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This is anOp
Abstract – Specification and forecasting of solar d
rivers to thermosphere density models is critical for
satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30days into the
future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV
(EUV) flux and geomagnetic activity.Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy
for solarEUV.However, dailymeasurements at other centimetricwavelengths have also beenperformedby the
Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit
modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that
collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a
daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove
anomalous values. We compared various empirical time series prediction techniques and selected a multi-
wavelength non-recursive analogue neural network. The prediction of the 30 cmflux, and to a lesser extent that
of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during
periods of high solar activity. In addition,wefind that theDTM-2013densitymodel (DragTemperatureModel)
performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.
1 Introduction

Modeling the upper atmosphere density is essential for
nowcasting and forecasting satellite orbits at altitudes up to
approximately 1000 km. Space Agencies and satellite oper-
ators constantly seek to improve the orbit prediction of the
satellites they operate for tracking and programing purposes.
Another and increasingly important application is collision
avoidance. Upper atmospheric density variations are primarily
driven by variations in solar Extreme-UVemissions (EUV, 10–
120 nm), for which the 10.7 cm radio flux (F10.7) is routinely
used as a proxy (Floyd et al., 2005). However, radio
observations at other centimetric wavelengths have recently
been shown to offer equivalent if not better performance
(Dudok de Wit and Bruinsma, 2017), hence the need for
nowcasting and forecasting them. Here, in addition to the
classical 10.7 cm radio flux from Penticton Observatory, we
consider daily radio observations made between 3.2 and 30 cm
at the Nobeyama Radio Observatory in Japan. Although these
datasets are publicly available, they are provided in different
formats and are occasionally affected by data gaps or corrupted
by solar flares, which hinders their immediate use. Therefore,
ding author: pyaya@cls.fr
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our first objective is to correct for these and deliver one single
homogeneous dataset with daily values from 1951 to today.
The different data-processing steps take advantage of the
simultaneous measurements at the different wavelengths and
are described in Section 2. Our second objective is to deliver a
one-month forecast. While physical models perform better for
forecasting the solar radiative output on time scales of weeks
(e.g. Henney et al., 2012), at this stage we consider empirical
methods only. We tested two forecast methods, based on
autoregressive (AR) and neural networks algorithms, using the
complete and preprocessed time series of solar fluxes. The
results are described in Section 3. These extrapolated series are
used as an input in thermospheric density models. Section 4
describes the Drag Temperature Model (DTM-2013)
(Bruinsma, 2015), driven here with the 30 cm radio flux
(F30) instead of F10.7 because of its better performance, as
recently demonstrated by Dudok de Wit and Bruinsma (2017).
In order to assess the contribution of F30 on orbit prediction,
we compare its forecast to the forecast obtained with F10.7 by
means of an error analysis of the extrapolated orbits obtained
with either F30 or F10.7. The resulting errors along the satellite
orbit are compared and presented in Section 5.

The objective of this study was to develop a pre-
operational service that provides real-time specifications and
forecasts of radio fluxes at various wavelengths for use in
ttribution License (http://creativecommons.org/licenses/by/4.0), which permits
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Table 1. Main characteristics of the five radio fluxes that are considered in this study.

Wavelength
[cm]

Measured at Observations
started on

Time window during
which observations
are made

Average number of missing
observations since Jan 1990
(days/yr)

3.2 Toyokawa/Nobeyama May 1956 23–07UT 7.4

8.0 Toyokawa/Nobeyama Nov 1951 23–07UT 2.5
10.7 Ottawa/Penticton Feb 1947 17–23UT 0.3
15.0 Toyokawa/Nobeyama June 1957 23–07UT 8.3
30.0 Toyokawa/Nobeyama March 1957 23–07UT 6.0

Fig. 1. Original observations from Ottawa, Penticton, Toyokawa and Nobeyama.
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thermospheric models for satellite orbit prediction. In the
appendixwedescribe theorganization, thecontent and the format
of thefiles on the ftp server of theCollecte Localisation Satellites
(CLS) company, which hosts this service at the following
address: https://spaceweather.cls.fr/services/radioflux/.

Most thermospheric models use both daily values and
running averages (typically, over 81 days) to capture the trend.
However, because the procedure for estimating such trends is
model-dependent, here we concentrate on daily values only.

2 Data description and preprocessing

Radio emissions at centimetric wavelengths and EUV
emissions are generated by different physical processes but
originate from the similar regions of the solar atmosphere; as a
result, radio emissions (which can be measured from the
ground) can provide reasonable proxies for solar EUVand UV
emissions (which must be measured from space); see for
example (Nicolet and Bossy, 1985; Tapping, 2013). Best
known is the radio flux at 10.7 cm wavelength, i.e. the F10.7
index, which is used as a solar input in many space weather
applications. Radio emissions at other wavelengths have a
different blend of chromospheric and coronal contributions,
which is one of the prime motivations for performing a multi-
wavelength monitoring of the Sun.

The F10.7 index has been measured continuously since
1947, first at Ottawa, and subsequently at the Penticton Radio
Observatory in British Columbia. Other wavelengths have
been routinely measured at several locations. Of particular
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interest are the radiopolarimetric observations from the
Toyokawa and Nobeyama observatories in Japan because of
their continuity and stability. These observations started in
1951. Although numerous other solar proxies exist, these radio
observations stand out by offering over 60 years of daily
observations with high radiometric stability and very few
interruptions.

Here we concentrate on measurements made at 5 wave-
lengths (see Tab. 1) that offer a high potential for space weather
applications. All consist of daily observations, and are almost
devoid of flare-related contributions. Daily values of the F10.7
index are obtained from three flux determinations per day that
are centered at local noon (Tapping, 2013); for the Toyokawa
and Nobeyama observatories flare-corrected daily averages are
provided (Tanaka et al., 1973). These instruments are
calibrated at least once per day, which ensures a high stability.

The original observations are displayed in Figure 1. On
time scales of several months and beyond, the radio fluxes
evolve almost identically with the solar cycle. On shorter time
scales, however, their evolution differs in subtle ways that are
of great interest for understanding their solar sources. These
aspects are beyond the scope of our study; we refer to
(Schmahl and Kundu, 1994; Dudok de Wit et al., 2014) for
further reading.

The measurements that are listed in Table 1 are publicly
accessible with a latency of a few hours only. Such a latency is
acceptable for daily values of the radio fluxes because sub-
daily solar transients such as flares have a limited impact on the
thermospheric density (except for the largest X-class flares).
Several operations and corrections are required before these
f 17
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Fig. 2. Probability density function (PDF) of the residual error for different wavelengths, estimated with kernels. A normal distribution is also
shown for reference. Here we only consider periods with the same level of solar activity, defined as 80<F10.7< 100 sfu.

Table 2. Expression of the precision se as a function of the radio flux
y, in sfu.

Wavelength [cm] Precision [sfu]

3.2 s� = 0.077 y � 19.4

8.0 s� = 0.057 y � 3.8

10.7 s� = 0.058 y � 2.9

15.0 s� = 0.044 y � 1.8

30.0 s� = 0.046 y � 1.7
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data can be used for operational purposes. Here we describe the
main preprocessing steps.

2.1 Data collection

All the observations from Ottawa/Penticton are available
in one single file at the NOAA's National Center for
Environmental Information (ftp://ftp.ngdc.noaa.gov/STP/
space-weather/solar-data/solar-features/solar-radio/noontime-
flux/penticton/penticton_adjusted/listings/) while observations
from Toyokawa and Nobeyama are provided in monthly files
by the Nobeyama Radio Observatory (http://solar.nro.nao.ac.
jp/norp/data/). This dispersion of the information may partly
explain why these data have received little attention so far. The
first step thus consists in collecting all the data in one single
file, with daily values since November 1, 1951. Notice that the
complete set of wavelengths is accessible only from 1957
onwards and so earlier values are extrapolated (see below).
The fluxes are expressed in solar flux units (sfu) and two
records are provided: one with values adjusted to 1AU, and
one with fluxes as measured on top of the atmosphere. For
driving thermosphere and ionosphere models, the 1AU
correction is not used.

2.2 Timing

The definite value of the F10.7 index from Penticton is
made available shortly after the last measurement of the day,
before 24:00UT. For Nobeyama, the provisional values come
out around 12:00UT and definite values with minor adjust-
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ments are published once per month, with a latency of 15–40
days. Both indices are thus available in a timely manner for
operational use. However, they are measured approximately
17 h apart. No attempt was made here to resample them to a
common time grid. Such a resampling may be needed for
performing more detailed comparisons as in Dudok de Wit
et al. (2014). However, because solar variability is under-
sampled in the records (i.e. the Shannon-Nyquist theorem is
not verified), one should resample them with great care.
2.3 Anomalous values

The radio observations are occasionally affected by
anomalous or deviant values, whose origin may be either
instrumental or solar. Since these values are either erroneous
(when they are instrumental) or correspond to short-lived solar
transients that have limited impact on the thermospheric
density, they must be identified and if possible corrected in
order to maintain a statistically homogeneous data set. To
identify such anomalous values we first need a measure of
uncertainty for each observation. In the absence of such a
common measure, we define an empirical one and consider the
precision or random error, which expresses the closeness of
agreement between independent measurements for a constant
level of solar activity. We estimate the precision by using the
same AR model approach as in Dudok de Wit et al. (2016), in
which the residual error � ¼ y� ŷ between observations Yand
their prediction ŷ is estimated by means of an AR model; the
prediction is expressed as a linear combination of past values,
estimated here from the 8 preceding days. We then define the
precision as the median absolute deviation (MAD) of the
residual error s� = 1.48MAD (�). We prefer the MAD to the
more usual standard deviation (std) because it is less sensitive
to occasional outliers (to be addressed below). The MAD and
the std give identical results for residual errors that are
normally distributed.

The precision, when estimated over a time interval of 80
days (corresponding to 3 solar rotations, i.e. the typical lifetime
of an active region) increases almost linearly with the average
radio flux. This convenient property allows us to express the
precision as a simple function of the flux, see Table 2. The
relative magnitude of the precision is solar cycle-independent,
except during the first few years of operation of each
f 17
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Fig. 3. Two examples of detected outliers: two consecutive days in the 30 cm radio flux (upper plot) and one single spike in the 10.7 cm radio flux
(lower plot).
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instrument, for which there is evidence for larger variability.
This has not been taken into account as our interest really lies
in the post-1960 era.

Let us stress that our precision includes both instrumental
effects and solar intrinsic variability, which are difficult to
separate. As a consequence, this quantity is likely to
overestimate the instrumental error. This, however, is
compensated by the tendency of the AR model to underesti-
mate the residual error � and, finally, precision should still
reflect the instrumental error reasonably well. Our definition of
the precision clearly has its limitations and some arbitrariness,
but these are compounded by its simplicity and by the
possibility to apply it in a systematic way to all the records.

With this definition of the precision we now have a
criterion for detecting anomalous values. For a given level of
solar activity, the residual error � ¼ y� ŷ is normally
distributed with fat tails that are indicative of outliers, see
Figure 2. A simple criterion for detecting the latter then
consists in selecting all observations whose residual error, in
absolute value, exceeds 4s�.

In practice, with this criterion, we tend to detect more
outliers during solar minimum, when the residual error � is
relatively large with respect to the radio flux. Such small
outliers represent relatively minor excursions of the radio flux
and therefore have no significant impact on thermospheric
models. For that reason, we consider two conditions, one
relative, and one absolute

j�j
s�

> 4 and � > 10 sfu:

With this empirical criterion, typically 0.5% of the
observations are flagged as outliers and discarded in what
follows.

Figure 3 shows two examples of outliers that have been
detected with our criterion.While the first one is clearly suspect
because it affects one single wavelength, the second one is more
debatable. As it turns out, there are two categories of outliers.
About one half of them can be detected by eye and most likely
have an instrumental or human origin. The other half occurs
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during periods of intense solar activity, when observations are
more easily contaminated by non-thermal emissions that
originate from flares. Some flaring periods tend to last for
several days, suchas the2003Halloweenstormperiod;while the
AR model is able to identify the first one or two contaminated
daysbecauseof thesharp increase in the radioflux, it usually fails
to flag the subsequent days because the model starts using
outliers formaking its prediction.There isnosimpleworkaround
to this problem without introducing an independent measure of
solar activity thatwould inevitably add complexity to ourmodel.
Additionally, one may improve the outlier detection by
comparing values from different observatories. Indeed, since
they make observations at different times, the risk of having
concomitant contaminations is smaller.

With our criterion, the average number of outliers per year
is (2.0, 0.90, 1.24, 0.38, 0.37) for wavelengths ranging
respectively from 3.2–30 cm. This number is largest for the
3.2 cm flux, which is more sensitive to transient non-thermal
emissions and to tropospheric effects. The number of outliers
is also relatively larger for Penticton because its daily value is
based on three observations, in contrast to Toyokawa/
Nobeyama, which uses all observations from sunrise to
sunset.

We estimate the true number of outliers, including all flare-
contaminated observations to be approximately 20–40% larger
than thefiguresgivenabove.Given that thesenon-detectedoutliers
are rare and considerably more difficult to identify, we decided to
consider themas regular values.Note therefore that during periods
of intense activity, the radio fluxmay be overestimated because of
the presence of non-thermal contributions.

2.4 Missing values

As shown in Table 1, all records occasionally have missing
values, for which substitutes need to be found. For Toyokawa/
Nobeyama, these data gaps usually affect one to three
wavelengths simultaneously. However, never so far did we
observe a simultaneous interruption at all five wavelengths.
These missing values tend to occur randomly in time. One
exception is the relocation from Toyokawa to Nobeyama,
f 17



Fig. 4. Illustration of the gap filling at three wavelengths. The long interruption in the 30 cm flux corresponds to the relocation from Toyokawa to
Nobeyama.

Fig. 5. The F30 proxy with the training dataset (blue) and the validation dataset (red).
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which took place between February andMay 1994. During that
period, observations at 30, 15 and 3.2 cm were interrupted for
three consecutive months; eighteen days are missing at 8.0 cm
(Fig. 4). In addition to these gaps, there are other few outliers,
which we ignore in what follows.

Data gaps are usually replaced by direct interpolation or by
using proxy models. Interestingly, the radio fluxes are very
coherent: observations are highly correlated across wavelength
for a given time, but also in time for a given wavelength. This
coherenceallowsus touse the expectation-maximizationmethod
(Dudok deWit, 2011), which is ideally suited for reconstructing
missing values in correlated multivariate records. The method
replacesmissingvalueswitha linearcombinationofobservations
made on the same day, and on the day before, using all available
wavelengths. The performance can be tested by leaving out a few
days, and then checking their reconstruction. We find the
reconstruction error to be comparable to the precision, which
supports the excellent performance of the method.

Note that this gap filling is suboptimal during extended
periods of strong solar activity, when the observations are
likely to be contaminated by non-thermal emissions. Both the
outlier detection and the gap filling methods are then affected,
leading to an overestimation of the radio flux. Clearly, this
issue can be fixed only by considering additional solar proxies,
such as the MgII core-to-wing index.
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3 Forecast methods

3.1 Introduction

The initial objective of our model was to forecast the F30
proxy up to 7 days ahead. We later extended the horizon to 30
days for all five wavelengths. The results of these inves-
tigations were obtained by means of the “R” software (R Core
Team, 2017).

Our dataset of solar fluxes contains five records of daily
values from November 1st, 1951 till today, including complete
solar cycles 19–23, and most of cycle 24. We separated this
dataset into two subsets: the first four solar cycles (years 1951–
1995), representing 70% of the data, were used as the training
set, and the last two cycles (years 1996–2016), as the
validation set. Both subsets cover a complete range in solar
activity, from cycle minimum to maximum and even varying
levels of maximums, with moderate and strong solar cycles.
The F30 data are shown in Figure 5.

3.2 Autoregression methods

Our initial attempts of forecasting were based on AR
models (Percival and Walden, 1993). The basic principle of an
AR model is to express the value of day D as a linear
f 17



Fig. 6. Performances of autoregressive (AR) and ARIMA models.
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combination of previous values, i.e. days D-1 to D-p, where p
is the order of the model. This order can be chosen as the
maximum lag for which the autocorrelation function of the
time series has significantly non-zero values, which is 23 days
in case of F30.

ARIMA (Auto Regressive Integrated Moving Average)
models are a more sophisticated version of AR models, where
one adds two orders, d and q: d is the order of differentiation of
the time series, and q is the moving average order. The ARIMA
(p, d, q) model can be expressed as:

∇dyt ¼
Xp
i¼1

ci∇
dyt�i þ dþ �t �

Xq
j¼1

uj�t�j

where yt is the value of the variable at time t,

∇dyt ¼ yt � yt�d;

ci is the AR coefficient of order i; d is the average of the
differentiated time series; �t is the model residual at time t; uj is
the moving average coefficient of order j.

There is generally no unique ARIMA model adapted to a
given time series, and the determination of the different orders
relies somewhat on empirical methods. We followed the
widely used one proposed by Box and Jenkins (1970). In the
case of the F30, several tests indicate an optimal differentiation
order d= 1, which minimizes the std of the series, and for
which the autocorrelation function has neither too many
positive values, nor too frequent changes in sign. The AR order
was chosen at p= 2, corresponding to the maximum lag where
the partial autocorrelation function has significant values.
Finally, determination of the order of the moving average was
not straightforward, an optimal value was found at q = 2 based
on systematic tests. The resulting ARIMA (2, 1, 2) model gives
results comparable to the AR (23) model, but more efficient,
with only 4 coefficients instead of 23. The approach to
diagnose model performances was to compute the Root Mean
Square Error (RMSE, also designated as RMS in this paper) for
each forecast horizon and to compare it to the RMSE of the
simple persistence model, which assumes all future values are
equal to the one last observed. Figure 6 presents the forecast
error for the AR, ARIMA and persistence models.
3.3 Neural networks methods

The main part of the modeling investigations is based on a
neural networks approach. A neural network is a mathematical
set of elements, each composed of an input vector xi, a weights
vector wi, a bias b and an activation function c such as its
output y is given by:

y ¼ c
Xp
i¼1

wixi þ b

 !

These elements, the neurons, are organized in layers
connected to each other: one network comprises an input layer,
one or several intermediate (or hidden) layers, and an output
layer. The learning process consists in adjusting weights so that
the output fits well the data. The use of neural networks in
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forecasting problems has been detailed by Zhang et al. (1998).
The implementation used in this study relies on a logistic
activation function for the hidden layer, and a linear one for the
output layer. Several model versions have been tested, in the
order of increasing complexity.

The minimal neural network to forecast solar radio flux has
a unique output which is the forecast for day Dþ 1. Since we
want to forecast the flux up to several days out, several
approaches are possible:
f

–

17
recursive structure: The minimal network is applied
recursively for each forecast step, where forecasted values
for day Dþ n are input data to compute the forecast for day
Dþnþ 1. This is the solution that requires the least
parameters, but there can be an error accumulation effect
for the longest forecast horizons, though it was not
significant below 30 days;
–
 successive structure: Each forecast horizon has an
independently adjusted network. This solution is longer
to compute since the number of parameters increases
linearly with the maximum forecast horizon, but each
network remains as simple as the minimal network;
–
 parallel structure: A single large network is built, in which
each forecast horizon is one of its outputs. In practice, this
solution is the simplest to use, but the size of the network
and consequently the large number of parameters makes
the optimization less efficient.
These three approaches have been tested, and their
performances are not significantly different. During the
following investigations, both the recursive and parallel
structures have been used.

The first optimization phase of the neural network model
has been orientated on the input data selection. Considering the
rotation period of the Sun of approximately 27 days and as
confirmed by the first investigations on AR models, the flux
forecast is sensitive to values until at least 27 days in the past.



Fig. 7. Performances of the optimized models: persistence, ARIMA,
mono-wavelength neural network (recursive) and multi-wavelengths
neural network (parallel).

Table 3. Optimization of the lags as input of the recursive neural
network model.

Iteration
number

Best lags
(days)

Relative RMS (dimensionless) RMS variation(%)

1 1 0.994 –

2 22 0.845 �15.06
3 5 0.788 �6.71
4 10 0.781 �0.87
5 7 0.780 �0.09

Table 4. Optimization of the wavelengths as input of the multi-
wavelength neural network model.

Iteration Wavelength Relative RMS
(dimensionless)

RMS variation

(%)

1 F30 0.796 –

2 F10.7 0.723 �9.16
3 F15 0.723 0.02
4 F8 0.719 �0.60
5 F3.2 0.729 1.42
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However, all values are not equally important for the forecast,
and due to model efficiency concerns, it is preferable to limit
the number inputs (and the parameters) to the necessary
minimum. To achieve that, the lags were selected iteratively
between 1 and 30 days, adding at each step the one minimizing
the forecast RMS. Since the model was designed to forecast
solar flux at different horizons in the future, a unique criterion
was needed to take into account all time horizons at once,
without giving too much weight to the farthest one out, which
have the largest errors. Thus, we used a mean over all horizons
of the ratio of the neural network model RMS to the persistence
model RMS, given by:

Relative RMS ¼ 1

n

Xn
horizon¼1

RMSNNETðhorizonÞ
RMSpersistenceðhorizonÞ

where n is the maximum forecast horizon.
Using this criterion, the simple recursive neural network

model did not need to have more than 5 inputs, the RMS
decreasing nomore than 1% starting from the 4th iteration. The
results of the successive iterations are listed in Table 3.

After having selected the most adapted input lags for the
F30 time series, the forecast could be further improved by
adding to the model inputs past values of other wavelengths of
the solar radio flux. These complementary wavelengths were
again added iteratively, each one with the same time lags as the
30 cm wavelength. A decrease in RMS of almost 10% was
achieved by combining the 4 longest wavelengths in the inputs,
though the main contribution was due to F10.7. The shortest
wavelength, 3.2 cm, did not allow any improvement, which is
consistent with its noisier behavior as mentioned in paragraph
2. Consequently, it was not included in the final model. Results
for this test are listed in Table 4. The performances of the
ARIMA model and the two NNET models (mono and multi-
wavelengths) are displayed in Figure 7.
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After having chosen the best input to forecast F30, the
second phase consisted in optimizing the more internal
parameters of the neural network such as the size of the hidden
layer, the maximum number of iterations during training or the
initialization of the weights.

During the input optimization phase, the number of
neurons in the hidden layer was arbitrarily fixed at 5, which is a
reasonable assumption considering the number of input
neurons (5 at first, then 20). A systematic computation of
the model RMS for all sizes of hidden layers from 1 to 50
neurons, as shown in Figure 8, indicates that the results are not
very sensitive to this parameter: the minimum error
corresponds to a size of 10 neurons, but with less than 2%
dispersion from 2 to 16 neurons. Finally, this parameter was set
at 7 neurons, a good compromise between model error and
network size.

The model was then tested for a possible overfitting: during
the model training, if the adjustment is too close to the training
set, the obtained model will have difficulties reproducing other
data sets. This is visible if the model applied on the test set has
an increasing error after a given number of training iterations.
In our case, there was no significant overfitting, but the
minimum model error on the test set was reached at 600
iterations, well before the final convergence of the model on
the training set. This is shown in Figure 9.

The last optimization test performed on the model was its
sensitivity to the initialization of the weights: before the neural
network training, its weights have to be randomly initialized in
order to avoid any systematic bias in the final solution. But
since there is generally no unique solution, and particularly,
since it is not always beneficial to let the model fully converge
during training because of overfitting, each set of random
initial weights leads to a slightly different solution. Probing 50
f 17



Fig. 8. Performances of the multi-wavelength neural network model
as a function of the hidden layer size.

Fig. 9. Performance of the multi-wavelength neural network model as
a function of number of iterations.

Fig. 10. Model RMS as a function of the moving average flux on 81
days, and its linear regression.
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sets of initial weights, the 43 best results have an error
dispersion of around 3%, which is obviously not negligible
compared to the previous optimization tests.

The neural network model development was focused on a 7
days forecast horizon. However, there is an interest for
operational applications in having 30 days forecasts. Since the
final multi-wavelength model has a parallel structure, with one
output neuron per forecast horizon, a 30 days model network is
intrinsically different from one for 7 days. All optimization
steps were run again, but it led to very little improvement: the
Page 8 o
30 days forecast obtained from a specific version has an error
of only 0.7% smaller than the 30 days forecast based on the
parameters of the 7 days version.

In order to estimate the error on forecasts of future values, a
simple statistical model was deduced from the relationship
between forecast model RMS and flux values. 81 days
exponential moving averages of both quantities show a strong
positive linear correlation, from which a linear regression can
be derived. Figure 10 illustrates the example of 1 day forecasts.

3.4 Comparison of model errors

During model development, only the global error over the
whole period of the validation set has been considered.
Analyzing the errors per year showed them to be positively
correlated with the level of solar activity, with an error 5–6
times larger in 2001 than in 2009. The distribution of the errors
between different models, however, does not significantly
depend on the year, except for the fact that all models give
almost similar performances during solar minimum, as
displayed in Figure 11.

At this point, the only diagnosis of the models was based
on the RMS, which only represents absolute values of the
errors. If we consider the mean error (estimated from the
difference between model and observations) then more
complex models appear to have greater biases than simpler
ones. At all forecast horizons, the multi-wavelength model is
significantly more biased than the 3 others: the mean
underestimation of the flux ranges from 0.3 sfu at a 1 day
horizon to 0.7 sfu at 7 days, when all the other models have no
significant bias at 1 day, and slightly overestimate of 0.1 sfu at
7 days (Fig. 12). However, for all models, the mean biases are
always 1 order of magnitude smaller than the RMS. The
different behavior of the multi-wavelength model also stands
out when considering the temporal evolution of the biases. As
shown in Figure 13, all models except this one evolve from a
f 17



Fig. 11. Performance per year of the optimized models at a 4 days
forecast horizon.

Fig. 12. Mean error (model–observation) as a function of the forecast
horizon.

Fig. 13. Mean error per year at a 4 days forecast horizon.
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negative bias during the ascending phase to a positive bias
during the descending phase, which is one can expect from
forecasts that, on average, lag behind observations. In the
meantime, the multi-wavelength model remains always
negatively biased, with an amplitude that roughly follows
the evolution of the cycle.

3.5 Comparison to NOAA F10.7 forecast

The results of the model developed for F30 have been
compared to F10.7 forecasts provided by the US Air Force,
which are published by the NOAA/SWPC (ftp://ftp.swpc.
noaa.gov/pub/latest/45DF.txt). These forecasts are currently
used on an operational basis by CNES in orbit prediction. The
comparison is focused on four different 365 days periods
picked inside the validation set, covering four different levels
of solar activity described in Table 5.

3.5.1 Results for F30

In order to compare F30 and F10.7 forecast errors, F30 is
rescaled to F10.7 values. The transformation considered is the
one used by the thermosphere density model DTM-2013,
which takes F30 scaled to F10.7 as input (cf. Sect. 4):

F30scaled ¼ �1:5998þ 1:553755 � F30

The comparison is based on the mean error and std of the
error, computed here as “observation � forecast”. When
comparing both quantites, F30 forecast performances are as
good as F10.7 ones during low solar activity, and significantly
better during the three other periods (Fig. 14). The F30 also
gives logically better results when comparing maximum error,
and accumulated error over all forecast horizons, a quantity
that better represents the error during orbit calculations.
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3.5.2 Results for F10.7

The same comparison was performed between NOAA
F10.7 forecast and a F10.7 forecast obtained using the same
method as for F30, i.e. with a neural network based model, and
all the radio wavelengths as input. The error is also lower for
this new model than with the NOAA model for all
configuration of solar activity, especially during high activity
with an improvement of 15%. However, the gain in
performances is less evident than with F30, especially during
low and decreasing solar activity. Besides, our model is more
f 17
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Table 5. Periods of various levels of solar activity used for comparison to NOAA F10.7 forecast.

Solar activity High Decreasing Low Increasing

Begin date 30 Sept 2001 31 Aug 2003 17 Jan 2008 01 May 2011

End date 30 Sept 2002 30 Aug 2004 16 Jan 2009 30 Apr 2012

Fig. 14. Mean and þ/� 1 standard deviation of error for scaled F30 (blue) and NOAA F10.7 forecast (red), during 4 periods of different solar
activity (from left to right and top to bottom: high, decreasing, low, increasing).

Page 10 of 17
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Fig. 15. Mean andþ/� 1 standard deviation of error for our F10.7 forecast (green) and NOAA F10.7 forecast (red), during 4 periods of different
solar activity (from left to right and top to bottom: high, decreasing, low, increasing).
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biased than the NOAA model during low solar activity period
(Fig. 15).

4 Thermosphere density model

Semi-empirical thermosphere models are used in satellite
orbit determination and prediction programs to compute the
atmospheric drag force, as well as in upper atmosphere studies.
They predict temperature and (partial) density as a function of
the location (altitude, latitude, longitude, local solar time),
solar and geomagnetic activities, and day-of-year. The first
Drag Temperature Model, DTM-78 (Barlier et al., 1978), was
Page 11
developed in the seventies; its most recent version is DTM-
2013 (Bruinsma, 2015).

The DTM models are constructed by fitting to the
underlying density database, which is considerably larger and
more accurate for DTM-2013 than for DTM-78, to reproduce
the climatology of the thermosphere. The spatial resolution of
the models is of the order of thousands of kilometers. The
solar proxy used in DTM-2013 is F30 instead of F10.7, which
has improved modeling performance during the solar cycle
minimum in 2008–2009, even if density is still being
overestimated, as well as for the years 2010–2011. The
density at about 800 km altitude in the interval 1992–2011 can
of 17



Fig. 16. Example of along track error at high activity period on 30 days of extrapolation (left fig.) and distribution function of the along track
error after 30 days (right).
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also be more accurately reproduced thanks to F30 (Bruinsma,
2015). The switch to F30 was made based on a study by
(Dudok de Wit et al., 2014), in which test models were
developed with F10.7 and F30; the results were clearly in
favor of F30, which had 7% lower RMS of the observed-to-
modeled density ratios.

Recently, the part of F30 versus F10.7 in the improvement
of thermosphere modeling was analyzed more in detail and
quantified in (Dudok de Wit and Bruinsma, 2017). They
reported up to 20% smaller model bias, a better stability of the
bias over time, and variations at the solar rotation period being
reproduced with 35–50% smaller errors.

5 Contribution of the new indices to orbit
extrapolation

In this section, we intend to evaluate the contribution of the
F30 prediction to the orbit extrapolation using the DTM-2013
atmosphere density model (see Sect. 4). The theoretical along-
track error is estimated for the four periods described at the end
of Subsection 3.5 with our F30 and F10.7 predicted series. This
error is compared to the along-track error obtained with the
NOAA F10.7 predicted indices. It shall be noticed that the
estimated errors cover only the uncertainty of the predicted
solar flux. It is an important part of the error, but other
contributions have to be taken into account to estimate the
whole orbit prediction error: the uncertainty of predicted
geomagnetic coefficients, the intrinsic accuracy of the density
model and the drag characteristics of the spacecraft.

The goal is to estimate how our predictions of the solar flux
influence satellite position on the orbit path. To this aim, only
the solar fluxes used are different in the comparison: on the one
hand we use the observed fluxes and on the other hand the
predicted ones. We choose to use the DTM-2013 atmospheric
density model as it is able to exploit either the F30 or the F10.7
as an input. The Ap geomagnetic coefficients are the predicted
series from NOAA. The chosen orbit is quasi circular, sun-
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synchronous at an altitude of 600 km and the satellite ballistic
coefficient is fixed to 0.01 kg.m�2. As the variation of the semi
major axis is proportional to this coefficient and to the
atmospheric density, one can compute its time derivative using
the extrapolated solar flux or the observed solar flux. Finally,
the third Kepler law leads to establish the following equation:

D€a ¼ � 3:n:D _a
2:a

where D stands for the difference between real and predicted
values; a is the position on orbit; n is the mean motion of the
satellite orbit; a is the semi major axis of the satellite orbit.

A double numerical integration gives Da which corre-
sponds to the along track error. A positive error means the
predicted position is behind the real one, with a longer orbital
period, indicating that the atmospheric density (and therefore
the solar flux) was underestimated. A negative error
corresponds to an overestimated solar flux.

Four periods of distinct solar activity are considered in this
analysis (same as Tab. 5), and the prediction horizon ranges
from 1 to 30 days. In addition to the F30 and F10.7
extrapolated time series computed at CLS, we use the F10.7
extrapolated by NOAA as a reference. An example at high
solar activity is given in Figure 16. On the left side the mean
and std of the along-track error is represented on 30 days for
F30/CLS compared with F10.7/NOAA. On the right side, the
function distribution of the along-track error after 30 days is
represented for F10.7/CLS compared with F10.7/NOAA.

Complete statistics are given in Figure 17 including
respectively the absolute value of the mean error, the std, the
absolute value at 1% percentile (expressing the minimum
value) and the value at 99% percentile (expressing the
maximum value). The latter is interesting as it is commonly
used as a proxy in mission analysis

The more important period is the one with the highest solar
activity, as the prediction is much more difficult than for the
lower activity period. Concerning the mean error, it is a bit less
of 17



Fig. 17. Statistics on along-track error in km after 7 days (upper figs.) and 30 days (lower figs.) of extrapolation, for four different level of of solar
activity.

P. Yaya et al.: J. Space Weather Space Clim. 2017, 7, A35
when using the F30 indices, either at 7 or 30 days. However the
biases are negligible compared to the variability of the along-
track error, expressed by the std. At 7 days, the std values are
quite the same for the three tests. But at 30 days, the error using
the F30 series is dramatically lower than when using the F10.7
from NOAA. The std is about 40% lower (127 km compared to
211 km). As for the extreme values, CLS predictions (F30 and
F10.7) and NOAA predictions perform equivalently after 7
days. But after 30 days, like the stds, the error is 40% lower
with the F30 indices compared to the F10.7 from NOAA.

On the period during descending solar activity, the std of
the along track error is slightly better with the F30 indices,
whatever the horizon. The extreme negative (labeled “|min|
1%” in Fig. 17) error values with F30 are also better by 15%
than with F10.7 from NOAA. As for the extreme positive
(labeled “max 1%”) values, they are all much bigger than the
negative ones, indicating that the solar flux predictions are
generally underestimated during the descending phase of the
solar cycle. The maximum error at 7 days using F30 is
especially quite high (15% above the error with F10.7 from
NOAA). After 30 days, on the contrary, the F30 performs more
than 20% better than the F10.7 from NOAA.

On the ascending and the low periods of the solar activity,
the performances of the three configurations are quite similar.
However it should be noticed a small advantage to the F30
indices, as its resulting along-track error is systematically
equal or slightly better than the error with F10.7 from NOAA.

6 Conclusions

A prototype service delivering nowcasts and forecasts of
radio solar fluxes at five wavelengths, from 3.2 cm (F3.2) to
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30 cm (F30), has been operational at CLS since May 2016 and
accessible at ftp://ftpsedr.cls.fr/pub/previsol/solarflux. The
archive starts on November 1st, 1951, and new values are
added on a daily basis, at 04:00UT. The processing consists
first in filling the gaps and correcting the spurious data based
on an expectation–maximization method. Next, we forecast
the five fluxes up to 30 days ahead by using an analogue neural
network. The relative performance for F30, in terms of std of
the error, can be as much as 25% better after 7 days than that of
the present F10.7 forecast by NOAA, with a marked
improvement at high solar activity. When applied to the
F10.7, our forecast method is also better (still in terms of std)
whatever the level of the solar activity. It reaches a 15%
improvement rate during high solar activity. When applied to
orbit error estimation with DTM-2013 thermospheric model,
our F30 predictions result in lower error than the F10.7 from
NOAA. The improvement is noteworthy during periods of
high solar activity and for the longest prediction horizons: the
difference in along-track error reaches 40% after 30 days
during solar cycle 23 maximum. Future plans include the
replacement of the empirical forecast by a physical one that
relies on magnetic flux transport at the photospheric level.
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Appendix

This appendix describes the infrastructure of the service,
including the data flow, the data organization on the server and
the content of the files.

The data are stored on the following CLS ftp server: ftp://
ftpsedr.cls.fr/pub/previsol/solarflux. They are also accessible
on https://spaceweather.cls.fr/services/radioflux/ by following
the links at the bottom of the web page. The main steps of the
data processing, as described in Figure 18, are:
F

–

ig
flux acquisition from Nobeyama and Penticton;

–
 interpolation in case of data gap;

–
 flux correction in case of eruptive effect;

–
 computation of predicted fluxes (and associated error) with
neural network;
–
 file formatting of the observed and predicted data;

–
 deposit of the files on CLS FTP server.
On CLS ftp server, the files are organized as described in
Figure 19. The files are split into two main categories: the files
in the “observation” folder contain only the observed data
(whether they are final or provisional), and the ones in the
“forecast” folder contain the predicted solar flux on 30 days,
preceded by 81 days of observations (whether final or
provisional).

The data are given both at 1 Astronomical Unit (TYPE=
“adjusted”), and at the real Sun-Earth distance (TYPE=
“absolute”). The absolute flux is obtained from the adjusted
flux with the following formula:

f abs ¼
R0

R

� �2

f adj

where R0 is the distance corresponding to 1 Astronomical Unit;
R is the Sun-Earth distance, given by Zdunkowski et al. (2007):
. 18. Schematic view of the data flow of CLS service.

Page 15
R ¼ 1:00011þ 0:034221 cosðuÞ þ 0:00128 sinðuÞ
þ 0:000719 cosð2uÞ þ 0:000077 sinð2uÞAU

where:

u ¼ 2p d � 1ð Þ
365:25

d being the day in the year.
The content of each file is described hereafter. They all

have the same structure: 25 header lines (slightly different for
the observation and the forecast), followed by the data with one
line per day and organized in 24 rows as follow:

4 rows for the date:
o

–

f 1
year;

–
 month;

–
 day;

–
 CNES Julian day (days since 01/01/1950 at 0hUT).
4 rows for each of the five wavelengths (30, 15, 10.7, 8
and 3.2 cm):
–
 observed flux from the radio-astronomical stations
(including interpolated values in case of data gaps) for
the past days, and “�1” for the future days;
–
 observed flux (including interpolated values) corrected for
flare effect for the past days, and extrapolated flux
computed by the neural network algorithm for the future
days;
–
 error on the flux value: precision for the observed flux (as
computed in) or RMS for extrapolated flux;
–
 flag indicating the processing applied (see header for
detail).
7
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Fig. 19. Organization of folders and files on CLS ftp server.

Fig. 20. Example of a radio flux file formatted by CLS.
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In the “observation” files the final data range from 01/11/
1951 (start of the Japanese measurements) to the end of month
M-3 or M-2, M being the current month, and the provisional
data range from the beginning of month M-2 or M-1 to the eve
Page 17
of the current day. In the “forecast” files, the number of lines is
fixed: there are 81 days (3 solar rotations) of observed values
and 30 days of forecast values. An example of a forecast file is
given in Figure 20.
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