
HAL Id: insu-01695303
https://insu.hal.science/insu-01695303

Submitted on 1 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global models underestimate large decadal declining
and rising water storage trends relative to GRACE

satellite data
Bridget R. Scanlon, Zizhan Zhang, Himanshu Save, Alexander Sun, Hannes
Müller Schmied, Ludovicus van Beek, David N. Wiese, Yoshihide I Wada, Di

Long, Robert Reedy, et al.

To cite this version:
Bridget R. Scanlon, Zizhan Zhang, Himanshu Save, Alexander Sun, Hannes Müller Schmied, et
al.. Global models underestimate large decadal declining and rising water storage trends relative
to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of
America, 2018, 115 (6), pp.E1080-E1089. �10.1073/pnas.1704665115�. �insu-01695303�

https://insu.hal.science/insu-01695303
https://hal.archives-ouvertes.fr


Global models underestimate large decadal declining
and rising water storage trends relative to GRACE
satellite data
Bridget R. Scanlona,1, Zizhan Zhangb, Himanshu Savec, Alexander Y. Suna, Hannes Müller Schmiedd,e,
Ludovicus P. H. van Beekf, David N. Wieseg, Yoshihide Wadaf,h, Di Longi, Robert C. Reedya, Laurent Longuevergnej,
Petra Dölld,e, and Marc F. P. Bierkensf

aBureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78758; bState Key Laboratory of Geodesy and Earth’s
Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 43007, China; cCenter for Space Research, University of Texas at
Austin, Austin, TX 78758; dInstitute of Physical Geography, Goethe University, 60438 Frankfurt am Main, Germany; eSenckenberg Biodiversity and Climate
Research Center, 60325 Frankfurt am Main, Germany; fDepartment of Physical Geography, Utrecht University, 3584 CS Utrecht, The Netherlands; gJet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109; hInternational Institute for Applied Systems Analysis, A-2361 Laxenburg,
Austria; iDepartment of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; and jGéosciences Rennes, Université de Rennes, 35042 Rennes
Cedex, France

Edited by Zbigniew W. Kundzewicz, Potsdam Institute for Climate Impact Research, Potsdam, Germany, and accepted by Editorial Board Member Hans J.
Schellnhuber December 7, 2017 (received for review March 20, 2017)

Assessing reliability of global models is critical because of increasing
reliance on these models to address past and projected future climate
and human stresses on global water resources. Here, we evaluate
model reliability based on a comprehensive comparison of decadal
trends (2002–2014) in land water storage from seven global models
(WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM)
to trends from three Gravity Recovery and Climate Experiment
(GRACE) satellite solutions in 186 river basins (∼60% of global land
area). Medians of modeled basin water storage trends greatly un-
derestimate GRACE-derived large decreasing (≤−0.5 km3/y) and in-
creasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are
mostly related to human use (irrigation) and climate variations,
whereas increasing trends reflect climate variations. For example, in
the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y,
whereas most models estimate decreasing trends (−71 to 11 km3/y).
Land water storage trends, summed over all basins, are positive for
GRACE (∼71–82 km3/y) but negative for models (−450 to −12 km3/y),
contributing opposing trends to global mean sea level change. Im-
pacts of climate forcing on decadal land water storage trends exceed
those of modeled human intervention by about a factor of 2. The
model-GRACE comparison highlights potential areas of future model
development, particularly simulated water storage. The inability of
models to capture large decadal water storage trends based on
GRACE indicates that model projections of climate and human-
induced water storage changes may be underestimated.

global hydrological models | land surface models | GRACE satellites |
terrestrial total water storage anomalies | global mean sea level

There has been an unprecedented increase in evaluation of
global hydrology using models, as seen in the exponential

increase in publications on these topics. For example, an In-
stitute for Scientific Information Web of Science search of the
topic “global hydrological models” (GHMs) yielded almost
4,000 papers since the year 2000 with ∼100,000 citations. How-
ever, many studies of global hydrology are based on single
models. Although there are more and more multimodel studies,
such studies are rarely used to explain historical trends. The
greatly increased emphasis on global hydrology raises questions
about the reliability of these models.
Understanding the origin of the global models is important because

current applications of models may differ from the original model
development goals. The term global hydrological models has been
used to include both global land surface models (LSMs) and global
hydrological and water resource models (GHWRMs) (1, 2). LSMs are
defined as models that are integrated into general circulation models
(3) and were originally developed by the atmospheric community to

simulate fluxes from the land to the atmosphere because of linkages
between the land surface and climate (1). Because of their emphasis
on fluxes, LSMs may not accurately simulate water storage changes
(4). GHWRMs were developed in response to global water scarcity
concerns (1). Therefore, one of the primary differences between
LSMs and GHWRMs is the more physical basis for LSMs, including
water and energy balances, relative to the empirical water budget
approaches of GHWRMs. In addition, GHWRMs model human
water use, whereas most LSMs do not.
Remote sensing products are also used to assess global hydrol-

ogy, such as Gravity Recovery and Climate Experiment (GRACE)
satellite data (5). GRACE satellites have been likened to giant
weighing scales in the sky that monitor monthly changes in mass as
water storage increases or decreases related to climate variability
and human impacts. GRACE satellites provide data on continental
total water storage anomalies (TWSAs) globally since the satellites
were launched in 2002. These satellites provide a more direct es-
timate than models of global changes in TWSAs that are derived

Significance

We increasingly rely on global models to project impacts of hu-
mans and climate on water resources. How reliable are these
models? While past model intercomparison projects focused on
water fluxes, we provide here the first comprehensive compari-
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from monitoring the time variable gravity field (5). The coarse
spatial resolution of GRACE data (∼100,000 km2) may actually
be a benefit when estimating changes in TWSAs at continental to
global scales. GRACE data are considered to provide the “big
picture” in terms of global water storage (6).
Quantifying global water storage trends from models or GRACE

satellites is critical for assessing water availability. Land or terres-
trial total water storage (TWS) includes the following components:

TWS= SnWS+CWS+ SWS+ SMS+GWS, [1]

where SnWS refers to snow water storage, CWS is canopy water
storage, SWS is surface water storage, SMS is soil moisture
storage, and GWS is groundwater storage. Land water storage,
defined by the Intergovernmental Panel on Climate Change
(IPCC) as all components excluding glaciers and ice sheets
(Greenland and Antarctica) (7), is equivalent to TWS in this
study. By integrating all water storage components, TWS can
be used to estimate water availability, which is critical for water
resources management. Changes in continental TWS affect the
water balance between land and oceans, impacting sea level
changes (8). TWS changes are also used to evaluate climate
extremes, including floods and droughts (9, 10). Surface water
(SW) and groundwater (GW) are critical for human use and
irrigation, whereas SM is essential for natural vegetation and
crop production. Many LSMs only simulate snow and SMS com-
partments, whereas most GHWRMs simulate all storage com-
partments, excluding glaciers (Eq. 1 and Table 1).

Important Role of Models and Remote Sensing in Global
Hydrology
Applications of these global products are continually increasing.
As Bierkens (1) highlights, GHWRMs are an integral part of
global assessments of water resources conducted within the Global
Water Systems Project; United Nations Educational, Scientific,
and Cultural Organization World Water Assessment Program;
and United Nations Environment Program Environmental Out-
look. GHWRMs are used to evaluate global water availability and

sustainability (11), water scarcity (12), and GW depletion (13, 14).
Global Land Data Assimilation System (GLDAS) LSMs have
been used to provide model initialization for forecasting (15) and
for comparison to remotely sensed observations (16). Models have
been used to assess the contribution of land TWSAs to global
mean sea level (GMSL) change (17, 18). Models are required to
develop projections of the impacts of climate change and human
intervention on water resources (2, 19).

Reliability of GRACE Data and Global Models for Estimating
Water Storage Trends
GRACE data have been used to validate global model output in
many studies (20–22); however, some question the reliability of
GRACE data for model validation. Advances in GRACE pro-
cessing from traditional spherical harmonics to more recent mass
concentration (mascon) solutions have increased the signal-to-
noise ratio and reduced uncertainties (23–26). Changes in gravity
monitored by GRACE satellites are interpreted as changes in
water storage; however, declining TWSA trends in melting gla-
ciers could reduce trends in neighboring basins because of leakage
(SI Appendix, Fig. S1).
Model reliability is increasingly being evaluated using model

intercomparison projects (MIPs). Recent studies have compared
GHWRMs and LSMs for quantifying impacts of past and pro-
jected future climate on water resources (2, 27). Within the
Water-MIP, results for naturalized flows [no human intervention
(NHI)] (i.e., human water abstractions, reservoir management)
from six LSMs and five GHWRMs forced with common climate
data (1985–1999) show up to 40–60% variation in fluxes
[evapotranspiration (ET): 60,000–85,000 km3/y, runoff: 42,000–
66,000 km3/y] (27). The Inter-Sectoral Impact-MIP (ISIMIP;
www.isimip.org) assesses climate impacts on water resources
using 11 models, mostly GHWRMs (9), forced with a consistent
set of global climate models (28). The ISIMIP shows that un-
certainties in GHMs are as large as those in global climate
models in some studies (2).

Study Objective
The objective of this study was to address the following questions:

i) How do modeled water storage trends compare with those
from GRACE solutions?

ii) How does human intervention impact global water
storage trends?

iii) How well can we estimate the net impact of land storage
trends on GMSL change?

(i) While hydrological MIPs have focused on water fluxes
(e.g., ET, runoff) (19, 27) to date, we compare modeled ap-
proximately decadal TWSA trends (2002–2014) with trends
from GRACE satellites to provide a comprehensive assessment
of model reliability using TWSA. This study builds on a pre-
vious study that compared TWSA trends among different
GRACE solutions (25). The focus on decadal TWSA trends
(April 2002–December 2014) is important for future impact
assessments related to climate and human intervention but
contrasts with many previous model-GRACE comparisons that
emphasize raw time series or seasonal variations (16, 21, 22).
(ii) Evaluating impacts of human intervention on water storage
trends is important for estimating future impacts but was not
considered in the Water-MIP (27). This study focuses on past
climate forcing on water storage trends, whereas many ISIMIP
studies focus on impacts of climate projections on water fluxes
(2, 28). Specific aspects of the current study include use of
greatly improved GRACE mascon solutions (SI Appendix,
section 2), whereas many previous studies relied on tradi-
tional GRACE spherical harmonic solutions that use LSMs in
data processing (16, 21, 22, 29); inclusion of two widely used
GHWRMs (WGHM and PCR-GLOBWB), along with five
LSMs (GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) (SI
Appendix, section 3); and analysis of 186 river basins relative to

Table 1. Summary of attributes of different models used in
this study

All models include SWS, CWS, and SMS compartments. C, CLSM-F2.5; CLM,
CLM-4.0; CMAP, SI Appendix Acronyms; Hum. Int., human intervention; M,
MOSAIC; N, NOAH-3.3; P, PCR-GLOBWB; Precip., precipitation; Soil lay. (no.),
number of soil layers; SW rout., SW routing; V, VIC; W, WGHM.
*Soil thickness for WGHM ranges from 0.1 to 4.0 depending on land use type.
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many previous studies that were limited to the largest 30–50 basins
(21, 29) (Fig. 1). (iii) Many previous studies estimated land water
storage impacts on sea level change from single models (17, 18,
30)* or GRACE data (31), whereas we use multiple models and
GRACE solutions here. Global models have many degrees of
freedom and are too complex to reliably isolate causes of differ-
ences between models and GRACE, as suggested in previous
model intercomparisons (27, 32). However, we used output from
the suite of models to assess impacts of storage compartments and
capacity, climate forcing, and model calibration on modeled
TWSA trends. This comprehensive comparison of TWSA trends
from models and GRACE should provide a preliminary assess-
ment of model-GRACE TWSA trends that can be used to guide
future model development and GRACE processing.

Results and Discussion
All acronyms are defined at the beginning of the SI Appendix.
The GRACE solutions and models compared in this study are
shown in a schematic (Fig. 2). The 186 river basins (83 × 106 km2)
cover ∼63% of the total global land area, excluding Antarctica and
Greenland. Basin areas range from 40,000–6,234,000 km2 (Ama-
zon; Fig. 1). Model attributes are provided in Table 1 and SI
Appendix, Table S2 and are described in SI Appendix, section 3.

How Do Modeled TWSA Trends Compare with Those from GRACE
Solutions? Global maps show mostly consistent TWSA trends
for basins among the three GRACE solutions, with large dif-
ferences among solutions for a limited number of basins (e.g.,
Mississippi, Parana, Yangtze, Nile basins) (Fig. 3 A–C and Table
2). TWSA trends refer to linear trends based on regression
analysis (SI Appendix, section 1). The focus is on volumetric
TWSA trends (cubic kilometers per year) because this study
emphasizes continental- to global-scale TWSA trends; however,
basin-averaged trends in equivalent water thickness (millimeters
per year) are also provided (SI Appendix, Fig. S7 and Table S4).

All models generally underestimate GRACE-derived TWSA trends
(Fig. 3D–I). For example, the largest GRACE-based TWSA declining
trend is found in the Ganges (−12 to −17 km3/y), with WGHM
underestimating the trend (−6.6 km3/y) and PCR-GLOBWB
yielding the opposite trend (4.8 km3/y). LSMs yield a large range
in TWSA trends for the Ganges (−5.3 to 7.4 km3/y). Models also
underestimate the largest GRACE-based TWSA rising trend in
the Amazon (41–44 km3/y), with WGHM simulating a lower trend
(11 km3/y), whereas PCR-GLOBWB and all LSMs yield opposite
trends [PCR-GLOBWB (−67 km3/y) and LSMs (−71 to −1 km3/y)].
Many of the LSMs seem to be dominated by declining trends, as
shown by the predominance of red colors in the global maps, but
less so in VIC and CLM-4.0 (Fig. 3 D–G). Similarity in global maps
of TWSA trends in millimeters per year (SI Appendix, Fig. S7) and
cubic kilometers per year (Fig. 3) indicates that the TWSA volu-
metric trends do not simply reflect variations in basin areas.
Ranking TWSA trends based on the GRACE Center for Space

Research–Mascons data (CSR-M) shows TWSA trends ranging
from large decreasing trends (≤−0.5 km3/y) [largest decline in
Ganges (−12 km3/y)] to large increasing trends (≥0.5 km3/y)
[largest rise in Amazon (43 km3/y)] (Fig. 4B and Table 2).
GRACE CSR-M output was selected for reference because
models were not used in processing CSR-M data and there is no
confusion in comparing model output with GRACE CSR-M
trends. However, uncertainty from all three GRACE solutions,
along with other uncertainties, is shown in the gray-shaded region
surrounding the CSR-M data (Fig. 4B) described below in the
section on uncertainties in TWSA trends from GRACE and in SI
Appendix, section 4. Basins with large trends in cubic kilometers
per year also correspond to basins with large trends in millimeters
per year (Table 2 and SI Appendix, Table S4). Throughout this
paper, large decreasing and increasing TWSA trends refer to these
basins ranked according to CSR-M in cubic kilometers per year.
Decreasing TWSA trends are found mostly in irrigated basins
(Fig. 4C) and in basins in northern latitudes (Table 2). Models
underestimate median GRACE-derived decreasing TWSA trends
(−2.2 to −1.5 km3/y) by up to a factor of ∼20 in GHWRMs
[WGHM (−0.1 km3/y) and PCR-GLOBWB (−0.3 km3/y)] (Fig.
4 A and B and Table 3). Median decreasing trends in LSMs are
also less negative than those from GRACE but much more
variable (−1.4 to −0.4 km3/y).
Increasing TWSA trends are found primarily in nonirrigated

basins (Fig. 4C), mostly in humid regions (Table 2), and may be
related to climate variations. Models also underestimate median
GRACE increasing trends (1.6–2.1 km3/y) by up to a factor of
∼8 in GHWRMs (0.3–0.6 km3/y) (Fig. 4B and Table 3). Un-
derestimation of GRACE-derived TWSA increasing trends

Fig. 1. River basins (n = 186) examined in this study, with areas based on the
Total Runoff Integrating Pathway (TRIP) database, with the 42 largest river
basins (>500,000 km2) numbered and the associated aridity index (AI) based on
the Koppen classification [14 basins in the arid class (AI: 0.0–0.2), 48 in the
semiarid class (AI: 0.22–0.50), 20 in the subhumid class (AI: 0.50–0.65), and
104 in the humid class (AI > 0.65)]. The numbered river basins include the
following: 1, Amazon; 2, Congo; 3, Mississippi; 4, Ob; 5, Parana; 6, Nile; 7,
Yenisei; 8, Lena; 9, Niger; 10, Amur; 11, Yangtze; 12, Tamanrasset; 13, MacKenzie;
14, Volga; 15, Zambezi; 16, Lake Eyre; 17, Nelson; 18, St. Lawrence; 19,
Murray; 20, Ganges; 21, Orange; 22, Indus; 23, Chari; 24, Orinoco; 25,
Tocantins; 26, Yukon; 27, Danube; 28, Mekong; 29, Okavango; 30, Victoria;
31, Huang He (Yellow River); 32, Euphrates; 33, Jubba; 34, Columbia; 35,
Arkansas; 36, Brahmaputra; 37, Kolyma; 38, Colorado; 39, Rio Grande; 40,
Sao Francisco; 41, Nullarbor; and 42, Dnieper (SI Appendix, Table S3).

Fig. 2. Schematic depicting the data sources and analyses conducted in this
study. See SI Appendix for acronyms. The water budget equation includes
input from precipitation (P, snow and rain) and simulated output fluxes, in-
cluding ET, runoff (Q), and extraction (EX). The storage compartments from
which the fluxes derive include CWS, SWS, and SMS; Q from SWS; human EX
from SWS and GWS; and residual total water storage (TWS), including all
storages. Change in TWS (ΔTWS) is calculated as a residual, accumulating er-
rors from all of the fluxes. GRACE estimates change in TWS more directly.

*van Beek LP, Wada Y, Bierkens MFP (2011) Global depletion of groundwater resources
and its contribution to sea-level rise. Fall American Geophysical Union Meeting, 2011,
abstr H14B-0.
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is much greater for LSMs, with four of the five LSMs yielding
opposite trends (i.e., median negative rather than positive trends)
(Fig. 4A and Table 3). The closest agreement between GRACE
and LSMs is found in the CLM-4.0 model output. Box plots show
strong overlap in the interquartile range (IQR) for the GRACE
solutions, indicating good agreement, but much less IQR overlap
between models and GRACE, particularly for the increasing
TWSA trends (SI Appendix, Fig. S10). Decreasing and increasing
trends from all three GRACE solutions are from the same pop-
ulation based on the Kruskal–Wallis nonparametric analysis of
variance test (33) (SI Appendix, Table S7). This test also shows
that many of the models and GRACE solutions are from the same
population for the GRACE TWSA decreasing trends but from
different populations for the increasing GRACE TWSA trends.

Comparison Between Modeled and GRACE-Derived TWSA Trends for
Selected Basins. TWSA time series are shown for selected basins
with decreasing and increasing trends (Fig. 5 and Table 2), with
larger plots and additional basins shown in SI Appendix, Fig. S9.
Models do not track the GRACE TWSA output in many of the
basins. For example, there are large discrepancies between models
and GRACE throughout the Ganges time series, with model output
being relatively flat, underestimating both the highs in the early time
series and the declines in the later time series. Similar results are
found for the neighboring Indus and Brahmaputra basins, with all
three basins corresponding to well-known hotspots of depletion
attributed to irrigation (34, 35). GRACE-derived trends range
from −7 to −17 km3/y in these basins, with a much larger range in
trends from models [e.g., PCR-GLOBWB: Indus (−38 km3/y),
Ganges (+5 km3/y)]. The Hai Basin is unusual in that both WGHM
and PCR-GLOBWB overestimate GRACE-derived TWSA de-
clines. WGHMwas specifically calibrated for the Hai Basin because
of much greater depletion in the original version (−56 km3/y; SI
Appendix, section 3.1). GRACE-based decreasing TWSA trends in
the Euphrates (−11 to −15 km3/y), related to the 2007–2009 drought
and irrigation (36, 37), are consistently underestimated by all models.
Models underestimate GRACE-based TWSA increasing trends

more than decreasing trends. All models underestimate GRACE-

derived trends in the Amazon (41–44 km3/y), with negative
trends in six of the seven models down to −71 km3/y (Table 2).
Increasing GRACE trends are also found in surrounding basins
[e.g., GRACE, Orinoco, Parana (2–11 km3/y)], with most models
yielding negative trends. Models greatly underestimate the in-
creasing trends in Africa, particularly in southern Africa. GRACE-
derived increasing TWSA trends in the Okavango and Zambezi
basins (8–16 km3/y) are related to rising precipitation, consistent
with previous GRACE regional studies (38). All models un-
derestimate the rising trends in these basins (−5 to 3 km3/y).
GRACE-derived increasing TWSA trends in the midlatitudes in
North America [Mississippi: CSR-M and NASA Jet Propulsion
Laboratory–Mascons (JPL-M) (7–10 km3/y)] may be related to
flooding (39) but some models yield opposite trends [e.g.,
WGHM (−9 km3/y)]. Increasing GRACE-derived TWSA
trends in the Murray Basin in southeast Australia (6–9 km3/y),
attributed to flooding in 2010 after the millennial drought, are
underestimated by models (−5 to 6 km3/y) (40). TWSA trends
from GRACE in northeast Asia are generally increasing [Amur
and Yenisei (4–9 km3/y)] (41), but many models show decreasing
trends, particularly in the Yenisei.
Modeled and GRACE-derived TWSA trends were also com-

pared using regression analysis for basins with decreasing and in-
creasing GRACE-derived TWSA trends (94 basins) (SI Appendix,
Table S6B). Perfect agreement between modeled and GRACE
trends would result in an r2 value of 1.0 and a slope of 1. Values of r2

are generally low and close to 0.0 for many comparisons. Low re-
gression slopes for WGHM versus GRACE (0.24–0.28) indicate
large underestimation of GRACE-derived TWSA trends, and neg-
ative slopes for PCR-GLOBWB (−0.46 to −0.66) indicate opposite
trends to GRACE. The LSMs MOSAIC, VIC, and CLSM-
F2.5 have negative slopes with values as low as −0.85 for MOSAIC,
while the LSMs NOAH-3.3 and CLM-4.0 have slopes up to 0.10,
indicating large underestimation of GRACE TWSA trends.
Intermodel comparisons of TWSA trends based on regression

analysis show poor agreement between GHWRMs and LSMs
based on all 181 basins (SI Appendix, Table S8). Values of r2 for
LSMs vs. WGHM are ≤0.08 and slightly higher for LSMs vs.

Fig. 3. TWSA trends expressed in volume (cubic kilometers per year) from three GRACE solutions: CSR-M (A), JPL-M.dsf (B), and CSR-Tellus-gridded spherical
harmonic with scaling factor (CSRT-GSH.sf) (C); four LSMs: VIC (D), NOAH-3.3 (E), CLSM-F2.5 (F), and CLM-4.0 (G); and two GHWRMs: WGHM (H) and PCR-
GLOBWB (I). Output from MOSAIC is not shown because of space restrictions.
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PCR-GLOBWB (≤0.21). Slopes of regression between LSMs and
GHWRMS are quite variable depending on the model (−0.76 to
0.55). Even similar model types show poor agreement (GHWRMs
PCR-GLOBWB vs. WGHM: r2 = 0.01, slope = −0.39) (SI Ap-
pendix, Fig. S11). The scatter plot between PCR-GLOBWB and
WGHM highlights some large outliers in the Amazon, Orinoco,
and Indus basins. Values of r2 among LSMs are quite variable, and
some higher values may result from similarity in model structures
and forcing within GLDAS 1.0 and GLDAS 2.1 model groups.

What Are the Uncertainties in TWSA Trends from GRACE?Differences
between models and GRACE TWSA trends may result from
uncertainties in GRACE data (SI Appendix, section 4). Generally

good agreement in TWSA trends from the different GRACE
solutions, with slopes close to 1 (range: 0.8–1.1) and high r2

values (range: 0.85–0.94), provides confidence in the GRACE
trend estimates (SI Appendix, Table S6A). Decreasing and in-
creasing TWSA trends in TWSA from JPL-M tend to be larger
than those from CSR-M, as shown by more intense colors in the
global maps (Fig. 3 A and B) and slightly larger net trends from
JPL-M relative to CSR-M trends (Table 3).
GRACE measurement and leakage uncertainties increase with

decreasing basin size (25). The focus of this study is on large
decadal TWSA trends, which are mostly found in large basins
exceeding 100,000 km2 (Fig. 4 B and D), with lower measurement
and leakage uncertainties (SI Appendix, Figs. S3 and S4 and

Table 2. Approximately decadal (2002–2014) trends in TWSA in cubic kilometers per year in selected basins (river basin names)
showing decreasing and increasing trends ranked according to trends in GRACE CSR-M

AEI %, area equipped for irrigation in percent of basin based on GW (Irr. GW %) and SW (SW %); AI, aridity index.
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Table S1). These measurement and leakage uncertainties do not
contribute to trend uncertainties, consistent with findings from
previous studies (31). TWSA trend uncertainties are more im-
portant for this study (SI Appendix, section 4.2). Only basins with
statistically significant TWSA trends were included in net TWSA
trends in this study. TWSA trends were found to be significant
(P = 0.05) in at least one of the GRACE solutions for all basins
with large decreasing and increasing TWSA trends (94 basins),
except the Congo Basin (Mann–Kendall Test; SI Appendix, sec-
tion 4.2b). Approximately 85% of the basins have significant
trends in all three GRACE solutions. To test the impacts of
glacier leakage, basins containing any ice were excluded from
JPL-M processing (SI Appendix, Fig. S1) and TWSA trends were
recalculated. Results show that leakage from the Alaskan glaciers
reduced the TWSA trend in the nearby Yukon Basin from

1.1 to −10.8 km3/y. However, leakage from the Asian High
Mountain Glaciers reduced the trend in the Ganges by only 20%.
TWSA trends in the Salado basins in South America are affected
by both glacier leakage and the 2010 Maule earthquake in Chile
(magnitude of 8.8). These basins (Congo, Yukon, and Salado
basins) were excluded from net TWSA trends in this study.
The remaining GRACE TWSA trend uncertainties include the

following: (i) solution trend uncertainty based on variations in TWSA
trends among the three GRACE solutions (SI Appendix, Table S5),
(ii) trend (slope) uncertainty for each GRACE solution based on
linear regression, and (iii) uncertainty related to glacial isostatic ad-
justment (GIA) from rebound from Pleistocene glaciation in north-
ern latitude basins in North America and Fennoscandia (Table 2 and
SI Appendix, sections 4.2 and 4.3 and Table S5). Example basins with
large GIA uncertainties include the MacKenzie and Nelson basins in
North America. GRACE trend uncertainties are dominated by
variability among GRACE solutions (SI Appendix, Table S5).

What Is the Impact of Human Intervention on Global Water Storage
Trends? Human intervention (water abstractions and reservoir
management) on TWSA trends can be evaluated qualitatively by
comparing TWSA trends with irrigation intensities, indicated only
by irrigated areas rather than irrigation water extractions. Many
basins with large TWSA declines are heavily irrigated [e.g., Ganges
(irrigation of 31% of land area)] (Figs. 4 and 6 and Table 2). Large
TWSA declines in some of these basins are attributed mostly to
human-induced GW abstractions, as described in regional studies
(34, 42, 43). Depletion linked to irrigation is also consistent with
low irrigation intensities (irrigated areas < 5%) in basins showing
large increasing TWSA trends, except for a few basins that are
irrigated with SW and GW (e.g., Godavari basin in India) and the
filling of the Three Gorges reservoir in the Yangtze Basin (44)
(Fig. 4C). This qualitative comparison is insufficient to determine
human intervention, as some of the basins in the zone with low
TWSA trends (trends within ±0.5 km3/y) also have large irrigated
areas with varying levels of SW or GW irrigation (Fig. 4C).
To further isolate effects of human intervention on TWSA

trends, WGHM and PCR-GLOBWB models were run without
human intervention (WGHM-NHI and PCR-GLOB-NHI) (27)
(Fig. 6, Table 2, and SI Appendix, Fig. S12). Both models vary
water demand over time (2002–2014) for the irrigation sector
based on changes in irrigated area from Food and Agriculture
Organization data and for nonirrigation sectors based on

Fig. 4. (A–D) TWSA trends ranked according to trends from GRACE CSR-M
from decreasing trends (buff background, ≤−0.5 km3/y) and increasing
trends (blue, ≥0.5 km3/y). The black line in B represents GRACE CSR-M TWSA
trends, and the gray-shaded area represents uncertainty (Uncert.) in TWSA
trends (SI Appendix, section 4.2). Irrig, irrigation.

Table 3. Median TWSA trends in GRACE and models in basins with large rising CSR-M trends (≥0.5 km3/y) and large declining CSR-M
trends (≤−0.5 km3/y)

More details are provided in SI Appendix, Tables S10 and S11. Dec, decreasing; Inc, increasing; int., intervention.

6 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1704665115 Scanlon et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704665115/-/DCSupplemental/pnas.1704665115.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1704665115


population growth, per capita gross domestic product, and elec-
tricity demand (SI Appendix, section 3). TWSA trends from
WGHM and PCR-GLOBWB are more negative than NHI runs
by ≥0.5 km3/y in ∼13% of the basins (∼24–25 basins) (Fig. 6). The
magnitude of human intervention was found to be largest in the
Mississippi for WGHM [13 km3/y (WGHM minus WHGM-NHI)]
and in the Indus in PCR-GLOBWB (44 km3/y) (Table 2).
The total contribution of human intervention to TWSA trends

(estimated by summing trends over all basins with and without
human intervention) is −12 km3/y versus 44 km3/y for WGHM-
NHI, resulting in a net contribution from human intervention of
56 km3/y (Table 3). The net contribution is larger for PCR-
GLOBWB (86 km3/y). The impact of human intervention is
dominated by TWSA trends in basins in the zone with GRACE
decreasing trends (e.g., 40 km3/y for WGHM) relative to GRACE
increasing trends (e.g., 11 km3/y for WGHM) accounting for 70–
90% of the WGHM and PCR-GLOBWB net trends (Table 3 and
SI Appendix, Table S11).
If human interventions were the main driver of global trends

in water storage, we would expect net trends from LSMs, which
do not simulate human interventions, to be less negative than
those from GHWRMs. However, the opposite is true, with more
negative net trends from LSMs (−13 to −448 km3/y) than from
GHWRMs (−12 to −50 km3/y) (Table 3). The LSMs show net
declining TWSA trends that are similar to or slightly more
negative than those from GHWRMs in the zone of GRACE
declining trends (≤−0.5 km3/y). However, LSMs show much
more negative net trends than GHWRMs in the zone of
GRACE-derived rising TWSA trends (≥0.5 km3/y), with four of

five LSMs yielding net negative trends, with the exception of the
CLM-4.0 LSM.

How Well Can We Estimate the Net Impact of Land Water Storage
Trends on GMSL? The contribution of decadal trends in land water
storage to GMSL in millimeters per year is calculated by dividing
the net TWSA trends in cubic kilometers per year by the ocean
area (361 × 106 km2). Net TWSA trends, after summing trends
over basins, vary markedly between GRACE and models and
among models (Table 3). Net TWSA trends from GRACE
mascons are positive, with a relatively narrow range (71–82 ±
16 km3/y) with lower trends from spherical harmonics solution
(∼25 km3/y). Net TWSA trends from GRACE are similar
whether we consider all 181 basins or only basins with large
trends [94 basins: ≤−0.5 km3/y and ≥0.5 km3/y (range: 73–78 km3/y)].
Therefore, although the 186 basins analyzed in this study only
cover 63% of the global land area, excluding Greenland and
Antarctica, net TWSA trends are dominated by a much smaller
number of basins with large TWSA trends. GRACE-derived net
increasing TWSA trends exceed net decreasing trends, resulting
in an overall positive net TWSA trend. In contrast to the positive
trends from GRACE solutions, net TWSA trends from models
are all negative. Net TWSA trends from GHWRMs range from
∼−50 km3/y (PCR-GLOBWB) to ∼−12 km3/y (WGHM),
whereas those from LSMs are mostly lower, with a much larger
range (−448 to −13 km3/y).
Increases in land water storage would negatively contribute to

GMSL, lowering the rate of sea level rise, and vice versa. Net
positive trends in land water storage from GRACE mascons (71–
82 km3/y) negatively contribute to GMSL, with rates ranging

Fig. 5. Time series of TWSA after removal of seasonal signal for selected basins globally from GRACE CSR-M (black line) and minimum and maximum of three
GRACE solutions (gray-shaded area; CSRT-GSH.sf, CSR-M, and JPL-M.dsf), two GHWRMs (WGHM and PCR-GLOBWB), and five LSMs (MOSAIC, VIC, NOAH-3.3,
CLSM-F2.5, and CLM-4.0). The global map includes TWSA trends based on GRACE CSR-M in millimeters per year.
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from −0.23 to −0.20 mm/y (April 2002–December 2014) (Fig. 7,
Table 3, and SI Appendix, Figs. S13 and S14). In contrast to
GRACE output, decreases in land water storage from models
(net negative TWSA trends) would contribute positively to
GMSL, increasing the rate of GMSL rise. The contributions
range from 0.03 mm/y from WGHM to 0.14 mm/y from PCR-
GLOBWB, with a much larger range from LSMs (0.04–1.2 mm/y)
(Fig. 7 and Table 3). Such large differences between models and
GRACE and among models indicate that we may not be able to
reliably estimate contributions from land water storage to GMSL
change using models.
We can also estimate the human and climate contributions to land

water storage and GMSL change (SI Appendix, Fig. S14). Human
intervention results in depletion of land water storage ranging from
0.15 mm/y (WGHM) to 0.24 mm/y (PCR-GLOBWB) in this study
(Table 3 and SI Appendix, Fig. S14 and Table S12). Subtracting the
modeled human intervention contribution from the total land water
storage contribution from GRACE results in an estimated climate-
driven contribution of −0.44 to −0.38 mm/y. Therefore, the magni-
tude of the estimated climate contribution to GMSL is twice that of
the human contribution and opposite in sign. While many previous
studies emphasize the large contribution of human intervention to
GMSL, it has been more than counteracted by climate-driven stor-
age increase on land over the past decade.
The GRACE mascon-derived estimates of land water storage

from this study (−0.20 to −0.23 mm/y) are similar to those from
previous studies covering the same time period (−0.29 and
−0.33 mm/y) (8, 31) (SI Appendix, Fig. S14 and Table S12). The
modeled human intervention in this study is within the range of
those from recent studies (0.12 mm/y) (18) and the IPCC
(0.38 mm/y) (7), both for longer periods (1993–2010). Calculated
climate contributions to GMSL (GRACE minus human contribu-
tion) range from −0.38 to −0.44 from this study relative to −0.41 to
−0.71 from previous studies. Therefore, net increases in glacier-
free land water storage in this study should have slowed the rate of
sea level rise since 2002, with climate variations contributing about
twofold more to GMSL than human intervention. The other
components of the sea level budget from previous studies are
described in SI Appendix, Table S12.

What Causes the Differences in Water Storage Trends Between
Models and GRACE? Discrepancies in TWSA trends may be re-
lated to uncertainties in GRACE (SI Appendix, section 4) and in
models. Basins with insignificant GRACE-derived TWSA trends
and large uncertainties related to glacier leakage and earth-
quakes were excluded from net TWSA trends.
Factors related to modeling that can contribute to discrep-

ancies between models and GRACE include initial conditions,
climate forcing, land cover input, model structure, human in-
tervention, and calibration. Here, we focus on a few of the main
factors, including:

i) Initial conditions and model spin-up
ii) Water storage compartments and capacity related to model

structure
iii) Precipitation uncertainty
iv) Model calibration

Initial conditions and model spin-up. Long-term trends can be im-
pacted by model initial conditions if the model spin-up (number
of years the model is run) is insufficient for the model to
equilibrate with the climate forcing. We evaluated global trends
in TWSA and component storages using gridded global model
output (excluding Greenland, Antarctica, and mountain glaciers)
to examine if model trends during the GRACE period (2002–
2014) may be an artifact of initial conditions. WGHM and CLM-
4.0 models were selected because both include GWS. The
WGHM model shows that SnWS is fairly stable, except for a
period in the mid-1940s to mid-1960s when storage increases (SI
Appendix, Fig. S15). CWS is temporally invariant. SWS increases
gradually to the mid-1950s, followed by a period with no sys-
tematic storage variation. SMS and GWS are initialized dry in
WGHM. SMS is fairly stable over the entire period (1901–2014).
GWS increases, particularly in the 1970s. Trends in the storage
components contribute to the trends in TWSA. The component
storages suggest that the 2002–2014 trends considered in this
study should be minimally impacted by the initial conditions
because of the long spin-up. Output from CLM-4.0 shows that
SnWS and SWS are fairly stable over time (SI Appendix, Fig.
S16). SMS and GWS are initialized wet. SMS shows a large
decline in the first ∼30 y, and GWS markedly declines, particu-
larly in the first 40 y and more gradually after that period. Al-
though the trends are large during the early period, output from
the recent decade should not be substantially affected by the
initial conditions because of the long spin-up period.
Water storage. One of the obvious factors is that most LSMs do
not model SWS and GWS compartments, with the exception of
CLM-4.0 (Table 1). Inclusion of these compartments in CLM-
4.0 may explain the much better agreement between CLM-
4.0 and GRACE net decreasing (−72 km3/y) and increasing

Fig. 6. Relationship between TWSA trends from models with human in-
terventionWGHM (A) and PCR-GLOBWB (B) relative to models with no human
intervention (NHI). Selected outlying basins are labeled. Trends for some PCR-
GLOBWB basins plot outside the diagram [e.g., Indus (−38.4 km3/y)].

Fig. 7. GMSL change derived from TWSA trends for GRACE CSR-M, GHWRMs
(PCR-GLOBWB and WGHM; dashed lines), and LSMs (MOSAIC, VIC, NOAH-3.3,
CLSM-F2.5, and CLM-4.0). The black dashed line represents the downward
contribution of GRACE CSR-M trends to GMSL, and the orange dashed line
represents the upward contribution from LSM-MOSAIC. GRACE-positive TWSA
trends (71 km3/y) contribute negatively (−0.2 mm/y) to GMSL, slowing the rate
of rise of GMSL, whereas models contribute positively to GMSL, increasing the
rate of rise of GMSL (Table 3).
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(76 km3/y) TWSA trends relative to other LSMs (Table 3).
Comparison of TWSA trends between CLM-4.0 and an earlier
version of CLM (CLM-2.0) without SWS or GWS shows signif-
icant improvement in modeled TWSA trends in CLM-4.0 (SI
Appendix, Fig. S17). Although WGHM and PCR-GLOBWB
models include all storage compartments, these models also
underestimate TWSA trends relative to GRACE. The models
may lack sufficient storage capacity to accommodate the range in
TWSA trends. Underestimation of GRACE-derived rising TWSA
trends more than declining trends may be related to limited
storage capacity because of lack of storage compartments (most
LSMs); soil profiles that are too thin (all models); or exclusion of
processes, such as river flooding. A previous study used the CLM-
4.0 model to estimate the soil storage capacity required to repli-
cate the GRACE TWSA variability showing profile thicknesses up
to 8–10 m in tropical regions (e.g., Amazon, Congo) and in
southern Africa (45), whereas most models have soil thickness
ranging from 1–4 m (Table 1). NASA expanded the soil profile in
the CLSM model to capture the range in storage from GRACE
associated with droughts and floods (46).
Climate forcing. Different climate forcings among the models may
be considered a drawback of this study. However, TWSA trends in
models with the same climate forcing, such as WGHM and PCR-
GLOBWB [Watch Forcing Data + Era Interim Reanalysis
(WFDEI)] (47) differ markedly, with r2 values close to 0.0 for basin
TWSA trends (SI Appendix, Fig. S11 and Table S8). Although we
could not apply the same climate forcing to all of the models, we
tried to isolate the impacts of climate forcing on TWSA trends by
running WGHM using different climate forcings. Results show
variations in net TWSA trends summed over all basins: WFDEI
forcing (−12 km3/y), Global Precipitation Climatology Center
(GPCC) v.7 (−6.1 km3/y), and Climate Research Unit (CRU) TS
3.23 (−23 km3/y) (SI Appendix, Fig. S18). Agreement between
TWSA trends based on WFDEI and GPCC is high (r2 = 0.7,
slope = 0.9) but is much lower for trends based on WFDEI and
CRU (r2 = 0.0, slope = 0.3). We show TWSA time series for many
basins, including precipitation forcing from WFDEI and the
Princeton Global Meteorological Forcing Dataset (PGMFD) from
NOAH-3.3, to highlight variability in these two forcings. The re-
lationship between TWSA trends and cumulative precipitation
anomalies from PGMFD indicates variable correlations between
the two in different basins (SI Appendix, Table S9).
Model calibration. WGHM is the only model considered in this
study that is calibrated based on long-term average river dis-
charge at 1,319 gages (SI Appendix, section 3). Comparison be-
tween calibrated and noncalibrated WGHM only resulted in
slight differences in net long-term TWSA trends [calibrated
(−12 km3/y), noncalibrated (−5.8 km3/y)]. However, calibration
can result in large differences in TWSA in certain basins, with
absolute differences up to 7.5 km3/y. However, it is unlikely that
calibration can account for the large differences between
WGHM and PCR-GLOBWB TWSA trends because differences
between calibrated and noncalibrated TWSA trends in WGHM
are much less than differences between WGHM and PCR-
GLOBWB TWSA basin trends (SI Appendix, Fig. S19).

Future Research
This study focuses on comparisons in TWSA trends between
models and GRACE to complement previous studies that fo-
cused on fluxes (e.g., river discharge, ET). However, future
studies should consider a multivalidation exercise that includes
both storage and fluxes. Previous MIPs did not include modeled
TWSA output; however, the ISIMIP group is now requesting
TWSA output (ISIMIP2b) from modeling groups, and all of the
relevant data should be available to compare both storage and
fluxes among models.
Discrepancies in TWSA between GRACE and models can

reflect uncertainties in both GRACE and models. Uncertainties
in GRACE output may be related to GRACE processing, which
is continually improving and is currently at level 5. Future re-
search should explore differences between GRACE solutions in

different regions [e.g., Nile basin between CSR and JPL mascons
(4–14 km3/y)]. The GRACE Follow On mission is projected to
be launched in early 2018, and technology improvements may
result in enhanced signal.
Single-model sensitivity analyses may provide more insights into

controls on model-GRACE differences by changing one factor at
a time, such as a recent WGHM study that examined precipitation
forcing and human intervention (48). Multiparameterization of
single models may be valuable, such as NOAH multiparameter-
ization, which allows various options for vegetation, runoff, and
GWS to be used within a single-model framework to quantify the
effect of different processes on model output (49). The structure
for unifying multiple modeling alternatives (SUMMA) is another
approach with a single modeling framework, based on a general
set of conservation equations that allows different model pa-
rameterizations and other factors to be varied, that should pro-
vide improved understanding of sources of model uncertainties
(50, 51). The SUMMA approach may be used to identify future
model improvements and related data and research needs.
Reliable data sources are also critical for modeling analyses.

The International Land Model Benchmarking Project includes a
number of data sources for hydrology, energy, fluxes, and vege-
tation dynamics (https://www.ilamb.org/benchmarks/). Such ef-
forts should be expanded in the future.
Large discrepancies between models and GRACE TWSA trends

in many regions in this study indicate that detailed regional modeling
efforts could complement global models. The current round of ISI-
MIP models includes impacts on global water and regional water
(https://www.isimip.org/about/). The Amazon and surrounding basins
represent an obvious target area for regional modeling because of
their large contribution to net TWSA trends (e.g., 50–60% of net
TWSA in WGHM and PCR-GLOBWB) and opposing trends sim-
ulated by many models in this study. Hotspots of human interven-
tion, including the Indus, Ganges, Brahmaputra, and Euphrates,
would benefit from detailed regional studies with intensive efforts on
quantifying water demand. Other regions of interest include endo-
rheic basins, including the Okavango and similar basins. Basins in
northern latitudes should also be a focus because of problems with
climate forcing, precipitation phase, snowmelt, and permafrost issues.
High-resolution continental scale models, such as the ParFlow
model, are also being applied with more detailed physics than global
models (52). Global model output may be developed by combining
output from different global models with varying performance in
different regions, as is done with global climate models.
Continual advances in GRACE data and modeling should

enhance our understanding of global water resources. Integra-
tion of modeling and remote sensing should provide constraints
on uncertainties in model results. Often, the focus of hydrolog-
ical models is on simulating discharge; however, with increased
availability of water storage data, future modeling should con-
sider multiobjective calibration using multiple (in situ and re-
mote sensing) calibration data to improve the models.

Conclusions
Comparison of TWSA trends from models (GHWRMs and
LSMs) and GRACE in river basins globally indicates that the
models are not highly reliable because of the large spread in
model results and poor correlation between models and GRACE
and among models:

i) All models, including GHWRMs and LSMs, underestimate
large water storage trends relative to GRACE trends.

ii) GRACE-derived large decreasing water storage trends are
found in heavily irrigated and northern latitude basins,
whereas increasing trends are found mostly in nonirrigated
basins in humid regions. Models underestimate the GRACE-
derived increasing trends more than the decreasing trends,
with four of five LSMs yielding opposite trends to GRACE-
derived increasing trends.

iii) Net land water storage trends from GRACE, summed over
the basins, are positive (71–82 ± 16 km3/y) over 2002–2014. In
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contrast, net storage trends from models are negative
(−12 to −450 km3/y), indicating that models fail to capture
GRACE-derived land water storage increases at the decadal
time scale.

iv) The large spread in net TWSA trends among models (summed
over all basins) results in opposite contributions to GMSL
change relative to estimated contributions from GRACE,
highlighting uncertainties in modeled estimation of GMSL.

v) Subtracting modeled net land water storage trends related to
human intervention from GRACE trends (human + cli-
mate) results in climate contribution to land water storage
and GMSL that exceeds human intervention by about a
factor of 2 over the past decade.

vi) Primary causes of model-GRACE discrepancies include lack
of SWS and GWS compartments in most LSMs, low storage

capacity in all models, uncertainties in climate forcing, and
lack of human intervention in most LSMs.

The results of this analysis highlight the challenges for models to
capture large historical water storage trends derived fromGRACE
satellites, implying that model projections may underestimate fu-
ture climate and human-induced water storage trends.

Data and Analysis
Detailed descriptions of data sources and analyses are provided
in SI Appendix.
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