

Slab flattening, magmatism, and surface uplift in the Cordillera Occidental (northern Peru)

Audrey Margirier, Xavier Robert, Laurence Audin, Cécile Gautheron,

Matthias Bernet, Sarah Hall, Thibaud Simon-Labric

▶ To cite this version:

Audrey Margirier, Xavier Robert, Laurence Audin, Cécile Gautheron, Matthias Bernet, et al.. Slab flattening, magmatism, and surface uplift in the Cordillera Occidental (northern Peru). Geology, 2015, 43 (11), pp.1031-1034. 10.1130/G37061.1 . insu-01677064

HAL Id: insu-01677064 https://insu.hal.science/insu-01677064

Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

¹ Slab flattening, magmatism and surface uplift in the

- 2 Cordillera Occidental (northern Peru)
- 3 Audrey Margirier¹, Xavier Robert^{1,2}, Laurence Audin^{1,2}, Cécile Gautheron³,

4 Matthias Bernet¹, Sarah Hall⁴, and Thibaud Simon-Labric⁵

5 ¹Université de Grenoble-Alpes, ISTerre, F-38041 Grenoble, France

6 ²Institut de recherche pour le développement (IRD), ISTerre, F-38041 Grenoble, France

7 ³Université Paris Sud, UMR GEOPS-CNRS 8148, 91405 Orsay, France

8 ⁴College of Atlantic, 105 Eden Street, Bar Harbor, Maine 04609, USA

9 ⁵IDYST, University of Lausanne, CH-1015 Lausanne, Switzerland

10 ABSTRACT

11 The impact of subduction processes on surface uplift and relief building in the 12 Andes is not well understood. In northern Peru we have access to a modern flat 13 subduction zone $(3-15^{\circ}S)$ where both the geometry and timing of the flattening of the 14 slab are well constrained. Some of the highest Andean peaks, the Cordillera Blanca (6768 15 m) and the Cordillera Negra (5187 m), are located just above the Peruvian flat-slab. This 16 is a perfect target to explore the impact of slab flattening and associated magmatism on 17 the Andean topography and uplift. We present new apatite (U-Th)/He and fission-track 18 data from three vertical profiles in the Cordillera Blanca and the Cordillera Negra. Time-19 temperature inverse modeling of the thermochronological data suggest that regional 20 exhumation in the Cordillera Occidental started at ~ 15 Ma, synchronous with the onset of 21 subduction of the Nazca Ridge and eastward movement of regional magmatism. We 22 propose that ridge subduction at 15 Ma and onset of slab flattening drove regional surface

23 uplift, with an important contribution of magmatism to relief building in the Cordillera

24 Occidental.

25 **INTRODUCTION**

26 The Andes are often presented as the classic example of relief building along a 27 non-collisional convergent plate boundary, but many subduction zone processes, 28 specifically related to surface uplift, are still not fully understood. Along the western 29 Andean margin topography and slab dip vary significantly, resulting in a clear 30 segmentation along strike, with two modern flat-slab segments in northern Peru $(3-15^{\circ}S)$; 31 Fig. 1) and central Chile (28–32°S) (Barazangi and Isacks, 1976). These flat-slab 32 subduction zones influence the occurrence and location of magmatic activity along the 33 Andean range with the magmatic arc migrating away from the trench and even ceasing to exist during slab flattening. Slab flattening also increases coupling at the plate interface, 34 35 resulting in an increase and eastward displacement of shortening in the overriding plate 36 and consequent surface uplift in both the Andean fore-arc and back-arc (e.g., Ramos and 37 Folguera, 2009). However, the impact of slab flattening on surface uplift in the western 38 part of the Andes (Cordillera Occidental) remains unclear. 39 The geometry and timing of slab flattening in northern Peru are constrained by the 40 subduction of two buoyant features, the Nazca Ridge and the Inca Plateau (e.g., Gutscher

41 et al., 1999; Rosenbaum et al., 2005). In this region the Cordillera Blanca (CB), a

42 Miocene batholith exhumed along a ~150 km long crustal-scale normal fault trending

43 parallel to the range, forms the highest Peruvian peaks (Fig. 1; e.g., McNulty and Farber,

- 44 2002). In the context of flat subduction, which is expected to produce shortening, the
- 45 presence of this major normal fault is surprising. Two models have been proposed to

46	explain the Cordillera Blanca Normal Fault (CBNF). Dalmayrac and Molnar (1981)					
47	suggested that extension was induced by gravitational collapse of a thickened crust,					
48	whereas McNulty and Farber (2002) suggested extension due to the arrival of the Nazca					
49	Ridge beneath this region, which temporarily increased the coupling with the overriding					
50	plate. Understanding the exhumation of the CB and extension along the CBNF in this					
51	compressive regime is important for understanding the impact of ridges and flat					
52	subduction on the Andean relief development.					
53	The aim of this paper is to evaluate the relationship between changes in					
54	geodynamics and relief evolution in the Cordillera Occidental in northern Peru. We infer					
55	relief evolution from apatite (U-Th)/He (AHe) and fission-track (AFT) data of the CB					
56	and the Cordillera Negra (CN). We compare time-temperature inverse modeling (QTQt;					
57	Gallagher, 2012) with the timing of the arrival of the Nazca Ridge at the subduction zone,					
58	periods of magmatic activity, and periods of uplift.					
59	GEOLOGIC AND GEODYNAMIC CONTEXT					
60	Reconstructions of the timing and location of the initial Nazca Ridge subduction					
61	and its subsequent southeastward migration constrain the timing of slab flattening (e.g.,					
62	McNulty and Farber, 2002; Rosenbaum et al., 2005). These reconstructions are based on					
63	symmetric seafloor-spreading in a hotspot reference frame, and rely on the calculation of					
64	the Nazca Plate motion with respect to South America, which may contain considerable					
65	errors. Rosenbaum et al. (2005) presented a regionally refined plate circuit that suggests					
66	ridge subduction beginning at 15 Ma at 10°S and the arrival of the Inca Plateau at the					

67 trench at 5°S at 13 Ma (Fig. 1).

68	The CB is a 14–5 Ma granitic pluton (zircon U-Pb; Mukasa, 1984; Giovanni,					
69	2007) intruded into Jurassic sediments. The high summits of the CB build the footwall of					
70	the CBNF, which has produced > 4500 m of vertical offset since 5 Ma (Bonnot, 1984;					
71	Giovanni, 2007). The Callejón de Huaylas, a 150 km long range-parallel intra-mountain					
72	basin, separates the CB and the CN. The 8-3 Ma Yungay ignimbrites, in the northern part					
73	of the basin (Farrar and Noble, 1976; Cobbing et al., 1981; Wise and Noble, 2003), and					
74	5.4 ± 0.1 Ma ignimbrites at the base of the stratigraphy of this basin, constrain the timing					
75	of basin formation in relation to CBNF activity (Giovanni et al., 2010). The CB batholith					
76	and synchronous volcanic deposits indicate the last activity before the cessation of					
77	magmatism (Petford and Atherton, 1992) associated with slab flattening.					
78	The Cretaceous and Paleogene plutons (73–48 Ma; Beckinsale et al., 1985)					
79	intruded into Jurassic sediments of the CN forms a plateau with summits > 5000 m and					
80	1-2 km-deep valleys incised into its western flank. Some Neogene volcano-sedimentary					
81	deposits cap the CN (54–15 Ma Calipuy Formation; Cobbing et al., 1981). Few studies					
82	have addressed volcanism in the CN (Farrar and Noble, 1976; Myers, 1976; Noble et al.,					
83	1990), and no thermochronologic data are currently available. In the CB, few AFT and					
84	AHe data are available, mostly from glacial valleys along longitudinal profiles (Montario,					
85	2001; Giovanni, 2007; Hodson, 2012). Thermochronological data outside of our CB and					
86	CN study areas are limited (Wipf, 2006, Michalak, 2013, Eude et al., 2015), preventing					
87	any regional thermal modeling. Due to the absence of thermochronologic data in the CN,					
88	earlier exhumation models focused on the CBNF.					

89 **METHODS**

90	AFT and AHe thermochronology record the temperature evolution of the crust					
91	from 120 to 40°C (e.g., Gallagher et al., 1998; Gautheron et al., 2009), which can be					
92	related to local exhumation or thermal events. Although thermochronological data do not					
93	allow direct quantification of surface uplift, with complementary information exhumation					
94	can be interpreted to be the result of surface uplift and enhanced erosion. We determine					
95	the thermal history for a vertical profile using the QTQt software, which inverts AFT					
96	annealing and AHe diffusion parameters with the Markov Chain Monte Carlo method					
97	(Gallagher, 2012; details on sample processing, analysis and modeling are provided in the					
98	GSA data repository ¹). We use the multikinetic annealing model of Ketcham et al. (2007)					
99	to model the AFT ages and track-length dispersion and the recoil damage model of					
100	Gautheron et al. (2009) to model AHe ages.					
101	NEW THERMOCHRONOLOGICAL DATA					
102	We sampled three profiles with elevations spanning 0.9–1.9 km, one in the CB					

103 batholith (>10 km from the CBNF to avoid a tectonic exhumation signal) and two in the

104 CN, providing 33 AFT ages, track-length measurements and single-grain AHe ages for

105 23 samples (Fig. 1). The AFT ages in the CB range from $1.5 \pm 0.3 - 7.7 \pm 1.1$ Ma and AHe

ages range from $1.9 \pm 0.2 - 13.7 \pm 1.4$ Ma (Fig. 1). The AHe ages are scattered and older

107 than AFT ages, raising the question of their reliability. Indeed, ⁴He implantation from an

- 108 external U-Th source can generate 50% of excess He and cause age dispersion
- 109 (Gautheron et al., 2012). In the CN AFT ages range from $21.1 \pm 1.3 33.2 \pm 1.9$ Ma and
- 110 AHe ages range from $1.9 \pm 0.2 32.6 \pm 3.3$ Ma.

111 TIME TEMPERATURE INVERSION

112	Thermal inversion of the CB age-elevation profile indicates rapid cooling at					
113	\sim 200°C/m.y. between 4.5 and 4 Ma following batholith emplacement at high					
114	temperatures (Fig. 2). This rapid cooling is bracketed by the batholith emplacement ages					
115	(14–5 Ma; Mukasa, 1984; Giovanni, 2007) and AFT ages. At ~4 Ma the cooling rate					
116	decreased to 25°C/m.y.					
117	Inverse modeling of the northern CN suggests an initial cooling stage between 30					
118	and 23 Ma, followed by a progressive reheating between 23 and 15 Ma (Fig. 2). Between					
119	15 Ma and today the rocks cooled at 7°C/m.y. The southern CN model indicates an initial					
120	cooling episode between 30 and 18 Ma, and then a 18-15 Ma heating event. From 15 Ma					
121	to today the rocks recorded a cooling phase with a rate around 7°C/m.y. (Fig. 2). For both					
122	CN profiles, the obtained Temperature-time (Tt) paths indicate slow cooling during the					
123	Oligocene followed by reheating during the Early Miocene and finally monotonic cooling					
124	since ~15 Ma (Fig. 2).					
125	DISCUSSION					
126	Middle Miocene Exhumation of the Northern Peruvian Andes					
127	Both CN profiles indicate reheating of the crust over several million years before					
128	15 Ma and subsequent cooling. This progressive reheating likely corresponds to regional					
129	heating during emplacement of the volcanic Calipuy Formation (54-15 Ma; Cobbing et					
130	al., 1981). The presence of the Calipuy magmatic arc possibly increased the geothermal					
131	gradient in the Cordillera Occidental.					
132	The cause of the onset of exhumation recorded by the cooling phase in the CN					
133	between 15 and 0 Ma is not straightforward. Pollen analyses constrained a maximum					

134 possible elevation of 2 km in the Peruvian Andes before the Middle Miocene (Hoorn et

135	al., 2010). At that time, the CN formed the drainage divide (Fig. 3A; Wise and Noble,					
136	2003). McLaughlin (1924) suggested that the CN Jurassic sediments, deposited near sea					
137	level, were uplifted and eroded to a low relief surface (Puna surface) until ~15 Ma,					
138	during the Quechua 1 deformation event. This surface is presently located at ~4400 m					
139	a.s.l Late Miocene volcanic rocks (7.4 Ma, Wipf, 2006) fill a paleovalley (now					
140	reincised) along the Rio Fortaleza, which has its headwaters in the CN. This morphology					
141	records a change in base level indicating that some uplift and incision occurred between					
142	15 and 7 Ma (Farrar and Noble, 1976, Myers, 1976). Giovanni et al. (2010) showed from					
143	$\delta^{18} O$ analyses of paleolake deposits that high elevations in the Callejon de Huaylas basin					
144	(Fig. 1) were attained by latest Miocene times. Therefore, the cooling recorded at 15 Ma					
145	in the CN is likely related to erosion triggered by regional surface uplift. This scenario is					
146	consistent with previous studies bracketing the uplift of the Western Andes of northern					
147	Peru between the Early and Late Miocene (e.g., Farrar and Noble, 1976, Myers, 1976;					
148	Giovanni et al., 2010; Hoorn et al., 2010).					
149	Ridge Subduction, Slab Flattening and Surface Uplift					
150	The initiation of exhumation at ~ 15 Ma in the CN correlates with subduction of					

151 the Nazca Ridge (Fig. 3B; Rosenbaum et al., 2005). Exhumation in the CN continued

152 after initial ridge subduction and its southward migration until today (Figs. 3C, 3D). The

153 timing (15 Ma) and location (10°S) of the initial Nazca Ridge subduction proposed by

154 Rosenbaum et al. (2005) is consistent with the Middle Miocene continental shelf uplift at

- this latitude (von Huene and Suess, 1988), with the propagation of the orogenic front
- toward the east at ~8 Ma (Mégard, 1987), and with the shift of magmatic sources toward
- 157 the east from the Calipuy Formation (54–15 Ma; Cobbing et al., 1981) to the CB magmas

158	(CB batholith, Fortaleza and Yungay ignimbrites, 14–3 Ma; Mukasa, 1984; Wise and					
159	Noble, 2003; Wipf, 2006; Giovanni, 2007; Giovanni et al., 2010). Eakin et al. (2014)					
160	suggested that slab flattening has an influence on the evolution of the overriding plate and					
161	proposed ~1000 m positive dynamic topography in the Cordillera Occidental after slab					
162	flattening. As no important compressive phase has been documented during the Middle					
163	Miocene in the Cordillera Occidental in northern Peru (Mégard, 1987), we suggest that					
164	regional uplift resulted from positive dynamic topography above the flat-slab.					
165	Magmatism and Exhumation in the Cordillera Blanca					
166	The CB thermal history indicates rapid cooling (200°C/m.y.) of the batholith					
167	followed by slower cooling (25°C/m.y) beginning ~4 Ma. The rapid cooling likely					
168	corresponds to the post magmatic cooling of the CB batholith; coeval exhumation is not					
169	excluded. The slower cooling likely corresponds to exhumation. This cooling rate					
170	suggests higher exhumation rates in the CB than in the CN. Following McNulty et al.					
171	(1998) and Petford and Atherton (1992), we propose that strike-slip faulting facilitated					
172	the earlier stage of CB exhumation (Fig. 3C). Our data combined with previously					
173	published thermochronologic data (U-Pb and Ar-Ar; Giovanni, 2007) indicate that the					
174	CB emplacement and onset of exhumation are coeval, suggesting that the crustal					
175	emplacement of low-density magma participated in the exhumation of the CB (Petford					
176	and Atherton, 1992). The presence of polished granitic clasts in Pliocene sediments					
177	indicates glacial erosion of the CB (Bonnot, 1984), placing the CB at elevations at least					
178	in excess of \sim 3500 m at this time. Finally, we suggest that magmatism and glacial					
179	erosion (Fig. 3D) continued to drive the local CB uplift and exhumation in a context of					
180	regional surface uplift following slab flattening.					

181	The CB exhumation cannot be explained with models involving increased					
182	coupling at the plate interface and shortening in the upper plate. Such models are not					
183	compatible with extension related to the CBNF. The initiation of the CBNF (~5.4 Ma;					
184	Giovanni et al., 2010) is ~10 Myr after the subduction of the Nazca Ridge (15 Ma;					
185	Rosenbaum et al., 2005), demonstrating that the subduction of the ridge does not control					
186	extension on the CBNF and CB exhumation, as suggested by McNulty and Farber					
187	(2002). Collapse models (e.g., Dalmayrac and Molnar, 1981) are in contradiction with the					
188	15–0 Ma exhumation of the CN. We suggest that the fault is accommodating the					
189	differential exhumation of the two cordilleras.					
190	SUMMARY					
191	Thermochronological data and temperature-time history modeling, suggest					
192	exhumation since 15 Ma in the CN. We interpret this exhumation phase as the result of					
193	elevated erosion rates in response to regional surface uplift. This scenario is in agreement					
194	with other studies bracketing the timing of uplift of the Cordillera Occidental between the					
195	Early and Late Miocene (e.g., Hoorn et al., 2010), but contradicts models of extensional					
196	or gravitational collapse of thickened crust (e.g., Dalmayrac and Molnar, 1981). We					
197	propose that surface uplift in the Cordillera Occidental was driven by the Nazca Ridge					
198	subduction, slab flattening, and associated magmatism (i.e., CB magmas). By					
199	constraining the timing of heating and cooling of upper crustal rocks from the late					
200	Oligocene to the present, this study provides new evidence linking flat subduction to the					
201	topographic evolution of the northern Peruvian Andes.					
202	ACKNOWLEDGMENTS					

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G37061.1 203 This work was supported by a grant from Labex OSUG@2020 204 (Investissements d'avenir - ANR10 LABX56), ECOS-205 NORD/COLCIENCIAS/ICETEX and SMINGUE. We thank the SERNAMP for 206 allowing sampling in the CB, and F. Coeur, F. Senebier, E. Hardwick, M. Balvay, R. 207 Pinna-Jamme, K. Hodson and M. Michalak for sample preparation. We thank C. 208 Lithgow and two anonymous reviewers for their constructive reviews. 209 **REFERENCES CITED** 210 Barazangi, M., and Isacks, B.L., 1976, Spatial distribution of earthquakes and subduction 211 of the Nazca plate beneath South America: Geology, v. 4, p. 686–692, 212 doi:10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2. 213 Beckinsale, R.D., Sanchez-Fernandez, A.W., Brook, M., Cobbing, E.J., Taylor, W.P., and 214 Moore, N.D., 1985. Rb–Sr whole-rock isochron and K–Ar age determinations for the 215 Coastal Batholith of Peru, in Pitcher, W.S., and Atherton, M.P., eds., Magmatism at 216 a Plate Edge: The Peruvian Andes: Glasgow, Blackie, p. 177–202. 217 Bonnot, D., 1984, Néotectonique et tectonique active de la Cordillère Blanche et du 218 Callejon de Huaylas (Andes nord-péruviennes) [Thesis (unpublished)]: Centre 219 d'Orsay, Université de Paris-Sud, p. 1–202. Cobbing, J., Pitcher, W., Baldock, J., Taylor, W., McCourt, W., and Snelling, N.J., 1981, 220 221 Estudio geológico de la Cordillera Occidental del norte del Perú: Instituto Geologico 222 Minero y Metalurgico, Serie D. Estudios Especiales, v. 10, no. D., p. 1-252 223 Dalmayrac, B., and Molnar, P., 1981, Parallel thrust and normal faulting in Peru and 224 constraints on the state of stress: Earth and Planetary Science Letters, v. 55, p. 473-225 481, doi:10.1016/0012-821X(81)90174-6.

226 Eakin, C.M., Lithgow-Bertelloni, C., and Dávila, F.M., 2014, Influence of Peruvian flat-227 subduction dynamics on the evolution of western Amazonia: Earth and Planetary 228 Science Letters, v. 404, p. 250–260, doi:10.1016/j.epsl.2014.07.027. 229 Eude, A., Roddaz, M., Brichau, S., Brusset, S., Calderon, Y., Baby, P., and Soula, J.C., 230 2015, Controls on timing of exhumation and deformation in the northern Peruvian 231 eastern Andean wedge as inferred from low-temperature thermochronology and 232 balanced cross section: Tectonics, v. 34, p. 715–730, doi:10.1002/2014TC003641. 233 Farrar, E., and Noble, D.C., 1976, Timing of late Tertiary deformation in the Andes of 234 Peru: Geological Society of America Bulletin, v. 87, p. 1247-1250, 235 doi:10.1130/0016-7606(1976)87<1247:TOLTDI>2.0.CO;2. 236 Gallagher, K., 2012, Transdimensional inverse thermal history modeling for quantitative 237 thermochronology: Journal of Geophysical Research, v. 117, B02408, 238 doi:10.1029/2011JB008825. 239 Gallagher, K., Brown, R., and Johnson, C., 1998, Fission track analysis and its 240 applications to geological problems: Annual Review of Earth and Planetary 241 Sciences, v. 26, no. 1, p. 519–572, doi:10.1146/annurev.earth.26.1.519. 242 Gautheron, C., Tassan-Got, L., Ketcham, R.A., and Dobson, K.J., 2012, Accounting for 243 long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: 3D 244 modeling of diffusion, zoning, implantation, and abrasion: Geochimica et 245 Cosmochimica Acta, v. 96, p. 44–56, doi:10.1016/j.gca.2012.08.016. 246 Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M., 2009, Effect of alpha-247 damage annealing on apatite (U-Th)/He thermochronology: Chemical Geology, 248 v. 266, p. 157–170, doi:10.1016/j.chemgeo.2009.06.001.

249	Giovanni, M.K., 2007, Tectonic and Thermal Evolution of the Cordillera Blanca					
250	Detachment System, Peruvian Andes: Implication for Normal Faulting in a					
251	Contractionnal Orogen [Thesis (unpublished)]: Los Angeles, University of					
252	California-Los Angeles, p. 1-255.					
253	Giovanni, M.K., Horton, B.K., Garzione, C.N., McNulty, B., and Grove, M., 2010,					
254	Extensional basin evolution in the Cordillera Blanca, Peru: Stratigraphic and isotopic					
255	records of detachment faulting and orogenic collapse in the Andean hinterland:					
256	Tectonics, v. 29, TC6007, doi:10.1029/2010TC002666.					
257	Gutscher, M.A., Olivet, J.L., Aslanian, D., Eissen, J.P., and Maury, R., 1999, The "lost					
258	Inca Plateau": cause of flat subduction beneath Peru?: Earth and Planetary Science					
259	Letters, v. 171, p. 335–341, doi:10.1016/S0012-821X(99)00153-3.					
260	Hodson, K.R., 2012, Morphology, exhumation, and Holocene erosion rates from a					
261	tropical glaciated mountain range: The Cordillera Blanca, Peru [Thesis					
262	(unpublished)]: Montréal, McGill University, p. 1–94.					
263	Hoorn, C., et al., 2010, Amazonia Through Time: Andean Uplift, Climate Change,					
264	Landscape Evolution, and Biodiversity: Science, v. 330, no. 6006, p. 927-931,					
265	doi:10.1126/science.1194585.					
266	von Huene, R., and Suess, E., 1988, Ocean Drilling Program Leg 112, Peru continental					
267	margin: Part 1, Tectonic History: Geology, v. 16, p. 934-938, doi: 10.1130/0091-					
268	7613(1988)016<0934:ODPLPC>2.3.CO;2.					
269	INGEMMET (El Instituto Geológico Minero y Metalúrgic), 1999, Mana geológico del					
20)	Perú: Peru Instituto Geológico Minero y Metalúrgico. Sector Energía y Minas					
270	i era. i era, montato Geologico, minero y metalurgico, occior Energia y millas,					

- 272 Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., and Hurford, A.J., 2007,
- 273 Improved measurement of fission-track annealing in apatite using c-axis projection:
- 274 The American Mineralogist, v. 92, p. 789–798, doi:10.2138/am.2007.2280.
- 275 McLaughlin, D.H., 1924, Geology and physiography of the Peruvian Cordillera,
- departments of Junin and Lima: Geological Society of America Bulletin, v. 35,
- p. 591–632, doi:10.1130/GSAB-35-591.
- 278 McNulty, B.A., and Farber, D.L., 2002, Active detachment faulting above the Peruvian
- 279 flat slab: Geology, v. 30, p. 567–570, doi:10.1130/0091-
- 280 7613(2002)030<0567:ADFATP>2.0.CO;2.
- 281 McNulty, B.A., Farber, D.L., Wallace, G.S., Lopez, R., and Palacios, O., 1998, Role of
- 282 plate kinematics and plate-slip-vector partitioning in continental magmatic arcs:
- Evidence from the Cordillera Blanca, Peru: Geology, v. 26, p. 827–830,
- 284 doi:10.1130/0091-7613(1998)026<0827:ROPKAP>2.3.CO;2.
- 285 Mégard, F., 1987, Structure and evolution of the Peruvian Andes: The anatomy of
- 286 mountain ranges, in Schaer, J.P., and Rodgers J., eds., The Anatomy of Mountain
- 287 Ranges: Princeton, New Jersey, Princeton University Press, p. 179–210.
- 288 Michalak, M.J., 2013, Exhumation of the Peruvian Andes: Insights from Mineral
- 289 Chronometers [Ph.D. thesis]: Santa Cruz, California, University of California, p. 1–
- 290 166.
- 291 Montario, M.J., 2001, Exhumation of the Cordillera Blanca, Northern Peru, based on
- apatite fission track analysis [Thesis (unpublished)]: Schenectady, New York, Union
- 293 College, Department of Geology, p. 1–12.

294	Mukasa, S.B., 1984, Comparative Pb isotope systematics and zircon U-Pb geochronology					
295	for the Coastal San Nicolas and Cordillera Blanca batholiths, Peru [Thesis					
296	(unpublished)]: Santa Barbara, University of California–Santa Barbara, p. 1-362.					
297	Myers, J.S., 1976, Erosion surfaces and ignimbrite eruption, measures of Andean uplift in					
298	northern Peru: Geological Journal, v. 11, p. 29-44, doi:10.1002/gj.3350110104.					
299	Noble, D.C., McKee, E.H., Mourier, T., and Mégard, F., 1990, Cenozoic stratigraphy,					
300	magmatic activity, compressive deformation, and uplift in northern Peru: Geological					
301	Society of America Bulletin, v. 102, p. 1105-1113, doi:10.1130/0016-					
302	7606(1990)102<1105:CSMACD>2.3.CO;2.					
303	Petford, N., and Atherton, M.P., 1992, Granitoid emplacement and deformation along a					
304	major crustal lineament: the Cordillera Blanca, Peru: Tectonophysics, v. 205, p. 171-					
305	185, doi:10.1016/0040-1951(92)90425-6.					
306	Ramos, V.A., and Folguera, A., 2009, Andean flat-slab subduction through time:					
307	Geological Society of London, Special Publications, v. 327, p. 31-54,					
308	doi:10.1144/SP327.3.					
309	Rosenbaum, G., Giles, D., Saxon, M., Betts, P.G., Weinberg, R.F., and Duboz, C., 2005,					
310	Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of					
311	ore deposits in Peru: Earth and Planetary Science Letters, v. 239, p. 18-32,					
312	doi:10.1016/j.epsl.2005.08.003.					
313	Wipf, M., 2006, Evolution of the Western Cordillera and Coastal Margin of Peru:					
314	Evidence from low-temperature Thermochronology and Geomorphology: Zürich,					

315 Swiss Federal Institute of Technology, p. 1–163.

316 Wise, J.M., and Noble, D.C., 2003, Geomorphic evolution of the Cordillera Blanca,

317 Northern Peru: Boletín de la Sociedad Geológica del Perú, v. 96, p. 1–21.

318 FIGURE CAPTIONS

- 319 Figure 1. A) Study area location within the Peruvian flat-slab and the South America
- 320 Pacific margin (modified after Ramos and Folguera, 2009). The respective positions of
- 321 the Nazca Ridge (NR) at ~15 Ma, 0 Ma; and of the Inca plateau (IP) at ~13 Ma
- 322 (Rosenbaum et al., 2005) are represented in red. B) Geological map of the Cordillera
- 323 Occidental (northern Peru) showing AFT ages (red) and AHe ages (blue) (modified from
- 324 INGEMMET geologic map of Ancash; INGEMMET, 1999.
- 325

326 Figure 2. Age-elevation plots and Temperature-time (Tt) paths predicted for

- 327 thermochronological ages using Gautheron et al. (2009) He diffusion model. A-C) Age-
- 328 elevation plots showing AFT ages (red), mean track length (MTL; yellow) and AHe ages
- 329 (blue), ages predicted by the thermal history are plotted in pastel colors. Northern
- 330 Cordillera Negra (CN) profile (A), southern CN profile (B), and Cordillera Blanca (CB)
- 331 profile (C). D-F) Tt paths for northern/southern CN, and CB profiles. Each line represents

the Tt path of a sample; red line represents the path of the lowest elevation sample and

blue line the highest, pastel shading represent uncertainties.

334

335 Figure 3. Block diagrams showing the uplift history and paleogeography of the Cordillera

- 336 Occidental in northern Peru. Diagrams represent surface uplift (bold arrow), volcanism
- 337 (black triangle), partial melting (red droplet), faults (dotted and continuous black lines),
- drainage network, and the CB batholith. A) The Calipuy Formation emplaces in the CN

339	above a "normal"	' subduction (5	54–15 Ma). B) Subduction	of the NR, sl	ab flattening, and
-----	------------------	-----------------	--------------	--------------	---------------	--------------------

- 340 corresponding surface uplift in the CN at 15 Ma. C) During the slab flattening,
- 341 magmatism shutdowns in the CN and moves eastward. The CB batholith emplaces at
- 342 depth and is exhumed in a strike-slip context. D) The CBNF accommodates the recent
- 343 exhumation of the CB resulting in modern elevations >6 km.
- 344
- ¹GSA Data Repository item 2015xxx, xxxxxxx, is available online at
- 346 www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or
- 347 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

