kralik et al., 2014), the 

occurrences of underground dinosaur tracksites 
inside natural karstic caves remain extremely rare 
over the world and in Europe (e.g., Bramabiau Cave 
in southern France; Ellenberger, 1988). 

Because of the abundance and the diversity of 
footprints, in France, the most important Early 
Jurassic megatracksite is the Causses Basin (southern 
France; e.g., Monod, 1935; Thaler, 1962; Ellenberger, 
1988; Demathieu, 1990, 1993; Demathieu & Sciau, 
1999; Demathieu et al., 2002; Moreau et al., 2012a, 
2012b, 2014 and references therein). In this basin, 
dozens of outdoor tracksites were discovered during 
the last decades. Otherwise, hundreds of karst caves 
were reported by speleologists in geological formations 
yielding footprints (Hettangian-Sinemurian and 
Bathonian). However, due to the relative difficulty 
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of access to the far galleries of cavities, the 
palaeontologists rarely had the opportunity to study 
potential rock surfaces bearing tracks.

In this paper, we report an underground tracksite 
in the northern part of the Causses Basin (Fig. 1).  
It was discovered during palaeontological and 
speleological prospecting inside the Malaval Cave. 
The Malaval Cave is well-known by speleologists for 
the abundance and the exceptional quality of acicular 
and helictite aragonite speleothems (e.g., Gajac & 
Rouire, 1949; Gajac, 1963; André, 1992, 2014). Some 
of them are even blue due to copper coloration (Fig. 2). 
In some parts of the karstic network, the whiteness 
of speleothems is such that a group of galleries was 
called the “Super-Blanches” (means “super white”). 
The lowermost Jurassic dinosaur tracks described in 

Fig. 1. Location and geological context of the Causses Basin. The black footprint indicates the Malaval Cave. Modified 
after Grigniac and Taugourdeau-Lantz (1982).

this study were recently discovered in these galleries. 
For the first time, we used photogrammetry to study 
such an unusual palaeontological site inside a 
karstic cavity in Europe. Here, we characterize this 
new tracksite and compare footprints with coeval 
material to determine the possible trackmakers. 
Then palaeoenvironments are discussed using 
palaeontology, sedimentology, and mineralogy.

GEOGRAPHICAL AND  
GEOLOGICAL SETTING

The Malaval Cave is located in the Lozère department,  
9 km north-east of Florac, near the village of Les 
Bondons (Fig. 1). Based on palynology, the first Mesozoic 
deposits lying unconformably on pre-Hercynian and 

Fig. 2. A) part of the “Super-Blanches” galleries showing abundant white aragonite speleothems; B) characteristic blue 
helictite aragonite from the Malaval Cave.
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Hercynian crystalline rocks of Lozère are Rhetian-
Hettangian or Hettangian in age (Briand et al., 1979, 1993; 
Grigniac & Taugourdeau-Lantz, 1982; Taugourdeau-
Lantz, 1983). In Lozère, Hettangian deposits were 
divided into two informal formations (Brouder et al., 
1977; Briand et al., 1979; Gèze et al., 1980): (1) the 
detrital Sandstones-variegated mudstones Formation 
and (2) the Dolomitic Formation. The first formation 
consists of rubefied lenticular and channelized 
sandstones which alternate with variegated argillites 
or marls (Simon-Coinçon, 1989). Near Florac, this 
formation is poorly developed (a few metres thick) or 
missing (Gèze et al., 1980) and is largely dominated 
by white or ferruginous sandstones. The second 
formation consists of both dolomitic limestone and 
dolomite organized in thin or massive irregular layers 
alternating with green, blue or black clay beds. They 
are locally lignitic (Dorlhac, 1860; Gèze et al., 1980). 
Near Florac, the Dolomitic Formation reaches 80 to 
100 metres thick. It corresponds to the beginning of 
the earliest Jurassic marine transgression and the 
installation of marginal-littoral palaeoenvironments 
in the Causses Basin.

The dinosaur tracks described in this study were 
discovered in the Dolomitic Formation. Except for 
trackways of vertebrates and some continental plants, 
fossils are extremely rare in this formation. Indeed, 
in Lozère, only rare bivalves (e.g., Cardinia concinna, 
Liostrea sp., Ostrea irregularis) and unidentified 
gastropods were mentioned (Brouder et al., 1977; 
Briand et al., 1979; Gèze et al., 1980). 

The Malaval Cave contains a karstic network at least 
12 km long (André, 1992). Because of the exceptional 
abundance of aragonite helictite speleothems, the 
“Super-Blanches” galleries are probably the most 
spectacular area of the cavity (Fig. 2). They are up 
to 300 m long (Fig. 3A). The tracks described in 
this study were found in one gallery of the “Super-
Blanches” group: the “Galerie des Dalles” (Fig. 3A–B).

Figure 3C shows the stratigraphic section of the 
“Galerie des Dalles” and the location of the track-
bearing beds. This stratigraphic column displays 
brown to yellow, decimetric, tabular, carbonaceous 
beds (Units 1, 3, 5, 7, and 8). They alternate with thin, 
grey and sometime lenticular clayey layers (Units 2,  
4, and 6). Three trace-bearing surfaces were observed 
in both Unit 1 (Surface A) and Unit 3 (Surfaces B 
and C). It is interesting to note that Unit 3 bears 
desiccation cracks (Fig. 3C) and base of Unit 7 displays 
circular structures firstly observed by Michel Wienin 
and Jean-Louis Galéra in 2006 and which could be 
interpreted as synsedimentary deformations such as 
putative mud volcanoes. 

MATERIAL AND METHODS

The tracksite of the “Super-Blanches” galleries was 
discovered by Daniel André and Jean-Pierre Malafosse 
in 2006. They firstly observed two tridactyl tracks on 
the roof of the cave. In 2013, six other tracks were 
observed during a speleological trip organized with 
the Association Paléontologique des Hauts Plateaux 
du Languedoc (Mende). Then, in 2017, in order to find 

new tracks, study them and determine the geological 
context, a field mission was co-organized by members 
of the Association Malaval (Ispagnac) and those of the 
A.P.H.P.L.

Petrographic and mineralogical analyses
Petrographic and mineralogical studies were focused 

on the main unit yielding footprints: the Unit 3. In 
addition, in order to compare data with units without 
tracks, analyses were leaded in Units 6 and 7. Four 
samples were prepared for both optical microscopy 
on standard polished thin sections and grinded to 
perform mineralogical analyses. X-ray fluorescence 
spectrometry (XRF), X-ray diffraction (XRD), 
thermogravimetry coupled with mass spectrometry 
(TGA-MS) and volumetric method (Bernard calcimeter) 
were conducted at the Génie Civil & Environnemental 
laboratory from Douai (IMT Lille-Douai).

XRF-Rock chemistry. Bulk rock analyses were 
performed using a Bruker S4 Pioneer spectrometer, 
a 4 kW wavelength dispersive X-ray fluorescence 
spectrometer equipped with a rhodium anode. 
Measurements were performed at 60 keV and 40 mA 
on powdered rock compressed tablets. The integrated 
standardless evaluation of the machine allows the fast 
and easy determination of element concentrations up 
to the ppm-level without performing a calibration.

XRD-Rock mineralogy. Hand ground powders were 
analysed using a Bruker D8 Advance diffractometer 
system using Co-Kα radiation equipped with a fast 
LynxEye linear detector. The diffractometer was 
operated at 35 kV and 40 mA. Scans were run from 
5° to 80°2θ, with a step interval of 0.02°2θ and a 
goniometry speed of 2 s per step. The identification 
of minerals was performed using Bruker-AXS’s 
DiffracPlus EVA software and the ICDD (The 
International Centre for Diffraction Data) Powder 
Diffraction File 2015 database. Mineral quantification 
was made by Rietveld refinement (Rietveld, 1969) 
with the DIFFRACplus TOPAS software, version 
4.2 (Bruker-AXS). The Rietveld method consists in 
minimizing the difference between an experimental 
diffractogram and a diffractogram calculated for a 
given starting model. Crystal structure data were 
taken from the ICDD PDF and Bruker Structure 
Database. Rietveld refined parameters used in this 
study are described in Trincal et al. (2014). Mineral 
content standard deviations were obtained by the 
multiplication of the standard deviation given by 
Topas software by the GOF (goodness of fit) in order 
to have a faithful approximation (Taylor & Hinczak, 
2003; Trincal et al., 2014).

Carbonate quantification. To confirm the Rietveld data 
which are often discussed, two independent methods 
were used to quantify the carbonates in our samples. 
Bernard calcimetry is a volumetric standardized 
method (Afnor, NF P94-048) conventionally used on 
sediments and in civil engineering (e.g., Lamas et 
al., 2005). Five analyses of pure lime were used for 
calibration and three analyses were performed for 
each sample. The precision of the measurements is 
classically better than 5% (e.g., Jaquet et al., 1971). 
The second method was thermogravimetry coupled 
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with mass spectrometry (TGA-MS) (e.g., Kulp et al., 
1951). Analyses were conducted using a Netzsch 
STA 449 F3 Jupiter thermal analyser coupled 
with a Netzsch QMS 403 D Aëlos quadrupole mass 
spectrometer. This configuration allows measurement 
of gas and mass changes of a powdered sample under 
the effect of temperature. Setup was configured for 
a temperature increase of 3°C/minute from 40 to 
1000°C under an argon stream. Sample mass variation 
measurement was quantitative during analyses, while 
gas estimation was qualitative.

Fig. 3. A) Map of the Malaval Cave and details of the “Super-Blanches” galleries showing location of tracks in the “Galerie des Dalles”;  
B) sketch of the transversal section of the “Galerie des Dalles” and location of tracks; C) stratigraphic section of the “Galerie des Dalles”. 
S.A., Surface A; S.B., Surface B; S.C., Surface C; Li., lithology.

Trace fossil analysis
The material consists of tridactyl footprints, 

comprising traces of digits II, III and IV, directly 
measured on the accessible roof of the cave and 
fallen isolated blocks (Figs. 4–7). The descriptive 
terminology and biometric parameters used here are 
inspired from Leonardi (1987) and Marty (2008). We 
used the following standard abbreviations: length of 
the trace, “L”; width of the trace, “W’”; lengths of the 
digits, “LII”, “LIII”, “LIV”; divarication angle between 
digit II and digit IV, “II–IV” (Fig. 4). We also used “D” 
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which corresponds to the length of the free part of 
digit III sensu Demathieu et al. (2002). This is not to 
be confused with D for Depth. None of the specimens, 
included those from isolated blocks were collected.

In order to produce an orthoimage of the largest 
track-bearing surface (Fig. 5A), we used Agisoft 
PhotoScan Professional to align and combine multi 
digital photographs (Panasonic Lumix DMC-FT1). The 
same software was used to produce photogrammetric 
3D textured meshes. The 3D renderings were created 
using the MeshLab 1.3.2 software (Fig. 5B). Because 
of no ideal conditions (reduce field of view due to low 
ceilings), photogrammetry was very useful to have 
a better representation of the entire track-bearing 
surfaces and to reveal traces undetected during 
the first field investigations. Data of the 3D models 
are available online on the open access database of 
https://figshare.com.

Fig. 4. Schematic tridactyl track showing the biometric parameters 
measured; length of the trace, L; width of the trace, W; digits lengths, 
LII, LIII, LIV; lengths of the free part III, D; divarication angle between 
II and IV, II–IV.

Fig. 5. Main track-assemblage of the “Galerie des Dalles” including “Surfaces B” and “Surface C”.  
A) model combining multi digital photographs of the ceiling of the cave; B) 3D rendering of the same model;  
C) interpretative sketch.
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Fig. 6. Isolated blocks bearing tracks from the “Galerie des Dalles”. A–B, A16’; C–D, D1 and D2; 
E–F, B1 and B2.

Fig. 7. Illustration of some dinosaur traces from the Hettangian tracksite of the Malaval Cave. A) A9; B) A16; C) A16’;  
D) A15; E) A3; F) A7. Concave epirelief, C. Convex hyporeliefs, A, B, D, E, F. All scale bars, 25 cm.
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RESULTS

Petrography and mineralogy
Petrographic observations of Unit 3 revealed that 

dinosaur tracks are preserved in dolomudstone with 
millimetre-thick cryptalgal laminites microfacies (Fig. 
8A and C). The microbial laminae are parallel to the 
bedding planes and wavy to planar. The cryptalgal 
laminites exhibit non-porous fabric and a mudstone 
texture with rare detrital particles and an absence of 
bioclasts. Unit 7 is a bioturbated dolomudstone highly 
perturbed (Fig. 8B and D). 

XRD Rietveld quantifications (Table 1A) indicate 
that dolomite is the main component of the surfaces 
bearing traces (Unit 3). According to analysed samples, 
they are composed by 81 to 87 wt% of dolomite, 5 to  
8 wt% of calcite, 3 to 6 wt% of quartz and less than 
6 wt% of clays (illite and kaolinite; Fig. 9 and Table 1). 
Except the calcite decrease compensated by a dolomite 
increase, the mineralogy of Unit 7 is close to those 
of Unit 3. Due to the difficulty to well used Rietveld 
refinement method on sedimentary rocks (e.g., Trincal 
et al., 2014), carbonaceous quantifications (dolomite 
plus calcite) were confirmed using both Bernard 
calcimetry and TGA-MS independent methods on 
Units 3, 6, and 7 (Table 1B). Clayey rock from Unit 
6 shows according to Rietveld refinement method,  
51 wt% of illitic clays, 25wt% of dolomite and 16 wt% 
of quartz while calcite and kaolinite are both less than 
4 %wt (Table 1A). However, the large 10Å XRD peak 
(Fig. 9) suggests a mix between two illitic populations 
or a randomly mixed-layer phase. The first assumption 
was used for Rietveld refinement. Carbonaceous 
analyse with independent methods supports the 
Rietveld quantification on this Unit 6 argilaceous rock 
(Table 1B), results which are coherent with XRF data 
(Supplemental File 1).

Organic matter was identified by XRF in all samples,  
but not quantified (Supplemental File 1). However, 
the pyrolysis of the organic matter generates a 
peak of CO2 between 100 and 500°C (e.g., Pietro 
& Paola, 2004). TGA-MS spectrums performed on 
Malaval cave samples indicate a small loss of mass 
in this temperatures range, without CO2 release 
(Supplemental File 2). This loss of mass probably 
corresponds to clay dehydration. TGA-MS results 
suggest very low organic matter content in these 
rocks, probably less than 1 wt%.

Fig. 8. A–D, main dolomitic facies. A and C (Unit 3), dolomudstone with 
cryptalgal laminites (arrows), gross morphology (A) and microfacies 
(C). B and D (Unit 7), bioturbated dolomudstone, gross morphology (B) 
and microfacies (D); arrows indicate bioturbations. Scale bars, A–B,  
5 cm; C–D, 2 mm.

The track-bearing surfaces
Twenty in situ convex hyporeliefs are distributed over 

the ceiling of the “Galerie des Dalles”. According to the 
preservation scale proposed by Belvedere & Farlow 
(2006), which includes four grades from 0 to 3, footprints 
from Malaval show preservation grades 0 to 2. One track 
is preserved on “Surface A” whereas nineteen tracks 
are preserved as the assemblage composed of “Surface 
B” and “Surface C” (Fig. 5C). In addition, three putative 
footprints were distinguished on “Surface A” but these 
are not convincing. Six ex situ tracks preserved as 
concave epireliefs were discovered onto three isolated 
blocks found on the floor of the cave (Fig. 6). Although 
the “Super-Blanches” galleries are characterized by the 
abundance of aragonite speleothems, they are absent 
in the parts of the gallery yielding footprints. Because 
of karstic weathering, preservation of the tracks from 
the “Surface B” and “Surface C” are not of consistent 
quality. Best preserved impressions show well 
distinguished pads and claws (Fig. 10). Some traces 
appear to be undertracks rather than “true tracks”. 
Most of the footprints are oriented toward the north-
west. Among the complete traces, three morphotypes 
can be distinguished (Fig. 10; Table 2).

“Grallatorid” morphotype. The first morphotype 
is represented by 3 isolated ichnites. Tracks are small 

A

Sample Dolomite Calcite Quartz Kaolinite Illite GOF Rwp
Unit 7 91.2 ± 0.8 0.7 ± 0.9 2.84 ± 0.3 1.23 ± 0.5 2.9 ± 1.1 1.73 7.81
Unit 6 24.9 ± 0.4 3.7 ± 0.4 16 ± 0.2 3.52 ± 0.9 51.5 ± 1.6 1.87 7.86

Unit 3, S.C. 86.28 ± 0.9 5.75 ± 0.4 4.37 ± 1.5 1.59 ± 0.4 1.71 ± 0.8 1.58 7
Unit 3, S.B. 81.17 ± 0.9 7.67 ± 0.4 5.89 ± 0.2 1.82 ± 0.4 3.2 ± 0.9 1.58 7.24

B

Sample a b c
Unit 7 92 89 85 to 92
Unit 6 29 29 31 to 33

Unit 3, S.C. 92 91 85 to 92
Unit 3, S.B. 89 89 83 to 90

Table 1. A) Proportions of minerals given in Malaval samples by Topas software Rietveld refinement from XRD analyses. GOF: goodness of fit in 
percent. Rwp: weighted residual percent. The variances given in this table correspond to the standard deviation given by Topas software multiplied 
by the GOF. B) Carbonates (calcite and dolomite) estimations obtained by Rietveld refinement (a), Bernard calcimetry (b) and TGA–MS (c).
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Fig. 9. X-ray diffractograms obtained on bulk rock samples. From the bottom to top: Unit 3, S.C.; Unit 3, S.B.; Base of unit 7; 
and Unit 6. Key: C: calcite; D: dolomite; I: illite; K: kaolinite; Q: quartz.

to medium-sized, longer than wide (L/W = 1.1–1.6), 
14–29 cm long and 12.5–20.0 cm wide. The angle 
between II and IV is 39–44°. Impressions of digits are 
well-defined, elongated and they sometime show claw 
marks. The trace of digit III is the longest. The length 
of the free part of digit III is quite long (L/D = 2.0–2.6). 
Impressions of digital pads are well preserved and are 
circular to oval. The position of the digito-metatarsal 
pad of digit IV is more proximal than of digit II. There 
is no plantar impression. 

“Dilophosauripus-Kayentapus” morphotype. The 
second morphotype consists of 12 isolated footprints 
and represent the most abundant traces in the 
ichnological assemblage from Malaval. One partial 
trackway composed of two consecutive tridactyl II–
IV tracks (A2–A3; Fig. 5C) displays a 109 cm pace 
length. Tracks are as long as wide or larger than long 
(L/W = 0.8–1.1), 16–29 cm long and 18–26 cm wide. 
The divarication angle between II and IV is large, 
65° in average (II–IV = 43–85°). Impressions of digits 
are moderately elongated. Those of digit III is longer 
than those of digits II and IV. Length of II and IV are 
quite close. Imprints of pads are often weakly marked 
whereas traces of claws are well-visible. 

“Eubrontes” morphotype. The third morphotype 
consists of 2 isolated and larger ichnites. Tracks are 
longer than wide (L/W = 1.3), 29–30 cm long and 
up to 23 cm wide. The divarication angle between  
II and IV is quite large (II–IV = 47°) and D is short. 
The position of the digito-metatarsal pad of digit IV 
is more proximal than digit II. The best preserved 
footprint displays large impressions of digits and well-
marked pads. 

DISCUSSION

Comparison with other Early Jurassic tracks  
and probable trackmakers

In European dinosaur tracksites, Grallator is an 
ichnogenus commonly reported from the Hettangian 
deposits of Italy (e.g., Avanzini et al., 2006), France 

Fig. 10. Sketch of the three morphotypes from the Malaval Cave. 
“Grallatorid” morphotype A11 and A13. “Dilophosauripus-Kayentapus” 
morphotype, A2, A3, A6, A7, A9, A15, C1, and D1. “Eubrontes” morphotype, 
A14 and A16. Digits II, III, and IV from right to left.
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Track number L W LII LIII LIV D II-IV Morphotype
A1 21 21 9.5 17 12 8 60 Morphotype 2
A2 24 25 10 20 13 12 85 Morphotype 2
A3 23 22.5 11 18.5 11.5 12 65 Morphotype 2
A4 29 20 - - - 11 39 Morphotype 1
A5 23 15 10 17 11 11 35 -
A6 18 18 8 11 11 8 43 Morphotype 2
A7 21 26 8 16 14 9.5 68 Morphotype 2
A8   - - - - - - -
A9 24 21 10 18 12 12.5 62 Morphotype 2
A10 26 25 - 23 13 14 46 Morphotype 2
A11 14 12.5 7 10 7 6 42 Morphotype 1
A12 26 - - - - - 60 -
A13 25 16 9 18 13 12 44 Morphotype 1
A14 30 - - - - - - Morphotype 3?
A15 23 26 14 18 18 9 53 Morphotype 2
A16 29 23 19 20 20 11 47 Morphotype 3
B1 22 17 10 18 16 9 46 -
B2 21 23 - - - 9 80 Morphotype 2
C1 16 20 9.5 13 11 7 78 Morphotype 2
C2 24 18 18 19 11 11 38 -
D1 29 - 10 - 12 10 70 Morphotype 2
D2 24 - - - - 12 78 Morphotype 2

Table 2. Values measured on Hettangian tridactyl tracks from the “Super-Blanches” galleries in the Malaval Cave. “L”, length 
of the trace; “W’, width of the trace; “LII”, “LIII”, “LIV” lengths of the digits; “II–IV” divarication angle between digit II and 
digit IV; “D”, length of the free part of digit III (all in cm except II–IV in degrees). Morphotype 1, “Grallatorid” morphotype; 
Morphotype 2, “Dilophosauripus-Kayentapus” morphotype; Morphotype 3 “Eubrontes” morphotype.

(e.g., Demathieu et al., 2002; Gand et al., 2007; 
Moreau et al., 2012a, 2014), Poland (e.g., Gierliński 
et al., 2004; Niedźwiedzki & Pieńkowski, 2016) and 
Sweden (e.g., Ahlberg & Siverson, 1991; Lockley & 
Meyer, 2000). In the Causses Basin, four ichnospecies 
of Grallator were previously reported Grallator lescurei 
(Demathieu, 1990), G. minusculus (Hitchcock, 1858), 
G. sauclierensis (Demathieu & Sciau, 1992), and G. 
variabilis (de Lapparent & Montenat, 1967). Among 
“Grallatorid”  morphotype from the Malaval Cave, one 
isolated track (A11; Fig. 10) shares some similarities 
with both G. variabilis and G. sauclierensis. G. 
variabilis was described based on material from the 
tidal flat area of Le Veillon (Vendée, western France; 
de Lapparent & Montenat, 1967) and G. sauclierensis 
was described based on material from the Sauclières 
quarry (Aveyron, southern France; Demathieu & 
Sciau, 1992): small track (i.e., 14 cm long) longer 
than wide, well distinguished and thin traces of digits, 
digito-metatarsal pad of digit IV more proximal than 
of digit II. Although they are abundant in the middle 
and southern part of the Causses Basin (Demathieu 
et al., 2002), small Grallator traces seem less common 
in northern part of the basin (Moreau et al., 2014). 
Two footprints from the Malaval Cave (A4 and A13; 
Fig. 10) present some similarities with the largest 
Grallator ichnospecies, G. lescurei and G. minusculus, 
described based on material from the Saint-Léons 
quarry (Aveyron, southern France, Demathieu, 1990), 
and the Harford and Deerfiled Basins (Connecticut 
and Massachusetts; Hitchcock, 1858), respectively: 
up to 30 cm long and longer than wide track, large 
impressions of digits, moderate divarication angle 
II–IV and pads well distinguished. It is noteworthy 

that Demathieu (2003) reported strong similarities 
between G. minusculus from the Causses and G. 
maximus (de Lapparent & Montenat, 1967) described 
based on material from Vendée. Except the Causses 
Basin and the Vendée, Grallator was also reported 
from other French tracksites dispersed in Dordogne 
(Gand et al., 2007), Hérault (Bogdanoff et al., 1984; 
Gand et al., 2007) and Var (Ellenberger, 1965).

Although the validity of the ichnotaxon Dilophosauripus 
(Welles, 1971) is debatable according to some authors 
(see Lucas et al., 2006), this ichnogenus was reported 
from Hettangian-Sinemurian deposits of  numerous 
localities in France (e.g., Demathieu & Sciau, 1992; 
Demathieu, 1993; Demathieu et al., 2002; Sciau, 
2003; Demathieu & Gand , 2003; Gand et al., 2007). 
“Dilophosauripus-Kayentapus” morphotype from 
Malaval shares many similarities with Dilophosauripus 
williamsi described by Demathieu et al. (2002) from 
the Hettangian-Sinemurian deposits of the Causses 
Basin: medium-size footprint (i.e., 22 cm in average), 
values of the ratio L/W close to 1, large divarication 
angle between II and IV, and impressions of II and 
IV quite similar in length. However, D. williamsi 
described by Demathieu et al. (2002) shows smaller 
values of divarication angle II–IV (i.e., 54° in average) 
than the “Dilophosauripus-Kayentapus” morphotype 
from the Malaval Cave. Sciau (2003) and Moreau et 
al. (2012a, 2012b, 2014) mentioned up to 98° values 
in Dilophosauripus from Aveyron and Lozère. It 
demonstrates the broad variability of the divarication 
angle II–IV, probably depending of the nature and the 
hydration of substratum. In France, with the exception 
of the Causses Basin, few tracks from the Hettangian 
of Dordogne were ascribed to Dilophosauripus (Gand 
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et al., 2007). Otherwise, it is interesting to note that 
some authors consider Dilophosauripus as a junior 
synonym of Eubrontes and Kayentapus (Welles, 1971) 
to be the valid ichnotaxon (see references in Lucas et 
al., 2006; Lockley et al., 2011). In the Lower Jurassic 
deposits from Europe, although Kayentapus was not 
previously reported from France, this ichnogenus 
was reported from Hungary (Gierliński, 1996), Italy 
(Avanzini et al., 2006) and Poland (Gierliński & 
Niedźwiedzki, 2005).

Among European dinosaur tracksites, Eubrontes 
is an ichnogenus which was reported from the 
Hettangian deposits of Italy (e.g., Avanzini et al., 
2006), France (e.g., Demathieu et al., 2002 and 
references therein; Moreau et al., 2012a, 2014) and 
Poland (e.g., Gierliński et al., 2004). In the Hettangian 
deposits of France, Eubrontes (total length longer 
than 25 cm sensu Olsen et al., 1998) is represented 
by E. giganteus (Hitchcock, 1845) and E. veillonensis 
(de Lapparent & Montenat, 1967), described based 
on material from Connecticut, USA (Lull, 1953) and 
Vendée, respectively. Both ichnospecies seem to 
show many morphological similarities. However, E. 
veillonensis (total length, 34 cm in average) is smaller 
than E. giganteus (Gand et al., 2007). Although 
“Eubrontes” morphotype from Malaval share some 
similarities with E. giganteus described from the 
Hettangian of the Causses Basin (e.g., large digit 
impressions; value of L/W = 1.24 in average; short 
free part of digit III), they are smaller (i.e., up to 
51 cm in length among E. giganteus from Aveyron; 
Demathieu & Sciau, 1999). We may notice that small-
sized Eubrontes (i.e., 27–33 cm long) were reported in 
the northern part of the Causses Basin and the Rodez 
Strait (Moreau et al., 2012a, 2014). Although they 
can show similar length, E. giganteus differs with G. 
minusculus by a larger divarication angle (i.e., higher 
than to 40°) and a smaller L/W value (i.e., 1.24 and 
1.58 in E. giganteus and G. minusculus respectively; 
Demathieu et al., 2002). Except the Causses Basin 
and the Vendée, Eubrontes was also reported from 
other French tracksites dispersed in areas such as 
Dordogne (Gand et al., 2007), Lot (Lange-Badré & 
Lafon, 2000) and Var (Ellenberger, 1965).

The phalangeal formula inferred for the trackmakers 
of Grallator and Eubrontes (3, 4 and 5 pads for toes 
traces II, III and IV) allow these ichnogenera to be 
linked to theropod dinosaurs (Demathieu et al., 
2002). However, because tracks with high value of 
divarication angle and L/W ratio close to 1 are often 
linked with ornithopods, the likely trackmaker of 
Dilophosauripus is debatable. Based on values of 
(L-D)/D lower than 2.75, Demathieu et al. (2002) 
demonstrated that Dilophosauripus is more probably 
related to theropods. Dilophosauripus differs from 
ornithopod footprints by the presence of sharp claw 
impressions (Thulborn, 1990). Worldwide, bone 
remains of Early Jurassic theropods were ascribed to 
Coelophysidea and Ceratosausoria (i.e., Weishampel 
et al., 2004 and references therein; Smith et al., 2007; 
Xing et al., 2013). In Europe, their body fossils are 
known from the Hettangian deposits of England, 
France and Luxembourg (Larsonneur & Lapparent, 

1966; Carrano & Sampson, 2004; Delsate & Ezcurra, 
2014). However, in France, they remain extremely 
rare. Unknown from the Hettangian of the Causses 
Basin, French Hettangian theropods bones are only 
represented by Lophostropheus airelensis from the 
Moon-Airel Formation at Normandie (northwestern 
France; Larsonneur & Lapparent, 1966; Cuny & 
Galton, 1993; Ezcurra & Cuny, 2007).

Palaeoenvironmental reconstruction 
Near Florac, the rare bivalves and gastropods, as 

well as the rare ammonites (e.g., Psiloceras planorbis) 
reported in the Hettangian Dolomitic Formation 
attest of local marine inputs (Brun & Marcelin, 1934; 
Brouder et al., 1977; Briand et al., 1979; Gèze et al., 
1980). However, in the same formation, near Mende, 
lignite beds yielding plant remains indicate the 
presence of local conifer-dominated forest (Thévenard, 
1993). The most abundant remains are cuticles 
ascribed to leafy axes and cones of conifers (e.g., 
Pagiophyllum peregrinum, Brachyphyllum paparelii; 
Thévenard, 1993), more rarely to leaves of Ginkgoales 
(c. Eretmophyllum caussenense Thévenard, 1992). 
The co-occurrence of marine and terrestrial fossils in 
the Dolomitic Formation attests to marginal-littoral 
environments. 

In the “Super-Blanches” galleries, the cryptalgal 
laminites are characteristic of the intertidal and 
supratidal zones of a tidal flat showing microbial 
mats (e.g., Alsharhan & Kendall, 2003; Hamon, 2004; 
Matysik, 2016). The lack of bioclasts and coarse 
sediment suggest limited storm-generated transport. 
All the elements may reflect a relative distance 
between the track-bearing surfaces and the subtidal 
zones. The non-porous fabric of the cryptalgal 
laminites shows that the depositional environment 
was regularly flooded. However, the desiccation 
cracks and the dinosaur imprints indicate that 
sediments were deposited in an environment which 
was emergent periodically. Otherwise, the bioturbated 
dolomudstone observed in the beds without tracks 
suggest shallow subtidal zone, deposited in protected 
area of strong tidal currents (e.g., Hamon, 2004; 
Matysik, 2016). Therefore both dolomudstones facies 
suggest that depositional environments varied from 
sub-tidal to intertidal/supratidal areas in a large 
and flat marsh. This hypothesis is also supported by 
evidence of putative mud volcanoes which are common 
in tidal environments (i.e., Eisma, 1998). The absence 
of invertebrate skeletal fossils suggest restricted life 
conditions, probably related to increase salinity, but 
still suitable for pervasive bioturbation (Matysik, 
2016). At Mende, 15 km NNW of the Malaval Cave, the 
Dolomitic Formation yielded halite pseudomorphs, 
suggesting local evaporitic conditions (Moreau, 2011).

Two categories of dolomite are commonly 
distinguished: primary dolomite precipitating directly 
from aqueous solution mostly at or near to 20-35°C 
without CaCO3 dissolution; and secondary dolomite 
replacing the mineral calcite (Banerjee, 2016 and 
references therein). In the Causses Basin, the 
Hettangian dolomite was tentatively interpreted as 
both primary dolomite (at least partly; Alabouvette 
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et al., 1988; Gauthier & Disnar, 1984; Defaut et al., 
1990) and early diagenetic dolomite, suggesting multi-
origins (Hamon, 2004). The palaeoenvironmental 
hypothesis of a tidal flat marsh can be supported by 
the following arguments: penecontemporary dolomite 
is identified in current environments such as shallow 
lagoons, subtidal and evaporitic intertidal to supratidal 
mud flats with strong microbial mat influence (e.g., 
sabkhas; Skinner, 1963; Illing et al., 1965; Shinn 
et al., 1965; Irion & Müller, 1968; Bontognali et al., 
2010); laboratory experiments demonstrated that 
microbial activity facilitate and increase the formation 
of dolomite (Bontognali et al., 2010, 2014; Banerjee, 
2016 and references therein); and dolomite is formed 
where tidal flooding and storm sediments are followed 
by many days of subaerial exposure (Shinn et al., 1965).

In present and fossil tidal flats, clayey component 
commonly displays illite-dominated assemblage 
coupled with other diverse clay minerals such as 
smectite, kaolinite, and chlorite (e.g., Suttill et al., 
1982; Marty, 2008). For example, in the Late Jurassic 
from Switzerland (Marty, 2008), laminites intervals 
yielding dinosaur footprints are characterized by 
illite-dominated clay assemblage (55-70%) followed by 
illite/smectite mixed-layers (30-45%) and locally by 
some kaolinite. Although kaolinite as well as smectite 
can be illitised during diagenesis (Lanson et al., 
2009; Chamley, 2013) it is interesting to notice that 
low kaolinite/illite ratio (e.g., Unit 6) might indicate 
that immature palaeosols can be a source for the clay 
minerals (Marty, 2008). Provenance of clays cannot 
be unequivocally established and remains debatable. 
However, it is noteworthy that Hamon & Merzeraud 
(2008) reported illite-dominated pedogenic horizons 
in peritidal facies from the Dolomitic Formation of the 
south of the Causses Basin.

CONCLUSION

The combination of speleological prospecting and 
photogrammetric investigation allow twenty six tracks 
to be discovered and documented. They are mainly 
preserved as in situ convex hyporeliefs onto the ceiling 
of the “Galerie des Dalles”. The Hettangian fossil traces 
from the Malaval Cave are all tridactyl footprints 
ascribed to three morphotypes, “Dilophosauripus-
Kayentapus” morphotype, “Eubrontes” morphotype  
and “Grallatorid” morphotype, which are related 
to theropods. Dinosaur tracks are preserved in 
dolomudstone with millimetre-thick cryptalgal 
laminites microfacies. Palaeontology, sedimentology 
and mineralogy indicate that the depositional 
environment varied from subtidal to intertidal/
supratidal flat marsh which was emergent periodically. 
This new tracksite definitively highlights the great 
interest and importance of palaeoichnological 
investigation in karst caves. 
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