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Abstract: Taking benefit from recent advances in both phase retrieval and estimation of refractive
indices from holographic measurements, we propose a unified framework to reconstruct them
from intensity-only measurements. Our method relies on a generic and versatile formulation
of the inverse problem and includes sparsity constraints. Its modularity enables the use of a
variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as
well as various regularizers. We present reconstructions that deploy either the beam-propagation
method or the iterative Lippmann-Schwinger model, combined with total-variation regularization.
They suggest that our proposed (intensity-only) method can reach the same performance as
reconstructions from holographic (complex) data. This is of particular interest from a practical
point of view because it allows one to simplify the acquisition setup.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (100.6950) Tomographic image processing; (100.3200) Inverse scattering; (100.3010) Image reconstruction
techniques; (100.3190) Inverse problems; (100.5070) Phase retrieval.
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1. Introduction

Inverse scattering finds a large range of applications going from microwave imaging [1, 2]
to microscopy [3]. For example, in biology, this technique referred to as optical diffraction
tomography (ODT) is a method of choice to observe transparent samples without staining [4].
Given complex measurements of the scattered field when the sample is illuminated with tilted
incident waves, it allows one to do quantitative imaging of the distribution of refractive indices
(RI) through the resolution of an inverse scattering problem [5–8] (Section 1.1.1). Because in
some applications the phase of the scattered field cannot be measured accurately, alternative
methods rely on intensity measurements only (Section 1.1.2). In microscopy, this allows to
overcome the interferometric system required to record holographic data. The price to pay,
however, is that the reconstruction problem becomes more challenging. In practice, it is usually
addressed by alternating between phase retrieval and RI estimation [9–12].

1.1. Related works

1.1.1. Reconstruction from complex measurements

In the early works [13, 14], RI reconstruction is performed using a suitable variant of filtered
back-projection algorithm (FBP) [15]. This kind of approach is computationally efficient, but the
underlying model ignores the effect of diffraction. Under the assumption that the scattered field is
weak compared to the incident one, improved methods rely on the first Born model [4, 16] or the
first Rytov model [17,18]. Both are linearizations of the Lippmann-Schwinger equation governing
the ODT acquisition process. The main difference is that the Born model works directly with the
scattered field whereas the Rytov model uses the unwrapped phase of the measurements. Several



studies have shown that the Rytov model yields more accurate reconstructions than the Born
model [18–20]. Yet, the validity of these linear models is restricted to weakly scattering samples.
To overcome this limitation, nonlinear models that account for multiple scattering have been

proposed, such as the beam-propagation method (BPM) [7, 21], the contrast source-inversion
method (CSI) [1,2], hybrid methods [6,22], the conjugate-gradient method (CGM) [23,24], or the
recursive Born approximation [25]. Finally, within a regularized variational approach, iterative
forward models that solve the Lippmann-Schwinger equation have been recently used in [5,8,22].
This equation allows for a finer description of wave-optics and leads to improved reconstruction
results. Note that it is also closely related to the discrete dipole approximation (DDA) or the
methods of moments (MoM) used in microwave imaging [26]. A review on ODT reconstruction
methods for bioimaging can be found in [3].

1.1.2. RI reconstruction from intensity-only measurements

The more challenging problem of reconstructing refraction indices from intensity-only measure-
ments was recently addressed in the context of Fourier ptychographic microscopy [9, 27–30],
although related methods were previously proposed in other domains [31–40]. The conven-
tional reconstruction scheme consists in alternating between recovering the measurement phase
and reconstructing the RI of the sample. The phase retrieval is generally performed with the
Gerchberg-Saxton (GS) projection operator [41], while the RI reconstruction step is essentially
the same as in ODT (intensity and phase). Over the years, the forward models have evolved from
linear [9] to nonlinear [10–12]. For more details, we refer the reader to [42]. In Table 1, we have
sketched the evolution of reconstruction methods for both holographic (i.e., intensity and phase)
and intensity-only measurements.

1.2. Contributions

In this paper, we leverage recent advances in phase retrieval, nonlinear physical models, and
modern regularization. We propose a unified framework that can cope with forward models
at various levels of sophistication (e.g., Born [4], beam-propagation method [44], Lippmann-
Schwinger [45]) and with various sparse regularizers (e.g., TV [46], Hessian-based [47]). This is
possible because of the modularity of the proposed approach, which comes from an adequate
splitting of the initial problem into simpler subproblems. Moreover, our method can be easily
adapted to different types of noise by the way of specific data-fidelity terms for which an explicit
expression of the proximity operator is available. Finally, we validate the proposed method on
several simulated and real datasets using both the beam-propagation method (BPM) and the
Lippmann-Schwinger forward model (LSm) together with a total-variation (TV) regularizer.

1.3. Organization of the paper

In Section 2, we describe our unified regularized reconstruction framework for the intensity-only
problem and develop our optimization strategy. In Section 3, we present the nonlinear forward
models used in this work. Finally, in Section 4, we present our numerical results on simulated
and real data.

2. Unified regularized reconstruction framework

We consider a 2D spatial domain Ω discretized into M = Mx × Mz pixels with steps δx and
δz. Each cell is characterized by its refractive value nm and gathered into the vector n ∈ RM .
In Ω, a sample of unknown RI distribution is immersed in a background medium of RI ñ.
We introduce the scattering potential f ∈ RM , the components of which being defined as
fm = k̃2(nm2/ñ2 − 1) ∀m ∈ [1 . . . M] with k̃ = 2πñ

λ the background wavenumber. This sample is
illuminated by a series of P ∈ N tilted plane waves {uin

p ∈ CM }p∈[1...P] of free-space wavelength λ.



Table 1. Some RI reconstruction algorithms from holographic (i.e., complex) or intensity-
only measurements. Ref.: Reference. Algo.: Algorithm. Reg.: Regularization. rec. Born:
Recursive Born. BPM: Beam-propagation method. LSm: Lippmann-Schwinger model. GS:
Gerchberg-Saxton projection operator. E.: Embedded. TV: Total-variation constraint. a.h.: ad
hoc. 3PIE: Ptychographical iterative engine. GD: Gradient descent. FBS: Forward-backward
splitting. iter: Iterative.

Holographic measurements Intensity-only measurements

Ref. Model Algo. Reg. Ref. Model Phase RI Reg.

[13, 14] FBP direct –
[4, 16] Born direct – [9, 27–31] Born GS direct –
[17, 18] Rytov direct – [34, 35] Rytov E iter –

[43] Born GS iter TV
[20] Rytov iter TV

[10,12] BPM GS 3PIE –
[11, 40] BPM GS / E GD a.h.

[23, 24] LSm iter – [36, 38] LSm E / a.h. iter –
[22] LSm iter a.h. [37, 39] LSm E iter a.h.
[7, 21] BPM FBS TV
[25] rec. Born FBS TV Proposed framework
[5, 8] LSm FBS TV
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The interaction of an incident wave with the sample produces a scattered wave. The sum of the
incident and scattered waves yields the total field up ∈ CM . It is worth noting that an alternative
setting considers a fixed source-detector relationship while rotating the sample. The general
framework that we describe in this work is applicable to both setups.
We represent the ODT forward model by the operator S : RM × CM → CN . Given the

scattering potential f ∈ RM and an incident wave uin, S(f, uin) gives the total field on the detector
region Γ (see Fig. 1). The intensity-only measurements {yp ∈ RN }p∈[1...P] are related to the
model by

yp = |S(f, uin
p )|2 + ηp, ∀p ∈ [1 . . . P], (1)

where ηp ∈ RN, ∀p ∈ [1 . . . P], represent noise and | · |2 is a component-wise squared magnitude.
Since uin

p is fixed and known, S(f, uin
p ) will be denoted by Sp(f) thereafter. Note that S can be

any model of wave scattering. Two specific models will be detailed in Section 3 and used in the
experiments of Section 4.

Formulation of the inverse problem Within the context of variational approaches for inverse
problems, it is customary to estimate the scattering potential f ∈ RM from the measurements
{yp ∈ RN }p∈[1...P] by solving the optimization problem

f̂ ∈
arg min

f∈B
©«

P∑
p=1
D(|Sp(f)|2, yp) + τR(Lf)ª®¬

 . (2)
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Fig. 1. Optical diffraction tomography setup (intensity-only). A sample with the refractive
index n ∈ RM is immersed in a background medium of index ñ and impinged by an incident
plane wave with a given orientation (wave vector kb). The interaction of the wave with the
object produces a scattered wave (forward and backward). The squared magnitude of the
total field, which corresponds to the sum of the the incident and scattered waves, is recorded
by the detector.

The functional D : RN × RN → R≥0 measures the fidelity of the model to the data. The
regularization function R : RK → R≥0 promotes the sparsity of the quantity Lf, where
L : RM → RK is a linear operator (e.g., gradient, Hessian). The scalar τ > 0 is a tradeoff
parameter that balances the effect of these two terms. The set B represents physical constraints
on the scattering potential (e.g., nonnegativity constraint B = RM

≥0). From a Bayesian point of
view, we can relate D to the log-likelihood of the noise distribution. Because the number of
measurements N is much smaller than the number of unknowns M , the data-fidelity termD does
not generally admit a unique global minimizer. The regularization term R(L · ) and the set B
should thus be chosen in order to discriminate between candidate solutions using the knowledge
that one has on the observed sample.

2.1. Splitting strategy

Inspired by the success of the alternating-direction method of multipliers (ADMM) [48],
we propose to split the optimization task in a way that decouples the complex-field-based
reconstruction from the phase retrieval. To that end, we introduce the auxiliary variables vp ∈ CN ,
p ∈ [1 . . . P], and reformulate the problem in Eq. (2) as

(̂f, v̂1, . . . , v̂P) ∈
arg min

(f,v1,...,vP )∈X
©«

P∑
p=1
D(|vp |2, yp) + τR(Lf)ª®¬

 , (3)

where
X =

{
(f, v1, . . . , vP) ∈ B × CN×P s.t. vp = Sp(f) ∀p ∈ [1 . . . P]

}
. (4)

The augmented-Lagrangian form of this problem is

L(f, v1, . . . , vP,w1, . . . ,wP) =
P∑

p=1
D(|vp |2, yp) +

ρ

2
‖Sp(f) − vp + wp/ρ‖22 + τR(Lf), (5)



where wp are the Lagrangian multipliers and ρ is a positive scalar. Then, Eq. (5) is minimized
using ADMM, which results in the procedure given in Algorithm 1. The problem is now reduced
to three simpler subproblems: a phase retrieval that requires the computation of the proximity
operator of D(| · |2, yp), an RI reconstruction problem from complex measurements, and the
Lagrangian update of wp .

Algorithm 1 ADMM for solving Eq. (5)
Require: {yp}p∈[1...P], f ∈ RM

≥0, ρ > 0, τ > 0
1: f(0) = f
2: w(0)p = 0CN , ∀p ∈ [1 . . . P]
3: k = 0
4: while (not converged) do

5: v(k+1)
p = prox 1

ρ D(| · |2,yp )(Sp(f
(k)) + w(k)p

ρ ), ∀p ∈ [1 . . . P] {Phase retrieval}

6: f(k+1) = arg min
f∈B

©« ρ2
P∑

p=1
‖Sp(f) − v(k+1)

p + w(k)p /ρ‖22 + τR(Lf)ª®¬ {RI reconstruction}
7: w(k+1)

p = w(k)p + ρ(Sp(f(k+1)) − v(k+1)
p ) ∀p ∈ [1 . . . P] {Update Lagrangian}

8: k ← k + 1
9: end while
10: return f(k)

2.2. Proximity operator for phase-retrieval

At Step 5 of Algorithm 1, we must compute the proximity operator of 1
ρD(| · |2, yp), like in

prox 1
ρ D(| · |2,yp )(x) = arg min

v∈CN

(
1
2
‖v − x‖22 +

1
ρ
D(|v|2, yp)

)
. (6)

Here, we benefit from the closed-form expressions that have been recently derived for Gaussian
likelihood in [49]. In the present work, we consider the weighted quadratic data-fidelity term

D(|v|2, yp) =
1
2

|v|2 − yp

2
Wp

, (7)

where Wp = diag(wp
1 , . . . ,w

p
N ) is a diagonal matrix and ‖ · ‖Wp a weighted `2-norm such that

‖v‖2Wp
= vTWpv. This scheme can be tuned to two scenarios.

1. Log-likelihood for Gaussian measurement noise: We set wp
n = 1/σ2, where σ2 is the

variance of the noise.

2. Log-likelihood for Poisson measurement noise: We set wp
n = max(yp,n, b)−1, where the

minimal value b > 0 accounts for background emission and the dark current of the detector.

Following [49], the proximity operator of D(| · |2, yp) given by Eq. (7) is computed component-
wise according to

∀x ∈ CN,
[
prox 1

ρ D(| · |2,yp )(x)
]
n
= %n ei arg(xn), (8)

where %n is the positive root of the cubic polynomial in %

qG(%) =
4wp

n

ρ
%3 + %

(
1 − 4wp

n

ρ
yp,n

)
− |xn | (9)

which can be efficiently found with Cardano’s method. Note that a closed-form expression has
also been derived for an exact model of Poisson noise [49].



2.3. Reconstruction from complex fields

The minimization over f (Step 6 of Algorithm 1) can be achieved by deploying an accelerated
forward-backward splitting (FBS) algorithm [50–52]. Two quantities needs to be computed.

• The proximity operator of the regularization term f 7→ τ/ρR(Lf), which reads [53]

prox(
τ
ρ

)
R(L · )(f) = arg min

g∈RM
≥0

(
1
2
‖g − f‖22 +

(
τ

ρ

)
R(Lg)

)
. (10)

Depending on the choice of R and L, Eq. (10) can admit a closed-form solution or be
computed using efficient convex-optimization algorithms (e.g., ADMM [48], Chambolle-
Pock [54]).

• The gradient of the quadratic term H : f 7→ ρ
2
∑P

p=1 ‖Sp(f) − z(k+1)
p ‖22 with z(k+1)

p =

(v(k+1)
p − w(k)p /ρ) which, using classical differential rules, is given by

∇H(f) = ρ
P∑

p=1
Re

(
JH
Sp (f)(Sp(f) − z(k+1)

p )
)
, (11)

where JSp (f) denotes the Jacobian matrix of Sp at f. Hence, given a forward model Sp,
one needs to provide an efficient computation of the Jacobian matrix JSp (f).

The classical FBS algorithm has been shown to converge in the nonconvex case, albeit locally
only [55]. To the best of our knowledge, there exists no theoretical proof of convergence of its
accelerated version for nonconvex cases. However, we observed that the accelerated FBS always
converged in our experiments.

3. Solutions for specific nonlinear forward models

While the reconstruction algorithm developed in Section 2 can deal with any forward model (S(f)
in Eq. (1)), we shall focus here on two specific nonlinear models that are known to outperform
linear models [5, 7, 8]. For the sake of clarity, we drop the illumination index p and present the
forward model for a generic incident wave uin ∈ CM .

3.1. Beam-propagation method

BPM computes the total field slice-by-slice along the optical axis z [44, 56]. In the following,
indexing a vector by z refers to its restriction to the corresponding z-slice. Given an incident
wave uin, the total field u on Ω is computed recursively according to{

u0(f) = uin
0 ,

uz′(f) = (uz′−δz (f) ∗ hδz
prop) � pz′(f),

(12)

where � denotes the Hadamard product, ∗ the convolution operation, and δz the step size in the
axial direction. In Eq. (12), uz′−δz (f) is first propagated to the axial position z′ by convolution
with the propagation kernel

hδz
prop = F−1

{
exp

(
iδz

(√
k̃21Mx − k2

x

))}
(diffraction step), (13)

where F−1 is the 1D discrete inverse Fourier transform and kx ∈ RMx is the frequency variable
along the x direction. This convolution is followed by a point-wise multiplication with the phase
mask

pz′(f) = exp
(
ik̃0δzδnz′(f)

)
(refraction step). (14)



Here, we introduce the RI variation δn(f) ∈ RM which is related to f through

δn(f) = ñ

(√
1 +

f
k̃
− 1

)
. (15)

Once the axial position z′ reaches the last slice Lz = Mzδz of Ω, G̃ : CMx → CN propagates the
total field to the detector plane and restricts it to the detector positions. The BPM forward model
is defined by

S(f) = G̃(uLz (f)). (16)

Note that the BPM forward model can also be directly defined with δn [7].

Computation of the Jacobian matrix The recursive structure of the BPM forward model
enables an efficient computation of the Jacobian JS(f) using an error-backpropagation scheme [7].

3.2. Iterative Lippmann-Schwinger model

In its discrete form, the Lippmann-Schwinger equation reads

u = uin +G diag(f)u, (17)

where G ∈ CM×M denotes the matrix defining the convolution (overΩ) with the Green’s function

G(r) =


i
4 H(1)0 (k̃ ‖r‖2), in 2D
1

4π
eik̃ ‖r‖2
‖r‖2 , in 3D.

(18)

From Eq. (17), the total field on Ω is computed by solving the quadratic-minimization problem

u(f) = arg min
u∈CM

(
1
2
‖(I −G diag(f))u − uin‖22

)
(19)

using an efficient algorithm such as the conjugate gradient (CG). Based on Eq. (19), the
Lippmann-Schwinger iterative forward model (LSm) is defined by

S(f) = G̃ diag(f)u(f) + uin |Γ, (20)

where G̃ encodes the convolution with the Green’s function evaluated at the sensor positions Γ
and uin |Γ denotes the incident field uin on the area Γ.

Computation of the Jacobian matrix As shown in [5], the associated Jacobian matrix JS(f)
is given by

JS(f) = G̃
(
I + diag(f)(I −G diag(f))−1G

)
diag(u(f)) (21)

and can also be estimated using the CG algorithm, if desired.

4. Results

We first assess the suitability of our framework to reconstruct simulated samples. Then, we
validate our approach on experimental data. Finally, we evaluate the performance of the method
for limited measurements.
We compare the solutions of our framework to those obtained with the light field refo-

cusing (LFR) method [57] which were also used as initial guesses for Algorithm 1. For the
regularizer R(L · ), we use the TV norm, known to attenuate the missing-cone problem. Moreover,



Table 2. Reconstruction performance. The relative error ε = ‖x̂−xtrue ‖2
‖xtrue ‖2 is shown. The

proposed method with BPM was 3 to 6 times faster than with LSm.

ε Three fibers Cell Shepp-Logan

LFR 1.4 · 10−2 1.36 · 10−2 2.06 · 10−2

BPM 4.74 · 10−3 6.05 · 10−3 1.28 · 10−2

LSm 1.33 · 10−3 4.04 · 10−3 1.02 · 10−2

we enforce a nonnegativity constraint on the scattering potential by setting B = RM
≥0. Because the

RI reconstruction step can be computationally intensive, we adopted acceleration strategies. The
gradient in Eq. (11) was computed for a subset of the angles [1 . . . P]. This subset was changed
at each iteration while keeping a constant angle difference between them. We implemented
the algorithms using an inverse-problem library developed in our group [58] (GlobalBioIm:
http://bigwww.epfl.ch/algorithms/globalbioim/).

4.1. Validation on simulated data

Simulation setup We consider the three samples presented in Fig. 2 (top row). They are
immersed in water (ñ = 1.33) as well as the source and the sensors. They were impinged by
thirty-one incident waves with angles ranging from −45◦ to 45◦. These waves were propagated
from the bottom to the top of the (33λ × 33λ) domain with λ = 406 nm. Simulations were
performed on a fine grid (1024 × 1024) with a pixel area of (0.03λ)2 using the LSm forward
model. The 1024 sensors are evenly placed on a straight line of length 33λ above the sample at
16.5λ from the center. Finally, these measurements were reduced to N = 512 using averaging.

Reconstruction parameters The regularization parameter τ was selected in order to minimize
the relative error ‖x̂ − xtrue‖2/‖xtrue‖2. The outer loop in Algorithm 1 (inner FBS at step 6 in
Algorithm 1, respectively) was stopped when the relative change between two iterates is below
10−8 or after 20 (50, respectively) iterations. The step size in the FBS algorithm was set to 5 · 10−4

and 5 · 10−3 for BPM and LSm, respectively. The penalty parameter was set to ρ = 10−3. Finally,
the reconstructions were performed on a (512 × 512) grid. The regularization parameter τ was
tuned by hand for each sample.

Discussion As shown in Fig. 2, the proposed framework is able to reconstruct the samples
despite the lack of phase information. Both forward models obviously perform better than LFR
which only relies on geometrical optics. We observe that the LSm forward model yields better
reconstructions than the BPM forward model. Our framework with LSm is able to retrieve most
details of the object. The shape as well as the RI of the samples are well estimated. These
observations are quantified by the relative error presented in Table 2.

4.2. Validation on experimental data

We validate our framework using the publicly available experimental datasets of the Institut
Fresnel [59]. In this experiment, the sensors were circularly distributed around the objects at a
distance of 1.67 m from their centers with 1◦ step (see Fig. 3). Eight sources (E1−8), uniformly
distributed around the object, were activated sequentially. At each activation, the total field was
measured using 241 sensors (S241), excluding the sensors closer than 60◦ from the source. We
reconstructed the three targets FoamDielExt, FoamDielInt, and FoamTwinDiel using the TM
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Fig. 2. RI distribution for three fibers, a simulated cell, and the Shepp-Logan in the first,
second, and third column, respectively. The ground truth and the reconstructions from the
LFR, BPM, and LSm proposed methods are shown in Row 1 to 4, respectively. The samples
are immersed in water (ñ = 1.33). Thirty-one views were acquired with a tilted plane-wave
illumination. The angles ranged from −45◦ to 45◦. The sample is illuminated from below.
The 1024 sensors are evenly placed on a straight line of length 33λ above the sample at
16.5λ from the center. The measurements were reduced to 512 using averaging.

polarization at 3 GHz (i.e., λ = 10 cm). Each two-dimensional inhomogeneous sample is depicted
in Fig. 4 (top row). The indicated permittivities were experimentally measured and are subject to
uncertainties [59].

For the reconstruction, we consider a (15 × 15 cm2) area discretized over (256 × 256) pixels.
This yields a pixel area of about (0.0586 cm)2. We reconstruct these samples with the LSm forward
model and compare the results with the RI reconstruction from holographic measurements [5].

The chosen regularization parameters τ were tuned by hand for both algorithms. The penalty
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Fig. 3. Acquisition setup for the Fresnel dataset. The sensors (dots in the inner circle)
correspond to the illumination angle of 0◦ (i.e., E1). The measurements are restricted either
by reducing the number of sensors (sensors sets S241, . . . , S91) or the number of acquired
views (emitters E1, . . . , E8).

parameter ρ was set to 5. We initialized both algorithms with the background value.
The results presented in Fig. 4 suggest that the two methods perform similarly in terms of

quality. The shape and the permittivity of the samples are both remarkably well recovered despite
the high contrasts. Furthermore, the bottom graphs in Fig. 4 show that the retrieved phase
corroborates the measurement data for each sample. The similar performances observed for these
samples suggest the intensity measurements still contain some phase information due to the
diffraction.

4.3. Reducing the number of measurements

In this section, we assess the effect of a reduction in the number of measurements. To that end, we
combined two methods. On one hand, we incrementally ignored illumination angles. On the other
hand, we reduced the number of sensors, starting from no restriction (i.e., S241) to the smallest
set of sensors S91 (see Fig. 3). This strategy allowed us to explore the missing-cone problem. By
progressively limiting the available measurements, we converged to a setup similar to that of
tomographic phase microscopy [3]. The reconstruction obtained for the easiest scenario (i.e., 8
views and S241) was considered as a reference. Then, the regularization parameter τ was tuned in
order to minimize the relative error with respect to this reference.
As shown in Fig. 5, the quality of the reconstructions is remarkable, even in extreme cases.

This is due to the use of modern regularization.



1.45 ± 0.15

1 3 ± 0.3

λ
−λ2

0

λ
2

FoamDielExt

λ

FoamDielInt

λ

G
round

Truth

FoamTwinDiel

−λ2

0

λ
2

C
om

plex
Field

−λ2 0 λ
2

−λ2

0

λ
2

−λ2 0 λ
2 −λ2 0 λ

2

Intensity-O
nly

0 100 200
0

0.2

0 100 200 0 100 200

M
agnitude

0 100 200
−π

0
π

0 100 200
Sensors

LSm True

0 100 200

Phase

Fig. 4. Permittivity reconstruction of the Fresnel datasets by LSm. From left to right:
FoamDielExt, FoamDielInt, and FoamTwinDiel. From top to bottom: ground truth, recon-
structions from complex (using [5]) and intensity-only (proposed method) measurements,
respectively, and magnitude and phase of the predicted (solid curve) vs true (dashed curve)
measurements (0◦ illumination angle). The two curves often overlap. For the solutions from
complex measurements, the regularization parameters were set at 1.6 · 10−2, 3 · 10−3, and
9 · 10−3 for FoamDielExt, FoamDielInt, and FoamTwinDiel, respectively. For the solutions
from intensity-only measurements, the regularization parameters were set at 7 · 10−2, 9 · 10−3,
and 4 · 10−2 for FoamDielExt, FoamDielInt, and FoamTwinDiel, respectively.
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Fig. 5. Permittivity reconstructions of the Fresnel dataset with a limited number
of measurements. From left to right: P = 3, 5, 7, and 8 views were used to recon-
struct the sample FoamDielExt. From top to bottom: The sensors were included in the
sets S241, S181, S151, S121, and S91, respectively. The reconstruction error with respect to the
best solution (i.e., E8, S241) is shown at the top left of each image.



5. Conclusion

We have proposed a variational formulation of the reconstruction of refractive indices from
intensity-only measurements. It allows us to take advantage of efficient algorithms to solve
subproblems. Our framework is able to handle several forward models and any regularization.
Notably, we showed that the iterative Lippmann-Schwinger model combined with total-variation
regularization reconstructs highly scattering samples from intensity-only measurements, even in
ill-posed configurations. Furthermore, our results suggest our method can reconstruct RI samples
in even more difficult cases where few measurements are available.
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