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Abstract Seen from the solar wind (SW) reference frame, the presence of newborn planetary protons
upstream from the Martian and Venusian bow shocks and SW protons reflected from each of them
constitutes two sources of nonthermal proton populations. In both cases, the resulting proton
velocity distribution function is highly unstable and capable of giving rise to ultralow frequency
quasi-monochromatic electromagnetic plasma waves. When these instabilities take place, the resulting
nonlinear waves are convected by the SW and interact with nonthermal protons located downstream from
the wave generation region (upstream from the bow shock), playing a predominant role in their dynamics.
To improve our understanding of these phenomena, we study the interaction between a charged particle
and a large-amplitude monochromatic circularly polarized electromagnetic wave propagating parallel to
a background magnetic field, from first principles. We determine the number of fix points in velocity space,
their stability, and their dependence on different wave-particle parameters. Particularly, we determine
the temporal evolution of a charged particle in the pitch angle-gyrophase velocity plane under nominal
conditions expected for backstreaming protons in planetary foreshocks and for newborn planetary protons
in the upstream regions of Venus and Mars. In addition, the inclusion of wave ellipticity effects provides
an explanation for pitch angle distributions of suprathermal protons observed at the Earth’s foreshock,
reported in previous studies. These analyses constitute a mean to evaluate if nonthermal proton velocity
distribution functions observed at these plasma environments present signatures that can be understood in
terms of nonlinear wave-particle processes.

1. Introduction

The solar wind (SW) is a magnetized plasma mainly composed of protons and electrons that surpasses the
gravitational attraction of the Sun and that reaches supersonic speeds at a few solar radii from their source.
When the supersonic SW plasma encounters a magnetized or conductive obstacle, a bow shock (BS) can form
ahead of them. The upstream region magnetically connected to a planetary BS defines the corresponding
foreshock. Inside this region, a fraction of solar wind particles are reflected from the bow shock and inter-
act with the incoming SW (e.g., Eastwood et al., 2005; Wilson, 2016). Seen from the SW reference frame, the
reflected SW protons constitute a nonthermal population which gives rise to plasma instabilities that lead to
ultralow frequency (ULF) waves (e.g., Gary, 1993; Wilson, 2016). The presence of these waves is of fundamen-
tal importance since, in this collisionless region, they constitute an important channel through which there
is transfer of energy and momentum between the incoming SW and the reflected particles. The foreshock is
therefore characterized by the presence of backstreaming ions as well as by the generation and propagation
of electromagnetic plasma waves.

Different types of backstreaming ion velocity distributions have been identified at the Earth’s foreshock:
field-aligned beams (FABs), intermediate, and diffuse (Burgess et al., 2012; Eastwood et al., 2005; Gosling et al.,
1978; Paschmann et al., 1981; Thomsen et al., 1985; Wilson, 2016). Downstream of the field-aligned beam
region, ion distributions characterized by a gyromotion around the magnetic field, that is, a nonvanishing
perpendicular bulk velocity with respect to the background magnetic field, has also been reported. These
gyrating ion distributions can be nongyrotropic (i.e., gyrophase bunched) or nearly gyrotropic. Two mecha-
nisms are considered to explain the origin of such gyrating ion distributions. The first involves large-amplitude
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waves (produced by a field-aligned beam plasma instability) that trap ions in velocity space and produce
a phase-bunched distribution (Hoshino & Terasawa, 1985; Mazelle et al., 2000; Meziane et al., 2001; Mazelle
et al., 2003). The second mechanism considers that a portion of the incoming solar wind that is specularly
reflected at the bow shock is responsible for these distribution functions (Gosling et al., 1982; Gurgiolo et al.,
1983; Meziane et al., 2004). Even though, in general, these are two possible processes to explain the observed
gyrating ion distributions, there are cases in which only one of them makes predictions in agreement with
the observations. For example, Mazelle et al. (2003) presented and analyzed a case study from the Cluster Ion
Spectrometry experiment where gyrating ion distributions were observed in association with low-frequency
quasi-monochromatic waves with large amplitudes. These distributions had pitch angles inconsistent with a
specular reflection mechanism at the bow shock. Moreover, these pitch angles were consistent with the the-
oretical value expected if the gyrating distributions were produced by a coherent nonlinear wave-particle
interaction mechanism. When the waves were present, the ion distributions appeared as gyrophase-bunched
gyrating distributions, while field-aligned beams were observed just adjacent to the interval of wave occur-
rence. In addition, the ULF waves were near cyclotron resonance with the ion parallel beams, a particle
population capable of providing the free energy giving rise to the ion/ion right-hand (RH) instability (Gary,
1993) responsible for the wave occurrence.

In principle, Earth’s foreshock is not the only planetary environment where gyrophase-bunched ions could
be produced as a result of wave-particle trapping. In the case of planetary obstacles that do not have an
intrinsic global magnetic field such as Venus or Mars (Acuña et al., 1998; Russell et al., 1980), the presence of
an extended neutral hydrogen (H) exosphere (Chaffin et al., 2015; Chaufray et al., 2008; Nagy et al., 1990) is
capable of indirectly creating the necessary conditions for wave-particle interaction processes to take place
at these locations. Indeed, the interaction between the Venusian and Martian atmospheres and the SW starts
several planetary radii away from each planet (upstream from each BS) where exospheric H atoms are ionized
and picked up by the SW (e.g., Yamauchi et al., 2015). Because of different ionization processes affecting both
hydrogen exospheres and the relative velocity between the H atoms and the SW, the proton velocity distri-
bution function at these altitudes (seen from the SW reference frame) is composed, once again, by a core of
SW particles and a nonthermal population (less dense and more energetic) associated with the presence of
newborn planetary ions. Given the unstable character of this type of velocity distribution function (Brinca,
1991; Cowee et al., 2012; Gary, 1991, 1993; Mazelle & Neubauer, 1993; Sauer & Dubinin, 2003; Sauer et al., 2001;
Tsurutani, 1991; Tsurutani et al., 1989; Wu & Davidson, 1972; Wu & Hartle, 1974), this system is also capable
of giving rise to different ULF quasi-monochromatic electromagnetic plasma waves in these regions. Particu-
larly, waves characterized by a frequency very close to the local proton cyclotron frequency (in the spacecraft
frame) have been detected upstream from the Martian and Venusian bow shocks and studied through mag-
netic field measurements obtained by several spacecraft (Bertucci et al., 2013; Brain et al., 2002; Connerney,
Espley, DiBraccio, et al., 2015; Delva et al., 2009; Delva, Zhang, Volwerk, Magnes, et al., 2008; Delva, Zhang,
Volwerk, Vörös, et al., 2008; Delva, Mazelle, Bertucci, et al., 2011; Delva, Mazelle, & Bertucci, 2011; Mazelle et al.,
2004; Romanelli et al., 2013, 2016; Ruhunusiri et al., 2015, 2016; Russell et al., 1990; Wei & Russell, 2006; Wei
et al., 2011, 2014). These waves are nearly circularly polarized and left handed, in the spacecraft or planetary
frame. Theoretical studies on these observed waves also suggest that in most cases, they are right-handed
polarized in the plasma rest frame and can be excited through the ion/ion RH instability (e.g., Delva, Mazelle,
& Bertucci, 2011; Gary, 1993; Gary & Madland, 1988; Lee, 1989). They are observed to propagate quasi-parallel
to the background magnetic field (propagation angles generally around 30∘ or smaller), can have very large
amplitude (|𝛿B∕B| ≲ 0.5), and can be present in association with particle trapping in velocity space. Given
that the frequency of these waves is systematically observed close to the local proton cyclotron frequency,
many studies refer to them as proton cyclotron waves. However, hereafter, we make reference to them as
waves with frequencies near the local proton cyclotron frequency in the spacecraft frame (WPCF), to prevent
confusion with the left-handed Alfvén Ion Cyclotron mode (intrinsically left handed in the plasma rest frame).
Complementary theoretical studies on wave-particle interaction can be found in Gendrin (1974), Hamza et al.
(2006), Matsumoto (1985), and Le Quéau and Roux (1987).

Figure 1 displays a basic representation of related processes that could be taking place around the induced
magnetosphere of a planet with an extended exosphere. As shown, ring beam or field-aligned beam resonant
plasma instabilities arising in the region upstream from the planetary bow shock or in the planetary fore-
shock can give rise to linear electromagnetic plasma waves. Based on their wave frequency and wave vector
(source dependent, see section 2 of this paper), the subsequent large-amplitude nonlinear waves are capable



Figure 1. Schematic representation of resonant plasma instabilities taking
place and defining the wave properties during the linear regime and
subsequent particle trapping by a large-amplitude nonlinear wave occurring
downstream from the wave generation region. Such plasma instabilities
arise as a result of the interaction between SW protons and newborn
or backstreaming solar wind protons (whose initial velocities are
represented with red arrows).

of trapping charged particles located downstream from both wave gener-
ation regions. With this in mind, the aim of the present work is to improve
our current understanding of the wave-particle coupling arising in these
planetary plasma environments. Particularly, one objective is to provide
theoretical predictions to be tested with in situ plasma and magnetic
field observations in locations where newborn planetary and backstream-
ing ions interact with large-amplitude waves being convected by the
SW under stable conditions. For this purpose, we determine the trajec-
tory of charged particles interacting with nonlinear parallel propagating
right-handed circularly polarized waves for arbitrary initial conditions
(resonant or nonresonant) and for different wave amplitudes. By consid-
ering the superposition of two circularly polarized waves with the same
phase velocity, we also study the effects that wave ellipticity introduces on
the charged particle’s dynamics.

In this study we make use of a test particle approach. Given that the new-
born planetary and backstreaming ion densities are much lower than that
of the SW protons, the ion beam or ring beam components are strongly
modified by the presence of large-amplitude waves, while small effects on
the ion core take place. Under these conditions, the test particle approach
is justified.

The present work is structured as follows. In section 2 we briefly point
out the relationship between the wave properties and the suprather-
mal proton source velocity and gyrofrequency. In section 3, we analyze
the dynamics of a charged particle forced by a large-amplitude parallel
propagating right-handed circularly polarized electromagnetic wave. In
particular, we display the particle’s equations of motion, we derive the
formal solution in velocity space, and we determine the number and
type of fixed points in velocity space and their dependence on the wave

properties. In section 4 we analyze in detail case studies expected in the upstream region and foreshock of
Mars and Venus. Wave ellipticity effects on the particle’s dynamics are studied in section 5. A discussion on
the results is provided in section 6. Finally, we present our conclusions in section 7.

2. Linear Theory: The Initial Resonance Condition

In several cases, the fastest growing plasma instability that arises as a result of FABs or ring beam distribu-
tions in the upstream region of the Martian and Venusian bow shocks and at several planetary foreshocks is
the ion/ion RH resonant. This instability is capable of giving rise to RH electromagnetic plasma waves (in the
SW frame) for a wide range of cone angles (e.g., Brinca & Tsurutani, 1989; Gary, 1991, 1993; Gary & Madland,
1988). In the SW reference frame, the suprathermal nonrelativistic ions (planetary newborn or backstreaming
protons) will be in resonance with a wave of frequency w and wave vector k if

w − k ⋅ V ± nΩ0 = 0 n = 1, 2,… (1)

where w, k, V, and Ω0 are the wave frequency, the wave vector, the mean velocity of the suprathermal proton
population, and the local proton angular gyrofrequency, respectively. Thus, when resonance between a linear
RH wave and a proton population occurs mainly for the fundamental mode (n = 1) (Brinca, 1991), the wave
frequency in the mean suprathermal proton population’s guiding center rest frame is Doppler shifted to the
local proton gyrofrequency.

Hereafter, we focus in waves propagating parallel to the background magnetic field. In these cases
equation (1) implies that because of the resonant character of the plasma instability, the wave frequency and
parallel wavelength of the growing wave (linear phase) are determined by the suprathermal proton (source
of waves) velocity distribution. Moreover, in the cases where w ≪ Ω0 for the maximum growth rate of the RH
mode (linear regime, see, e.g., Gary, 1993), the parallel wave vector k∥ is defined by the mean velocity paral-
lel to B0 of this velocity distribution function, seen from the plasma (SW) rest frame: k∥ ≈ Ω0∕V∥. Particularly,
this also shows that a necessary condition for linear RH waves to be in resonance with planetary newborn



(or backstreaming) ions is that they are costreaming, and therefore, they propagate upstream in the SW rest
frame (Brinca, 1991).

3. Dynamics of a Charged Particle Forced by a Large-Amplitude Parallel
Propagating Electromagnetic Wave
3.1. Equations of Motion
We study the dynamics of a test particle with charge q (q> 0) and mass m subject to a RH circularly polarized
electromagnetic wave with frequency w (w > 0) and wave vector k (k > 0) in the SW rest frame (S). We consider
the case of a wave propagating parallel to the background magnetic field B0. We select a coordinate system
with the z axis pointing along the direction of propagation of the wave k, that is, k = kẑ. The RH wave is
denoted as follows:

𝛿B = 𝛿B(sin(𝜎(kz − wt)); cos(𝜎(kz − wt)); 0) (2)

𝛿E = 𝛿E(cos(𝜎(kz − wt)); −sin(𝜎(kz − wt)); 0) (3)

where 𝜎 = ±1 for B0 = 𝜎B0ẑ, respectively, 𝛿E = 𝛿B v𝜙, and v𝜙 = w∕k is the wave phase velocity.

Following the mathematical procedure developed in Hamza et al. (2006), we express the equations of motion
in the reference frame (S′) moving at the wave phase velocity, that is z′ = z − v𝜙t. The kinetic energy of the
charged particle subject to this wave is conserved only in this reference frame since there is no associated
electric field. The particle gyrofrequency associated with the background magnetic field |B0| and the wave
amplitude 𝛿B are denoted as Ω0 = q|B0|∕m and Ω1 = q𝛿B∕m, respectively. Given that we are concerned with
nonrelativistic case studies, we approximate Ω′

0 = Ω0 and Ω′
1 = Ω1. Newton’s equations in S′ are therefore

u̇x = Ω0𝜎uy − Ω1uzcos(𝜎kz′) (4)

u̇y = −Ω0𝜎ux + Ω1uzsin(𝜎kz′) (5)

u̇z = Ω1[uxcos(𝜎kz′) − uysin(𝜎kz′)] (6)

where ux , uy and uz are the particle velocity components in the S′ frame and

ż′ = uz (7)

Making a transformation to a coordinate system that takes into account the background magnetic field |B0|,
we introduce (seen from S′):

u∥ = u ⋅ b̂0 = 𝜎uz (8)

u⟂ = u − u∥b̂0 (9)

k∥ = k ⋅ b̂0 = 𝜎k (10)

with u =
√

u2
⟂ + u2

∥, and the pitch angle𝛼 such that tan(𝛼) = u⟂∕u∥. We also normalize the variables as follows:

U = uk∕Ω0, 𝛾 = w∕Ω0, 𝛿 = Ω1∕Ω0, 𝜏 = Ω0t. Using these definitions, the equations describing the dynamics of
a charged particle interacting with a RH wave propagating parallel or antiparallel to the background magnetic
field direction are

dU
d𝜏

= 0 (11)

d𝛼
d𝜏

= −𝛿𝜎cos(k∥z′ + 𝜎Φ) (12)

dΨ
d𝜏

= k
Ω0

uz +
dΦ
d𝜏

= U𝜎cos(𝛼) − 1 + 𝛿

tan(𝛼)
sin(k∥z′ + 𝜎Φ) (13)

where the polar angle in the velocity ux-uy plane Φ is defined as tan(Φ) = 𝜎uy∕ux , and Ψ = kz′ + Φ.
Figure 2 displays a scheme of the circularly polarized electromagnetic wave and the wave and particle angu-
lar variables in the plane perpendicular to the background magnetic field. It is worth noticing that the phase
of the magnetic field wave, measured with the same sense and origin than that for Φ is ΦB = −kz′ + 90∘ for
𝜎 = 1 and ΦB = −kz′ + 270∘ for 𝜎 = −1. Therefore, Ψ = Φ − ΦB + 90∘, and Ψ = Φ − ΦB + 270∘, for 𝜎 = 1,



Figure 2. Circularly polarized electromagnetic plasma parallel propagating wave. (left) Three-dimensional
representation where blue and green curves represent 𝜹B and 𝜹E, respectively. (right) Projection of u⟂ in a plane
parallel to Z = 0, together with the local electromagnetic field and the definition of the polar angles and Ψ.

and 𝜎 = −1, respectively. That is, Ψ basically measures the phase shift between the magnetic field wave and
the component of the charge particle’s velocity vector perpendicular to B0.

Equation (12) shows that a necessary condition to have a fixed point in phase space is (k∥z′ + 𝜎Φ) = 90∘ or
270∘, so that d𝛼

d𝜏
= 0. When this is the case, dΦ

d𝜏
= 0 is satisfied only if tan(𝛼) = ±𝛿. To fulfill the first condition,

it is therefore necessary that uz = 0. As a result, if 𝛿 ≠ 0, the only fixed point in phase space is U = 0. Inter-
estingly, there are nontrivial fixed points in velocity space around which the point representing a test particle
state (in this space) can orbit. Hereafter, we simplify the wording of this sentence by referring to test particle
orbits localized around a fix point in velocity space. Based on equations (11)–(13), it is possible to derive the
following two constants of the particle motion:

U(𝜏) = U(𝜏 = 0) (14)

g(U(𝜏), 𝛼(𝜏),Ψ(𝜏)) = g(U(𝜏 = 0), 𝛼(𝜏 = 0),Ψ(𝜏 = 0)) (15)

with

g(U(𝜏), 𝛼(𝜏),Ψ(𝜏)) = (𝜎 Ucos(𝛼) − 1)2 − 2𝛿 Usin(𝛼)sin(Ψ) (16)

where g is the first integral associated with the motion of the charged particle under the RH wave forcing.
Indeed, it can be shown that d𝜈

d𝜏
= − 𝜕g

𝜕Ψ
, and dΨ

d𝜏
= 𝜕g

𝜕𝜈
, with 𝜈 = 2U𝜎cos(𝛼). Notice that under the resonance

condition shown in equation (1), U = uk∕Ω0 = uk
u∥k∥

= u𝜎
u∥

= 𝜎∕cos(𝛼), where if 𝜎 = 1, then 0 < 𝛼 < 90∘ and if

𝜎 = −1, then 90∘ < 𝛼 < 180∘. In other words, once the velocity of the charged particle parallel to B0 is fixed
(in order to guarantee wave-particle resonance), U and 𝛼 are not independent. Thus, 𝜎Ucos(𝛼) − 1 = 0 for
all 𝛼 and for all 𝜏 as long as the linear resonance condition is fulfilled. If the particle velocity is strictly aligned
(in the wave frame) with B0, 𝛼 = 0 and U = 1. This expression diverges when 𝛼 = 90∘, reflecting the fact that
such a particle cannot resonate with a right-handed wave. Since we are not imposing any additional condition
on the parallel velocity, these particles could be newborn planetary ions as well as ions reflected at a planetary
bock shock.

3.2. Wave-Particle Interaction: Fixed Points in Velocity Space
Even though one can compute the position (in velocity space) for each charged particle under the influence
of a nonlinear RH wave for all time (see Appendix A), to determine the different types of motion expected for a
proton population, it is useful to compute the fixed points in velocity space for this system, for arbitrary values
of energy and wave amplitude. To study such fixed points in velocity space (independently of the location on
real space), we focus on equations (11)–(13). As can be seen from equation (12), fixed points in velocity space
must have Ψ∗ = 90∘ or Ψ∗ = 270∘. For a fixed value of 𝜎, these angular coordinates correspond to a parallel
and antiparallel orientation between u⟂ and 𝛿B. Taking into account that U is a constant of motion, the fixed
points also satisfy that 𝛼∗ fulfills:

[U𝜎cos(𝛼∗) − 1] + 𝛿𝜎

tan(𝛼∗)
(±1) = 0 (17)



that is, dΨ
d𝜏

= 0, where the ±1 factor arises because we have imposed Ψ∗ = 90∘ or Ψ∗ = 270∘. The solutions

to equation (17) are the intersections between the periodic function [U𝜎cos(𝛼∗) − 1] and − 𝛿𝜎

tan(𝛼∗)
(±1). Given

that 𝛼∗ is defined between 0∘ and 180∘ and depending on the values for U, 𝛿, and 𝜎, equation (17) has one or
three solutions for each critical value of Ψ∗.

To determine the nature of the fix points, we develop a first-order perturbation around these point(s):(
𝜂̇

𝜉̇

)
=

( 𝜕𝛼̇

𝜕𝛼

𝜕𝛼̇

𝜕Ψ
𝜕Ψ̇
𝜕𝛼

𝜕Ψ̇
𝜕Ψ

)(
𝜂

𝜉

)
=

(
0 𝛿𝜎(±1)

−U𝜎 sin(𝛼∗) − 𝛿𝜎

sin2(𝛼∗)
(±1) 0

)(
𝜂

𝜉

)

where 𝜂 = 𝛼 − 𝛼∗ and 𝜉 = Ψ − Ψ∗, and the matrix is evaluated at the corresponding fixed point. Given that
the differential matrix has null trace, all fixed points are neutrally stable centers or saddle points, depending
on the sign of Δ = 𝛿[(±1)U sin(𝛼∗) + 𝛿

sin2(𝛼∗)
]. If Δ> 0, the fixed point is a center. If Δ< 0, the fixed point

is a saddle.

Based on these calculations, the possible types of fixed points are the following.

1. If we consider fixed points with Ψ∗ = 90∘, that is, we consider cases with the (+1) factor, Δ> 0 for every
associated 𝛼∗. That is, fixed points with Ψ∗ = 90∘ are always centers.

2. If we consider fixed points with Ψ∗= 270∘, that is, we consider cases with the (−1) factor, Δ> 0 if the asso-
ciated 𝛼∗ fulfills that sin(𝛼∗) < (𝛿∕U)1∕3. In other words, the fixed points with Ψ∗ = 270∘ are centers when
this condition is satisfied. In the opposite case, the fixed point is a saddle.

It is worth noticing that if 𝛼∗ constitutes a solution to equation (17) for a fixed value of 𝜎 and Ψ∗ (either 90∘

or 270∘), then −𝜎 and 180∘ − 𝛼∗ is also a solution (with the same stability) for the same value of Ψ∗. Under
the latter configuration the direction of B0 is reversed, but the pitch angle of the particle does not physically
changed from the previous case (this angle is measured with respect to B0). As explained before, the change
in the sign of 𝜎 implies a phase shift in the definition of Ψ so that if in the first case, u⟂ and 𝛿B are in phase, in
the second one they are in antiphase, and vice versa. In conclusion, if the coordinates of a vector u constitute
a stable (unstable) fixed point in velocity space for a given (local) B0 + 𝛿B, then the coordinates of u also
constitute a stable (unstable) solution for -(B0 + 𝛿B).

These results show that each particle interacting with the nonlinear wave under consideration will perform
one of the following three possible motions in velocity space, depending on the initial conditions, the wave
amplitude, and the energy of the particle: (a) The particle will be orbiting around a center, (b) The particle will
be untrapped, and (c) the particle will have a fixed pitch angle and phase shift with respect to 𝛿B, when the
initial coordinates of the particle (𝛼,Ψ) coincide with a center.

Figure 3 displays an example of the intersections between the function [U𝜎cos(𝛼∗)−1] (in blue) and the func-
tions − 𝛿𝜎

tan(𝛼∗)
(±1) (in green for Ψ∗ = 90∘ and in red for Ψ∗ = 270∘). Both panels display the fixed points in

velocity space associated with wave-particle interaction for parallel propagating waves (𝜎 = 1) with a normal-
ized wave amplitude 𝛿 = 0.25. Figure 3 (left and right) corresponds to a wave that can be originally excited by
a field-aligned beam (U0 = 1) and a ring beam with a mean pitch angle of 60∘ (U0 = 1∕cos(60∘)), respectively.
Indeed, given that U(𝜏) = U(𝜏 = 0) = U0, this variable allows us to determine the temporal evolution of par-
ticles (interacting with the large-amplitude wave) with the same normalized energy (in the wave frame) than
the ones that are capable of giving raise to the wave (linear limit). Since U0 = 1∕|cos(𝛼0)| (linear wave-particle
resonance), the lower value of U associated with resonant particles giving rise to RH waves is U0 = 1, that is,
the one associated with FABs. As shown in Figure 3, the number (and type) of fixed points for the wave-particle
interaction system varies depending on the value of U. In particular, Figure 3 (left) displays two intersec-
tion points, corresponding to two centers in velocity space whose coordinates are (𝛼 ∼ 43∘, Ψ = 90∘) and
(𝛼 ∼ 173∘, Ψ = 270∘). When the value of U0 is increased (Figure 3, right), there are four intersection points,
whose coordinates in velocity space are (𝛼 ∼ 64∘, Ψ = 90∘), (𝛼 ∼ 15∘, Ψ = 270∘), (𝛼 ∼ 54∘, Ψ = 270∘), and
(𝛼 ∼ 175∘, Ψ = 270∘). Among the latter three fixed points, the one with the intermediate value of 𝛼∗ is the
saddle. Similar changes in the number and type of fixed points of this interacting system take place when con-
sidering cases with the same value of U, but different values of 𝛿. In the limit of 𝛿 taking sufficiently small values,
the fixed points 𝛼∗ tend toward the values corresponding to the linear resonance condition, 𝛼∗ ∼ 𝛿∕(U − 1)
and 𝛼∗ ∼ 180∘[1 − 𝛿∕𝜋(U + 1)] (see equation (17)).



Figure 3. Pitch angle coordinate of fixed points in velocity space for the wave-particle interaction system for 𝜎 = 1 and
𝛿 = 0.25. (left) U0 = 1 and (right) U0 = 1∕cos(60∘).

4. Particle’s Trajectory in the 𝜶-𝚿 Velocity Plane: Main Features and Range
of Validity
4.1. Cases Study: Backstreaming Protons in Planetary Foreshocks—Newborn Planetary Protons
in the Upstream Region of Mars and Venus
Figure 4 displays the variation of the 𝛼-Ψ velocity coordinates of charged particles (in black) interacting with a
large-amplitude RH circularly polarized monochromatic electromagnetic wave for different values of U0 and 𝛿.
Figures 4a and 4b, 4c and 4d, and 4e and 4f are associated with U0 = 1, U0 = 1∕cos(36∘), and U0 = 1∕cos(57∘),
respectively. Fixed values of 𝛿 = 0.25 and 𝛿 = 0.50 are used for Figures 4a, 4c, and 4e, and 4b, 4d, and 4f,
respectively. All panels correspond to parallel propagating waves, that is, 𝜎 = 1 and also display the separatrix
(in red) between different types of trajectories. The variability of g(U0, 𝛼,Ψ) in regions with close trajectories
is significantly smaller compared to that in regions with untrapped trajectories. Thus, to make Figure 4 more
understandable, we choose to show representative trajectories for each region instead of displaying uniformly
separated contour levels of g(U0, 𝛼,Ψ) (which would demand a large amount of curves in the untrapped
region without providing new information). The blue crosses identify the fixed points (stable or unstable)
in this velocity plane. Given that their horizontal coordinate is Ψ∗ = 90∘ or Ψ∗ = 270∘, we only show the
corresponding value of the pitch angle.

A value of U0 = 1 implies that the large-amplitude interacting waves related to Figures 4a and 4b could have
been previously excited by a field-aligned beam interacting with the SW protons through the ion-ion RH res-
onant instability. Thus, these panels are associated with particle dynamics expected to take place in planetary
foreshocks (downstream from the wave generation region). As seen, there are two stable fixed points and two
separatrix for both 𝛿 = 0.25 and 𝛿 = 0.50. In particular for Figure 4a, 𝛼∗ = 42.97∘ when u⟂ is in phase with 𝛿B
(k is parallel to B0) and 𝛼∗ = 172.8∘ when u⟂ and 𝛿B are in antiphase. Therefore, this shows that waves that
could have arose (linear limit) by field-aligned beams will tend to trap particles with the same energy (in the
wave rest frame) around these two pitch angle centroids. Given the test particle approach, it is not possible
to determine which of the two will be more populated with charged particles. However, by considering the
trapping area around each of them, one might argue that the pitch angle centroid with 𝛼∗ ∼ 43∘ is favored in
this scenario. When increasing the value of 𝛿, the pitch angle centroids are shifted by ∼9∘ and 7∘, respectively.
In both cases the angle between the direction of the velocity of the particle and the background magnetic
field as well as the trapping areas increases.

In analogy with Figures 4a and 4b, the value of U0 for the middle and lower ones implies that the associated
large-amplitude waves could have been previously excited by a ring beam newborn planetary proton dis-
tribution interacting with the SW protons through the ion-ion RH resonant instability. Given the particular
values of U0, Figures 4c and 4d, and 4e and 4f are related with particle dynamics expected to take place in the
upstream region of Venus and Mars, respectively. Indeed, the value of 𝛼0 is basically the interplanetary mag-
netic field (IMF) cone angle (Parker spiral) around these planetary environments. One must interpret these
plots with caution as the initial pitch angle of the newborn planetary ions that give rise to the wave (linear
limit) in the wave rest frame differs from that of in the SW frame. Very often, this difference is not large since



Figure 4. (a–f ) Variation of the 𝛼-Ψ velocity coordinates of a charged particle interacting with a nonlinear RH circularly polarized monochromatic
electromagnetic wave, for different values of U0 and 𝛿 (in black). The separatrix and fixed points are displayed in red and blue, respectively. Pitch angle of the
centroids are also shown in blue.



Figure 5. Pitch angle of fixed points as function of 𝛿 and color coded according to 𝛼0. (left) Ψ∗ = 90∘ and (right)
Ψ∗ = 270∘ .

it basically depends upon the wave phase speed, which is much smaller that the SW speed (around 1 order
of magnitude smaller). In the next section we perform a parametric study to determine all the velocity fixed
points with 𝛼0 varying from 0 up to 80∘, allowing to overcome this limitation.

As can be seen in Figures 4c and 4d (U0 = 1∕cos(36∘)), the main properties are similar to the cases previously
analyzed. There are two stable fixed points and two separatrix for the explored values of 𝛿. Moreover, the
variability of the pitch angles centroids and trapping area with the normalized amplitude resembles Figure 4a
and 4b. When the wave amplitude is relatively small, the pitch angle centroid with largest trapping area has
𝛼∗ = 50.18∘. For 𝛿 = 0.50, this centroid is located at 𝛼∗ = 56.93∘. Figure 4e (U0 = 1∕cos(57∘)) shows a case in
which four centroids are present: three of them are stable (𝛼∗ = 61.85∘, 𝛼∗ = 18.68∘, and 𝛼∗ = 174.90∘), while
the one at 𝛼∗ = 48.22∘ is unstable. The corresponding three separatrix can also be seen. When increasing
the value of 𝛿 (Figure 4f ), we appreciate that two of these fixed points (with different stability) are no longer
present. In other words, when the wave has a sufficiently large amplitude, we recover back a scenario closer
to Figures 4a–4d. By comparing Figures 4e and 4f, we notice that the wave amplitude determines the pitch
angle coordinate of the fixed points and the number and area of the close trapping regions.

4.2. The Trapping Centroids: Dependence on the Parameters
Figure 5 displays the numerically determined roots to equation (17) as a function of 𝛿 and color coded by
𝛼0 = acos(1∕U0). Figure 5 (left and right) correspond to fixed points associated with Ψ∗ = 90∘ and Ψ∗ = 270∘,
respectively. Without losing generality, this figure has been performed with 𝜎 = 1. As explained in section 3,
the angle between u and k does not vary when considering 𝜎 = −1. They only difference is that the phase
between u⟂ and 𝛿B is shifted by 180∘.

As can be seen in Figure 5 (left), the value of these stable pitch angle centroids (with Φ − ΦB = 0) increases
with both 𝛿 and 𝛼0. For each set of fixed points with the same value of U0, the minimum 𝛼∗ is the one that
fulfills the corresponding linear resonance condition (i.e., takes place for 𝛿 = 0). Also notice that the range of
values that 𝛼∗ takes (with different 𝛿) decreases with increasing values of 𝛼0. In other words, nonlinear waves
originally excited by ring beam distributions with large mean pitch angles tend to trap particles around the
same value. In contrast with this, large-amplitude waves originally excited by field-aligned beams are capable



of trapping particles around much larger pitch angles. For example, while 𝛼∗ = 52.23∘ for 𝛼0 = 0∘ and 𝛿 = 0.5,
𝛼∗ = 80.82∘ for 𝛼0 = 80∘ and the same normalized wave amplitude. As can also be seen, the rate of change
of 𝛼∗ with 𝛿 decreases with increasing values of 𝛿 (for a fix value of U0). In addition, the rate of change of 𝛼∗

with 𝛼0 increases with increasing values of 𝛼0 (for a fix value of 𝛿 ≠ 0). As a result, the range of pitch angle
centroids consistent with a fixed value of 𝛿 is reduced as the normalized wave amplitude increases. All curves
shown in Figure 5 (left) tend toward 90∘ for waves with sufficiently large amplitudes.

Figure 5 (right) displays the fix points with Φ−ΦB = 180∘. As expected, there are one or three possible values
of 𝛼∗ consistent with a fix value for 𝛿 and 𝛼0. When three roots are present, the one with the intermediate
value of 𝛼∗ is the unstable fixed point. The remaining two are centroids. Given a value of 𝛼0, there is only one
root (center) for a wave amplitude sufficiently large. For example, let us focus in the 𝛼0 = 60∘ curve. For a
fixed 𝛿 smaller than 0.45 there are three fixed points. When reaching 𝛿 ∼ 0.45, two fixed points of opposite
stability are merged remaining only the stable fixed point whose𝛼∗ ∼ 171∘. The black curve displays the value
of 𝛼 at which the merging of two fixed points takes place, as a function of 𝛿. U0 must take a particular value
that depends upon the value of 𝛿 to see such behavior. When considering the roots in the upper branch
associated with a fix 𝛼0, the value of 𝛼∗ decreases with increasing 𝛿. In the other limit, when 𝛿 = 0, the roots are
0∘, 180∘ and the corresponding value of 𝛼0 (linear resonance). Interestingly and in contrast to Figure 5 (left),
large-amplitude waves originally excited by a ring beam distribution (with large 𝛼0) can, in principle, trap
particles around pitch angles significantly different if Ψ∗ = 270∘. On the other hand, both panels show that
particle trapping is more difficult (or does not occur if Ψ= 90∘) to take place when 𝛼 > 90∘ for the RH mode
wave discussed here. Such difference in the selected pitch angle centroids is the reflect of the impossibility
for a linear RH wave to resonate with charged ions moving in the opposite direction to k (when k ∥ B0).
Notice that the number of centroids with pitch angles in this range increases as 𝛿 increases. We recall that
intrinsically left-handed resonant waves can be excited by ring beam distributions with large values of 𝛼0

(Brinca & Tsurutani, 1989) and may trap charged particles with a strong ring component. This case is outside
the scope of the present study.

Finally, it is worth stressing that the fixed points in velocity space satisfy:

dΦ
d𝜏

= −1 + 𝛿

tan(𝛼∗)
(±1) (18)

This equation shows that the angular frequency of the particle that is interacting with a finite amplitude
wave is equal to the local ion gyrofrequency plus or minus a frequency dependent on the normalized
wave amplitude. This particle gryofrequency together with the pitch angle centroid constitutes two theo-
retical predictions (in the wave frame) to be determined when analyzing plasma measurements displaying
wave-particle interaction signatures.

5. Wave Ellipticity Effects

As mentioned in section 1, nearly circularly polarized, large-amplitude waves have been observed in the space
plasma environments of interest. However, departures from ellipticity equal to 1 have often been detected
in such measurements. Motivated by this, we study the effects that wave ellipticity has on the evolution of
charged particles in velocity space. We focus this analysis on charged particles with initial pitch angle and
gyrophase equal to that of fixed points found for circularly polarized waves in the Martian and Venusian
environments.

We represent an elliptically polarized parallel propagating wave as the superposition of two circularly polar-
ized waves with the same phase velocity:

𝛿B = 𝛿B1 + 𝛿B2 (19)

where

𝛿B1 = |𝛿B1|[sin(𝜎(k1 z − w1 t)); cos(𝜎(k1 z − w1 t)); 0] (20)

𝛿B2 = |𝛿B2|[sin(𝜎(k2 z − w2 t)); cos(𝜎(k2 z − w2 t)); 0] (21)

and
w1

k1
=

w2

k2
= v𝜙; k2 = −k1;w2 = −w1 (22)



Given that both waves have the same phase speed, we solve the problem in the reference frame where
the electric field is 0. Once again, the energy of the particle is conserved, and the remaining equations for
Ψ1 = k1z′ + Φ, Ψ2 = k2z′ + Φ and the particle’s pitch angle are

d𝛼
d𝜏

= −𝛿1𝜎[cos(𝜎Ψ1) + r1,2 cos(𝜎Ψ2)] (23)

dΨ1

d𝜏
=

k1

Ω0
uz +

dΦ
d𝜏

= U1𝜎cos(𝛼) − 1 +
𝛿1

tan(𝛼)
[sin(𝜎Ψ1) + r1,2 sin(𝜎Ψ2)] (24)

dΨ2

d𝜏
=

k2

Ω0
uz +

dΦ
d𝜏

= −U1𝜎cos(𝛼) − 1 +
𝛿1

tan(𝛼)
[sin(𝜎Ψ1) + r1,2 sin(𝜎Ψ2)] (25)

where U1 = k1u∕Ω0, and r1,2 = |𝛿B2|∕|𝛿B1|.
Notice that Ψ̇1 and Ψ̇2 cannot be simultaneously null. If this were possible, then Ψ̇2 − Ψ̇1 = 0, the latter being
only fulfilled if cos(𝛼) = 0. Such condition implies, however, Ψ̇1 = Ψ̇2 = −1, showing that both quanti-
ties cannot be constant at the same time. Thus, even Ψ̇1 and 𝛼̇ can be both 0 at time 𝜏 = 𝜏0 (by means
of a combination of Ψ1, Ψ2 and 𝛼 values), Ψ̇2 cannot be null at the same time. Under these conditions,
Ψ2(𝜏 = 𝜏0 + 𝛿𝜏) ≠ Ψ2(𝜏 = 𝜏0), Ψ1(𝜏 = 𝜏0 + 𝛿𝜏) = Ψ1(𝜏 = 𝜏0) and 𝛼(𝜏 = 𝜏0 + 𝛿𝜏) = 𝛼(𝜏 = 𝜏0). Therefore, Ψ̇1

and 𝛼̇ are not longer equal to zero at time 𝜏 = 𝜏0 +𝛿𝜏 . This shows that there is not a centroid point in the Ψ1-𝛼
plane: if a particle reaches a location where the derivatives of Ψ1 and 𝛼 are 0, a time 𝛿𝜏 later, these derivatives
will not be zero as a result of changes in the Ψ2 variable. This is an interesting difference when compared to
the dynamics of a particle under a strictly circularly polarized wave.

By comparing the rates of change of the three variables, the following additional points can be drawn:

1. 𝛼̇ takes values on the order of 𝛿1, the normalized wave amplitude.
2. To have particle motion restricted to a closed region in the Ψ1-𝛼 plane, it is necessary that Ψ̇1 be O (𝛿1). For

particles with Ψ1 close to 90∘ or 270∘ (close to be in phase or antiphase with 𝛿B1), [U1𝜎cos(𝛼) − 1] must be
O (𝛿1) and tan−1(𝛼) must be O(1).

3. In general, Ψ̇1 and Ψ̇2 take extremely large values when 𝛼 is close to 0∘ and 180∘, except for a very particular
combination of Ψ1 and Ψ2 values where [sin(𝜎Ψ1) + r1,2 sin(𝜎Ψ2)] = 0. The latter condition will be satisfied
for a small time interval since Ψ̇1 and Ψ̇2 cannot be zero at the same time.

Despite the fact that there are not fixed points in velocity space for an elliptically polarized wave, the differ-
ences between the dynamics of particle subject to a strictly circularly polarized wave and an elliptical wave
very close to being circular do not manifest abruptly. Indeed, the time interval for a particle to be displaced
from a point in which 𝛼̇ = Ψ̇1 = 0 depends on its location in velocity space as well as on the initial rate of
change of Ψ2. For example, Figure 6 displays the evolution of a charged particle in the 𝛼-Ψ1 velocity space
when interacting with an elliptical wave with r1,2 = 0.033 (in blue) and r1,2 = 0.066 (in green). These results are
derived by performing Runge-Kutta fourth-order (RK4) numerical integration in a time interval Δt = 100 T0,
with T0 being the particle gyroperiod. For each value of r1,2, we study two cases: one with initial conditions
Ψ1(0) = 90∘, Ψ2(0) = 0∘ and 𝛼(0) = 50.18∘. The second one has initial conditions Ψ1(0) = 270∘, Ψ2(0) = 0∘,
and 𝛼(0) = 173.60∘. For both cases, U1 = 1∕cos(36∘) and 𝛿1 = 0.25. Thus, the initial conditions have the same
velocity coordinates in the 𝛼-Ψ1 plane than the centroids identified in Figure 4c. For easy comparison, we have
also added the dynamical evolution of particles that interact with a strictly circularly (r1,2 = 0) polarized wave
(black dashed lines), keeping the remaining parameters the same. Figure 6 also displays the corresponding
separatrix (red dashed lines) already shown in Figure 4. As can be seen, if the ellipticity of the wave is slightly
increased (r1,2 = 0.033), the 𝛼-Ψ1 coordinates of each charge particle under study are not fixed, as is the case
for r1,2 = 0. Instead, they vary with time and sample a region (in blue) in the 𝛼-Ψ1 plane. Interestingly, the size
of this region is significantly larger when the particle’s initial condition is that of the centroid with larger pitch
angle (for the circular polarization case). When the wave ellipticity is r1,2 = 0.066, the range of 𝛼-Ψ1 coordi-
nates (in green) taken by each charge particle is increased even further. This figure also shows that particles
with Ψ1(0) = 270∘, Ψ2(0) = 0∘, and 𝛼(0) = 173.60∘ are untrapped when interacting with such elliptical wave.
In contrast with this, particles with Ψ1(0) = 90∘, Ψ2(0) = 0∘ and 𝛼(0) = 50.18∘ still sample a narrow region
centered on Ψ1 = 90∘ with ΔΨ1 = Ψmax

1 − Ψmin
1 ∼ 0.1∘ and with Δ𝛼 = 𝛼max − 𝛼min ∼ 1.25∘.



Figure 6. 𝛼 as a function of Ψ1 for a charged particle interacting with an elliptically polarized wave: r1,2 = 0.033 (blue),
r1,2 = 0.066 (green). Dashed black lines correspond to the curves displayed in Figure 4c (r1,2 = 0, circular wave
polarization).

Based on these considerations, Figure 7 displays Δ𝛼 and ΔΨ1 as a function of r1,2 (top and bottom panels,
respectively) for charged particles whose initial conditions are the velocity coordinates of several fixed points
found for the strictly circularly polarized case (with the corresponding values of U and 𝛿). Indeed, the color
of each curve is associated with one of the centroids identified in Figure 4. Same as with Figure 6, we derive
these results by performing RK4 numerical integration in a time interval Δt = 100 T0. The parameter r1,2 is
varied between 0 and 0.33. We explore this range of values to be consistent with the range of ellipticity values
found for WPCF in the upstream region of Mars (see, e.g., Table 1 in Romanelli et al., 2013), and also considered
when analyzing WPCF in the upstream region of Venus (Delva et al., 2015). As can be seen in the top panel,Δ𝛼
increases as r1,2 increases for all curves. The four (three) curves with relatively small (large) slopes are associated
with particles whose initial condition are one of the centroids with large trapping area (see Figure 4) and
𝛿1 = 0.25 (𝛿1 = 0.50). Thus, the wave ellipticity and the wave amplitude determine the magnitude of the
departure from what would be a centroid in the strictly circularly polarized wave case. The same trend is
observed in the bottom panel:ΔΨ1 increases as r1,2 increases for all curves. Also, largerΔΨ1 is observed when
the initial condition corresponds to one of the centroids (with large trapping area) found for a relatively large
normalized wave amplitude. For all cases shown in this figure, the variability of the (𝛼,Ψ1) velocity coordinates
of a charged particle interacting with an elliptically polarized wave remains bounded: the maximumΔ𝛼 ∼ 32∘

and the maximum ΔΨ1 ∼ 48∘. Interestingly, the charged particle remains inside the separatrix expected for
the strictly circularly polarized case with the same values of U and 𝛿.

In analogy with Figure 7, Figure 8 displays the Δ𝛼 and ΔΨ1 as a function of r1,2 for charged particles whose
initial conditions (color of each curve) are the velocity coordinates of some of the remaining centroids (large
pitch angles) found for the strictly circularly polarized case (in Figure 4). Figure 8 only displays the cases where
the evolution of a charged particle in the 𝛼-Ψ1 plane is bounded (ΔΨ1 < 180∘). Similarly to Figure 7, we find
that Δ𝛼 and ΔΨ1 increase as r1,2 increases. Also, in agreement with what is shown in Figure 6, we find that the
temporal evolution of such charged particles in the 𝛼-Ψ1 plane is significantly different when compared to
the circularly polarized case. More specifically, particles become untrapped for very low values of r1,2. Indeed,
particles are untrapped for r1,2 larger than ∼0.133 for any of the cases under study. Moreover, particles are
untrapped for r1,2 larger than ∼0.033 when considering the centroids with large pitch angle in Figures 4a
and 4b as initial condition. In contrast with Figure 7, significantly larger values of ΔΨ1 are found compared



Figure 7. Ellipticity effects: Δ𝛼 and ΔΨ1 as a function of r1,2 for charged particles interacting with an elliptical wave, for
different initial conditions (color coded).

Figure 8. Ellipticity effects: Δ𝛼 and ΔΨ1 as a function of r1,2 for charged particles interacting with an elliptical wave, for
different initial conditions (color coded).



to Δ𝛼 for a fixed value of r1,2. For example ΔΨ1 ∼ 147∘ and Δ𝛼 ∼ 20∘ when r1,2 = 0.1333 and 𝛼∗ = 169.9∘.
This feature resembles the shape of the trapping area associated with the centroids with large pitch angle
found for the strictly circularly polarized wave case.

6. Discussion

The first main goal of this work is the study of the interaction between a large-amplitude parallel propagating
RH circularly polarized wave and a test charged particle from first principles, and for different initial conditions.
We have computed the fixed points in velocity space associated with this interacting system. By considering
different values for the waves properties and the background magnetic field, we find that only a few (or one)
combinations of u∥, u⟂ make the total electromagnetic force to conserve the particle’s energy, pitch angle,
and gyrophase (respect to 𝛿B) for all time t, in the wave frame. In general, each test particle is moving along
the direction of propagation of the wave for all time t, even though their velocity coordinates might coincide
with the ones of a fixed point. That is, the interacting system under study does not have a nontrivial fixed
point in the phase space. In addition, we determine the stability of each of the velocity fixed points and the
relationship between their coordinates in velocity space and the wave properties (𝜎, 𝛿, and Ψ).

Second, making use of these theoretical calculations, we provide predictions for nominal conditions in the
regions upstream from the Martian and Venusian bow shock and planetary foreshocks. As shown in Figure 4,
we find that nonlinear WPCF that could have initially arise from the implantation of newborn protons from
the Venusian and Martian exospheres in the SW (through the ion/ion RH resonant instability) can typically
trap particles around pitch angles close to 50∘ and 62∘ (with the same energy in the wave frame), respectively.
These are the centroids with largest trapping area associated with a Parker Spiral IMF at the Venus and Martian
heliocentric distances and 𝛿 = 0.25. When the normalized wave amplitude is 𝛿 = 0.50, these pitch angle
centroids are slightly shifted to ∼57∘ and ∼65∘, respectively. Since the cone angle can largely vary between
0∘ and 180∘, the theoretical model presented in this study can provide the expected value for the trapping of
newborn ions for any initial pitch angle.

It is worth noticing that the conservation of U for a test particle under the influence of a RH circularly polarized
wave (in the wave frame) does not demand that the trapped particles and the source of the ion/ion RH insta-
bility have the same energy. In this work we have focused on this case taking into account that observations of
gyrophased bunched ion velocity distribution functions at the Earth’s foreshock have been explained in terms
of wave-particle interaction processes, using this condition (Mazelle et al., 2000, 2003). Indeed, Mazelle et al.
(2003) observed a change in the type of distribution function (from FABs to gyrophase bunched) coincident
with the appearance of large-amplitude ULF waves. The highly nongyrotropic proton velocity distribution
functions had large pitch angles (𝛼 ∼ 60∘) and were inconsistent with a specular reflection mechanism
at the terrestrial bow shock (Mazelle et al., 2003). This value was attributed to trapping (in velocity space)
of particles with the same energy (in the wave frame) that the ones that originally gave rise to the wave
from the ion/ion RH instability. In the present study we also determine the pitch angle centroids values as a
function of 𝛿 and U0 (see Figure 5), and, in particular, our results are in agreement with the case studies in
Mazelle et al. (2000, 2003).

It is also important to emphasize that the test particle approach does not take into account the back reaction of
the suprathermal population on the wave. As pointed out in section 1, this formalism is justified for time inter-
vals where the wave amplitude is approximately constant and the nonlinear wave affects the suprathermal
population dynamics without being modified significantly. In the upstream regions of Venus and Mars, WPCF
have been observed to have approximately constant (and large) amplitude during time intervals on the order
of 10 min or larger (e.g., Delva et al., 2015; Mazelle et al., 2004; Romanelli et al., 2013). In addition, the employed
theoretical model considers strictly monochromatic waves. In this sense, although WPCF are observed to
have a relatively narrow frequency peak (e.g., Delva et al., 2015; Mazelle et al., 2004; Romanelli et al., 2013,
2016) when compared to several ion foreshock modes, effects due to departures from this hypothesis must
be evaluated in each particular case under study.

Finally, we have analyzed the effects that wave ellipticity has on the dynamical evolution of the charged par-
ticles. Our results show that in contrast with the circularly polarized case, there are not fixed points in velocity
space. Indeed, the velocity coordinates of a charged particle whose initial conditions are equal to that of a
fixed point (for a circularly polarized wave) vary with time. Because of this variability, these coordinates sam-
ple a region in the 𝛼-Ψ1 velocity plane that is found to increase with r1,2 and 𝛿. Interestingly, charged particles



are untrapped more easily (lower values of r1,2) if the initial velocity coordinates are that of a fixed point (for
the circular case) with a large pitch angle centroid (u∥ antiparallel to k). In this regard, this result is consistent
and provides an explanation for the observations of suptrathermal particles having pitch angle values very
close to only one of the two pitch angle centroids theoretically expected for the strictly circularly polarized
wave case (Mazelle et al., 2000, 2003).

Future theoretical studies could be focused on the expected signatures in velocity space for charged particles
interacting with nonlinear waves propagating with small angles with respect to the background magnetic
field. Indeed, as stated in section 1, observations at the terrestrial foreshock and around Mars and Venus have
shown waves with small but oblique propagation. These studies would then benefit from the approach and
results presented in Hamza et al. (2006) and in this work.

7. Conclusions

The proton velocity distribution function upstream from the Martian and Venusian bow shocks and in plan-
etary foreshocks is composed by a core of SW particles and a secondary population of newborn planetary
and/or backstreaming ions. Plasma instabilities and the subsequent wave-particle coupling constitute a stage
in the dynamical evolution of these highly unstable distribution functions toward stable ones. In other words,
wave-particle interaction is an important phenomena that takes place at these plasma environments as part
of the thermalization of the suprathermal ion population.

In this work we study the interaction between a large-amplitude monochromatic electromagnetic right-
handed plasma wave propagating parallel to the ambient magnetic field and test charged particles for differ-
ent initial conditions, wave properties, and background magnetic field. Based on these analyses, we provide
theoretical predictions for the expected pitch angle trapping centroids and particle gyrofrequencies in the
upstream region of Mars and Venus and planetary foreshocks, under nominal conditions. These calcula-
tions are particularly useful to interpret measurements currently being provided by the Mars Atmosphere
and Volatile EvolutioN (MAVEN) mission (Jakosky et al., 2015) Solar Wind Ion Analyzer (Halekas et al., 2015),
and the MAVEN Magnetometer (Connerney, Espley, Lawton, et al., 2015) during time intervals with large-
amplitude quasi-monochromatic WPCF. Given the substantial spatial coverage of the region upstream of the
Martian bow shock, MAVEN also provides an excellent opportunity to perform planetary foreshock studies
(e.g., Meziane et al., 2017). Indeed, the present study provides a mean to evaluate if observed nonthermal
proton velocity distribution functions at these locations display signatures that can be understood in terms
of nonlinear wave-particle processes. Finally, this work together with the methodology presented in Hamza
et al. (2006) can provide the basis for future theoretical analyses that take into account both the ellipticity and
the obliquity of the observed ultralow frequency waves.

Appendix A: Exact time-Dependent Solution in Velocity Space—Analytical
Approach for an Arbitrary Initial Condition

Making use of the conservation of g(𝜏) and U(𝜏) and equations (12) and (13), we obtain the second-order
differential equation for the charged particle’s pitch angle:

d2𝛼

d𝜏2
= 𝜎

[
(𝜎Ucos(𝛼) − 1)2 − g(𝜏 = 0)

2Usin(𝛼)

]
(𝜎Ucos(𝛼) − 1) +

[
(𝜎Ucos(𝛼) − 1)2 − g(𝜏 = 0)

2Usin(𝛼)

]2
1

tan(𝛼)
(A1)

Equation (A1) can be simplified making a change of variables in which X is defined as X = 𝜎Ucos(𝛼)−1. Notice
that X is equal to −(wion + Ω0)∕Ω0, that is, it measures the closeness to the wave-particle linear resonance
condition, normalized by the local ion gyrofrequency. Using once again that g(𝜏) is constant, we obtain the
following forced Duffing equation:

d2X
d𝜏2

= −X3

2
− X𝛿2

(
1 −

g(𝜏 = 0)
2𝛿2

)
− 𝛿2 (A2)

where the factor
(

1 − g(𝜏=0)
2𝛿2

)
is the result of the coupling between equations (12) and (13). Indeed, to obtain

the ordinary differential equation for 𝛼, we have derived Ψ as a function of 𝛼 making use of the conserva-
tion of g(𝜏) = g(0). For a given particle, g(𝜏 = 0) is fixed based on its initial condition (𝛼(0),Ψ(0) and U(0)).
Thus, this factor is explicitly showing that the evolution of 𝛼(𝜏) depends not only on 𝛼(0) but also on Ψ(0),



pointing out a rich dynamical behavior. Because we have derived the second-order ordinary differential
equation (equation (A2)) making use of the conservation of g, the integration is valid for any initial condition
under consideration (whether the particle is initially resonant with the wave or not) as long as g(𝜏 = 0) is
determined consistently.

Integration of equation (A2) with respect to time explicitly shows that in the wave reference frame, the
following equality holds:

1
2

(dX
d𝜏

)2

+ Vr−b(X, g(0), 𝛿) = 1
2

(dX
d𝜏

)2

(0) + Vr−b(X(0), g(0), 𝛿) ≡ Eo (A3)

where

Vr−b(X, g(0), 𝛿) = 1
2

[
X4

4
+ 𝛿2

(
(X + 1)2 − 1 −

g(0)X2

2𝛿2

)]
(A4)

and E0 is a constant of motion of the particle. Finally, from equation (A3) we obtain that

∫
X(𝜏)

X(0)

dX′

±
√

2 (Eo − Vr−b(X′, 𝛿, g(0)))
= ∫

𝜏

0
d𝜏′ (A5)

Based on equation (A5), X(𝜏) and therefore 𝛼(𝜏) and Ψ(𝜏) can in principle be derived. As can be seen, X(𝜏)
depends on X(0), Ẋ(0), g(0), and 𝛿. This dependence is once again showing that 𝛼(𝜏) depends on the initial
condition 𝛼(0) and also on Ψ(0).
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