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Abstract This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS)
measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex
located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations
indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an
undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the
Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE
shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular
gravity models not only support the imbricated shape of the Pengguan complex but also reveal an
imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally,
this suggests a basement-slice-imbricated structure that developed along themargin of the Yangtze Block, as
shown by the regional gravity anomaly map, together with the published nearby seismic profile and the
distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the
NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological
characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the
result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This
architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and
therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.

1. Introduction

At the northeastern margin of the Tibetan Plateau, the Longmenshan belt is remarkable for its steep topo-
graphic gradient with a thickened crust of approximately 60 km as well as the intensive seismic activity, such
as the devastating Mw 8.0 Wenchuan (2008) and Mw 7.0 Lushan (2013) earthquakes (Figure 1a) (Guo et al.,
2013). Numerous investigations have been carried out to study the formation of the thickened crust and ele-
vated topography (Hubbard & Shaw, 2009; Royden et al., 2008; Tapponnier et al., 2001; Yin & Harrison, 2000).

The Longmenshan thrust belt (LMTB) is a composite orogen that records multiphase southeastward thrusting
during the Mesozoic and Cenozoic (Bureau of Geology and Mineral Resources of Sichuan Province (BGMRSP),
1991; Burchfiel et al., 1995; Chen et al., 1995) and a period of top-to-the-NW shearing (Burchfiel et al., 1995;
Tian et al., 2016 ; Xu et al., 2008). The widespread top-to-the-SE shearing has been interpreted as the conse-
quence of the Mesozoic continental collision between the North China Block and South China Block (SCB)
overprinted by Cenozoic continental collision between the India and Eurasia Blocks (Burchfiel et al., 1995;
Xu et al., 2008). The top-to-the-NW shearing mostly developed associated with the orogen-parallel
Neoproterozoic complexes (Tian et al., 2016; Xu et al., 2008); yet both of the NW shearing and the complexes
remain controversial in terms of mechanism, scale, and timing (Burchfiel et al., 1995; Tian et al., 2016; Xu et al.,
2008; Zhou et al., 2008). On the basis of extent and timing of the top-to-the-NW shearing and the
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emplacement of the Neoproterozoic complexes, several models have been proposed: (i) Cenozoic lower crus-
tal channel flow bounded by NW and SE directed shear zones, buttressed to the SE by the old and strong
lithosphere of the Sichuan basin that sustains the high topography of the Longmenshan (Burchfiel et al.,
2008; Royden et al., 2008); (ii) crustal shortening by thrust faults that formed duplex structure of the LMTB
(Hubbard & Shaw, 2009; Tapponnier et al., 2001; Tian et al., 2016); and (iii) the extrusion of a crustal wedge
during the Cretaceous (Xu et al., 2008). The understanding of the top-to-the-NW shearing and the emplace-
ment of the Neoproterozoic complexes therefore is crucial to unravel the evolution of the LMTB as well as the
uplifting of the Tibetan Plateau.

The Neoproterozoic Pengguan complex, located in the middle segment of the LMTB, is cored by granitic
rocks and deformed by the top-to-the-NW shearing; thus, the Pengguan complex provides an ideal place
to unravel the tectonic history of the LMTB (Figure 1b). For this study, we conducted a field-based structural
analysis, anisotropy of magnetic susceptibility (AMS) measurements, and microstructural analysis, aiming to
constrain the structural geometry and deformation intensity of the Pengguan complex. This is

Figure 1. (a) Simplified tectonic sketch of China. QL: Qingling-Dabie orogenic belt; EKL-ANMQS: East Kunlun-A’nyemaqen
suture; SGT: Songpan-Ganzi terrane; LMTB: Longmenshan thrust belt; and ICB: Indochina Block; (b) Simplified geological
map of the Longmenshan thrust belt, modified after BGMRSP (1991), Burchfiel et al. (1995), and Xu et al. (2007). T1:
Anxian-Guanxian Fault (AGF); T2: Yingxiu-Beichuan Fault (YBF); T3: Wenchuan-Maowen Fault (WMF); T4: Qingchuan Fault
(QCF); JZD: Jiaoziding complex; PG: Pengguan complex; XLB: Xuelongbao complex; BX: Baoxing complex; KD: Kangding
complex; DB: Danba dome; RLG: Rilonguan granite; LJG: Laojungou granite; and MT: Moutuo complex.
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complemented with gravity modeling of the Pengguan complex and adjacent areas, which provides a high-
resolution image of the upper crust structures. Integrating published geochronological data and lithological
characteristics of the sediments inside the Sichuan foreland basin to the SE, the new multidisciplinary results
from this study provide a comprehensive understanding of the tectonic evolution of the LMTB.

2. Geological Setting

The regional structure of the LMTB is defined by three listric thrust faults that strike northeast and steeply dip
to the northwest, namely, from northwest to southeast, the Wenchuan-Maoxian Fault (WMF, T3 in Figure 1b),
the Yingxiu-Beichuan Fault (YBF, T2 in Figure 1b), and the Anxian-Guanxian Fault (AGF, T1 in Figure 1b)
(Xu et al., 1992). A set of orogen-parallel Neoproterozoic complexes, for example, the Jiaoziding complex, the
Pengguan complex, the Xuelongbao complex, the Baoxing complex, the Kangding complex, the Danba
dome, are distributed from NE to SW along the LMTB (Figure 1b).

To the NW of the LMTB, the Songpan-Ganzi Terrane (SGT) is characterized by an extensively folded turbidite
of Middle-Late Triassic age, more than 7 km in thickness. This folded unit is intruded by tens of syntectonic
and posttectonic granites that dominantly derive from the partial melting of the SGT Neoproterozoic base-
ment and a variable proportion of sedimentary rocks as well as negligible amounts of material of mantle
source (Figure 1b; Hu et al., 2005; Roger et al., 2004; Zhang et al., 2007, 2006). The Paleozoic-Late Triassic sedi-
mentary cover is separated from the Neoproterozoic basement by a regional décollement and transported
southward (Calassou, 1994; Harrowfield & Wilson, 2005). To the east of the LMTB, the Sichuan foreland basin,
underlain by a Neoproterozoic basement, records flexural subsidence due to the thrusting of the LMTB (Chen,
Wilson, et al., 1994).

In the LMTB, both Early Mesozoic and Cenozoic shortenings have been documented. The Early Mesozoic
shortening is the result of transpressional interaction between the SGT and the SCB, which resulted in
structural inversion of the western margin of the Yangtze Block from a pre-Middle Triassic rift to a SE verging
fold-and-thrust belt. Pervasive southeast/south-southeastward thrusting developed at different scales in
(i) the Sichuan foreland basin and (ii) the hinterland on the west of the WMF (Burchfiel et al., 1995; Worley
& Wilson, 1996; Xu et al., 1992; Yan et al., 2011). In the foreland basin, the orogen-parallel klippen and nappes
were transported southeastward and tectonically overlie on the extensively folded Late Triassic rocks
(Figure 2a). Most of the klippen are exposed as synclines overturned to the SE. Southeastward thrusting is also
indicated by SE verging folds and locally developed sigmoidal tectonic lenses in the Late Triassic sandstone-
mudstone interbeds (Figures 2b and 2e). In the hinterland, macroscopic-scale sigmoidal quartz boudins,
asymmetric pressure shadow and microscopic scale of shear bands, mica fishes, and asymmetric plagioclase
porphyroclasts on the XZ plane (perpendicular to the field observed foliation and parallel to the field
observed lineation) indicate an unambiguous top-to-the-SE shearing (Figures 2b and 2c).

The timing of the Mesozoic shortening is first constrained by the unconformity between the Lower Jurassic
conglomerates and the intensively folded Upper Triassic sandstone in the Sichuan foreland basin, which
indicates a deformation age during T3-J1 (BGMRSP, 1991). Second, most plutons intruded in the SGT yield
a peak age around 211 Ma that postdates the folding of the SGT and the SE verging folds of the LMTB
(BGMRSP, 1991; Hu et al., 2005; Roger et al., 2004; Sigoyer et al., 2014; Xiao et al., 2007; Zhang et al.,
2006). Third, 39Ar/40Ar dating of metamorphic rocks from the northern segment of the LMTB provides a
range of ages between 237 and 208 Ma that were interpreted as minimum timing constraints for this defor-
mation (Yan et al., 2011). Due to southeastward propagation of the LMTB, the Sichuan foreland basin
initiated during the Late Triassic with depositional environment changing significantly from shallow marine
carbonate platform to terrestrial clastic basin (Chen, Deng, et al., 1994).

The Mesozoic thrust belt and the underlying autochthon were reactivated and thrusted southeastward dur-
ing the Cenozoic (Figures 1b and 2b). This was interpreted as the response to the northward indentation of
India into the Eurasia Block (Burchfiel et al., 2008; Tapponnier et al., 1982; Yan et al., 2011). This brittle, SE direc-
ted Cenozoic deformation is expressed by brittle faults with slicken lines, and southeastward overturned
Jurassic rocks in the LMTB. Low-temperature geochronology reveals fast exhumation (approximately
90–100 m Myr�1) of the LMTB during the Cenozoic, controlled by the main listric thrusts (Arne et al., 1997;
Cook et al., 2013; Enkelmann et al., 2006; Godard et al., 2009; Tian et al., 2013; Wang et al., 2012). The

Tectonics 10.1002/2017TC004754

XUE ET AL. NE TIBET THICKENED CRUST IN MESOZOIC 3112



absence of coeval adjacent foreland basin may be due to narrowly distributed and predominantly vertical
displacements along the high-angle listric reverse faults in the LMTB (Feng et al., 2015).

Between the Early Mesozoic and Cenozoic shortening, there is an intermediate phase of deformation during
the Late Jurassic to Early Cretaceous (Figure 2b). Structural analysis and 39Ar/40Ar dating of deformed musco-
vite reveal a NW-SE directed compressional phase along the belt, on the west of the WMF that resulted in
crustal thickening and associated Barrovian-type amphibolite facies metamorphism around 133–120 Ma
(Arne et al., 1997; Dirks et al., 1994; Worley et al., 1995). In the Pengguan complex, the top-to-the-SE shearing
was dated at 140–135Ma or circa 166 Ma by 39Ar/40Ar dating on the deformedmuscovite (Airaghi et al., 2017;

Figure 2. (a) Structural map of the Pengguan complex and adjacent area. (b) Cross-section crossing the Pengguan complex and Xuelongbao complex. (c) Quartz
boudin wrapped in the Silurian schist indicates a top-to-the-SE shearing, northwest to the Wenchuan city (31°29.7580N, 103°34.5350E). (d) Shear zone developed
in the Proterozoic meta-sandstone display a top-to-the-SE sense of shear, immediately in the hanging wall of the Beichuan-Yingxiu Fault (31°15.620N, 103°46.960E).
(e) Sigmoidal lens in the Late Triassic sandstone-mudstone interbeds indicates a top-to-the-SE shearing (30°47.8430N, 103°14.6150E). Symbols and acronyms are
the same as in Figure 1.
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Yan et al., 2008). A belt characterized by top-to-the-NW/N shearing defined as the East Tibet Detachment,
mainly developed at the north or NW boundary of the Neoproterozoic complexes that extend from the
Danba dome to the middle Longmenshan and may extend to the Jiaoziding complex (Figure 1b) (Xu et al.,
2007). It is worth noting that this fault formed at circa 166–120 Ma based on the 39Ar/40Ar dating on the
deformed micas (Huang, Buick, et al., 2003; Huang, Maas, et al., 2003; Li, 2009; Tian et al., 2016; Xu et al.,
2008) and therefore overlaps with the top-to-the-SE tectonics. In the LMTB, both top-to-the-SE and top-
to-the-NW shearing were developed with steeply NW dipping foliation and steeply NW plunging lineation
(Dirks et al., 1994; Xu et al., 2008). The SGT exhibits low regional cooling rates of approximately 2–3°C/Myr
since Late Triassic to Tertiary (Huang, Buick, et al., 2003; Roger et al., 2011), and thus, the deformation during
Late Jurassic to Early Cretaceous is more likely restricted to the periphery of the SGT.

In the Sichuan foreland basin, sediments display cyclicity of wedge-shaped and tabular megasequences that
indicate three stages of SE motion of the LMTB during (i) Late Triassic-Early Jurassic, (ii) Late Jurassic-Early
Cretaceous, and (iii) Late Cretaceous-Eocene (Chen, Wilson, et al., 1994; Li et al., 2013). The episodic sedimen-
tation in the Sichuan foreland basin has been interpreted as the response to the aforementioned three
periods of events.

3. Structural Analysis of the Pengguan Complex
3.1. Lithotectonic Units and Bulk Architecture

The NE-SW trending Pengguan complex, bounded by the YBF to the southeast and the WMF to the
northwest, is composed of Neoproterozoic granitic rocks and sedimentary rocks of Huangshuihe group
(Figure 1b) (BGMRSP, 1991). The granitic rocks are coarse-grained biotite tonalite, fine-grained biotite
granodiorite, and two-mica granodiorite, which yield an emplacement age of 809 ± 3 Ma by zircon U-Pb
dating (Figure 3a) (Yan et al., 2008). From base to the top, the Huangshuihe group consists of pyroclastic
rocks, spilite, crystalline limestones, graphitic schists, sericite quartz schists, and quartzites (BGMRSP, 1991).
Lastly, a set of NE-SW trending mafic diabase and gabbro sills intruded the Pengguan complex during
195–186Ma (Figures 2a and 3c) (Chen et al., 2015). Several NE trending and SE directed thrusts are developed
at the NE and SW periphery of the complex (Figure 2a).

Subhorizontal joints represent the main structural pattern of the Pengguan granitic rocks (Figure 3b).
Although previous work documented several NE-SW trending shear zones developed inside the complex
(Ma et al., 1996), the ductile planar and linear structural elements are not clearly expressed in the field.
Even when a planar fabric can be observed in the field, a mineral lineation is not always visible. Only in the
NW boundary of the complex, the ductile deformation is clearly characterized by NW dipping foliation and
NW plunging lineation (Figure 2a). On its SE margin, the metamorphic rocks of the Huangshuihe group
suffered extensive folding and shearing that are consistent with the YBF activity.

3.2. Kinematic Analysis

Macroscopic and mesoscopic structural analysis document two opposite senses of shear in the Pengguan
complex, namely, a top-to-the-SE and a top-to-the-NW shearing.

The top-to-the-NW shearing is obvious in the NW boundary of the Pengguan complex, at the footwall of the
WMF. This NW dipping fault separates Silurian rocks to the NW from Neoproterozoic rocks to the SE, with a
consistent normal component of movement (Figure 2a). The shear foliation dips steeply to the NW, and the
lineation plunges steeply to the NW. The rare foliation steeply dipping to the southeast/south probably results
from tilting of the original foliation during the Cenozoic deformation (Figure 2a). In thin sections, mica fishes,
quartz ribbon aggregates, sigmoidal clasts, and shear bands on XZ plane of the sericite-quartz schist and
granitic mylonite from the western boundary of the Pengguan complex indicate a consistent top-to-the-NW
shearing (Figures 4a–4d). Within the mylonite, the mineral assemblage that defines the foliation and the
lineation includes quartz + feldspar + biotite + muscovite + chlorite, suggesting that the shearing was
developed under greenschist facies metamorphic conditions (Figure 4). Furthermore, Figure 4b displays
subgrain rotation dynamic recrystallizations in quartz indicating the deformation temperature approximately
400–500°C (Parsons, Law, et al., 2016).

In the southeastern boundary of the Pengguan complex, in the hanging wall of the YBF, a top-to-the-SE
sense of shear is demonstrated by the extensively folded and cleaved Proterozoic Huangshuihe group, in
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which deflected cleavage roots into a meter-scale SE verging thrust fault (Figure 2d). Compared to the top-
to-the-NW shearing, the SE verging shearing in the SE boundary, developed under a low metamorphic
grade since no porphyroblasts or other minerals recrystallized there. However, both the top-to-the-SE and
top-to-the-NW shearing under greenschist facies metamorphism conditions were distributed in the NW
domain of the Pengguan complex as constrained by AMS and petrofabric study in section 4 below.

4. Anisotropy of Magnetic Susceptibility (AMS) and Petrofabric Study

Granitic rocks are often used as a proxy to study regional tectonics due to their ability to record their
emplacement setting and their postsolidus deformation (Guineberteau et al., 1987). However, it is difficult
to distinguish secondary postsolidus fabrics from primary magmatic ones preserved in granitic rocks merely
by field observation, especially when the granite is weakly deformed and/or fine grained (Sen et al., 2014;
Wallis et al., 2014). Fortunately, the anisotropy of magnetic susceptibility (AMS) has been proven as an
efficient method to reveal the fabrics of granitic rocks (e.g., Borradaile & Henry, 1997; Bouchez, 2000;

(a)

(c) (d)

(b)

2cm2cm

2cm2cm10cm10cm

20cm20cm

foliationfoliation

DiabaseDiabase

Chilled marginChilled margin

Pengguan
Complex
Pengguan
Complex

Figure 3. Photographs showing field characters of the Pengguan complex. (a) Undeformed massive diorite (31°3.770N,
103°23.190E). (b) Undeformed granodiorite with well-developed subhorizontal joints (31°04.3150N, 103°26.5200E).
(c) Diabase dyke intruding the diorite (31°06.660N, 103°28.880E). (d) Intensively mylonitized diorite (31°22.9310N,
103°30.3640E). Locations are presented in Figure 2a.
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Talbot et al., 2005; Wei, Chen, et al., 2014), and a combined microstructural analysis has been applied to the
Pengguan granitic rocks in order to decipher its emplacement mechanism and deformation history.

Magnetic susceptibility (K) is the ratio of the inducedmagnetization (M) of a specimen to the externally applied
magnetic field (H) (Borradaile & Jackson, 2004, 2010). The anisotropy of magnetic susceptibility (AMS) is a sec-
ond rank tensor that describes directional variation of a specimen’s magnetic susceptibility, which can be used
as deformation proxy if the contributing factors (mineral content, mineral shape fabric, and crystallographic
fabric) are determined (Borradaile & Jackson, 2004, 2010; Kruckenberg et al., 2010; Parsons, Ferré, et al.,
2016). The AMS is geometrically represented by an ellipsoid defined by three orthogonal principal axes, K1
(maximum), K2 (intermediate), and K3 (minimum) (Tarling & Hrouda, 1993). K1 and K3 corresponding to the
magnetic lineation and the pole of the magnetic foliation, respectively. The mean magnetic susceptibility
(Km) is computed as (K1 + K2 + K3)/3, which represents the sum effect of the magnetic carriers of the specimen.

Three types of magnetic carriers (namely diamagnetic, paramagnetic, and ferromagnetic) have been classi-
fied based on their induced magnetization strength and polarity (Tarling & Hrouda, 1993). Induced magneti-
zation of paramagnetic (e.g., phyllosilicate) and ferromagnetic (e.g., magnetite) minerals displays the same
polarity as the externally applied field, while the ferromagnetic minerals exhibit much higher susceptibility.
Conversely, induced magnetization of diamagnetic (e.g., quartz and calcite) minerals presents the opposite
polarity to the external field but with a lower intensity. An important distinction between these three types
is that diamagnetic and paramagnetic materials have no magnetic remanence, while the ferromagnetic
minerals, such as magnetite, do have a magnetic remanence.

The overall rock magnetic fabric is determined by all magnetic minerals, including but not limited to, their
abundance and distribution, the grain shape preferred orientation, the crystallographic preferred orientation,
and extent of magnetostatic interaction of ferromagnetic minerals (Borradaile & Jackson, 2004). The grain size

(a)

(c) (d)

SENW SENW

SENW SENW

(b)500 m500 m

500 m500 m

200 m200 m

500 m500 m

QtzQtz

QtzQtz
ChlChl

Ms

sh
ea

rb
an

d

FdsFds

Ms

sh
ea

rb
an

d

QtzQtz

BtBt

SerSer

X
Z

X
Z

X
Z

X
Z

Figure 4. Microscopic features indicate top-to-the-NW shearing in the NW boundary of the Pengguan complex. (a) Mica
fish in the Devonian sericite-quartz schist (31°28.4450N, 103°34.4790E). (b) Ribbon quartz aggregates in the granitic mylo-
nite (31°22.4440N, 103°30.5510E). (c) Sericite aggregates wrap quartz porphyroclasts in the granitic mylonite (31°23.390N,
103°30.990E). (d) Shear band and sigmoidal porhyroblasts in the granitic mylonite (31°05.1930N, 103°18.7300E). X and Z axes
are marked on the figures. Qtz: quartz, Cal: calcite, Bt: biotite, Ms: muscovite, Ser: sericite, Chl: chlorite, and Fds: feldspar.
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of the ferromagnetic minerals also influences the magnetization by determining the number of magnetic
domains (a magnetic domain refers to a zone where a single magnetic pole is displayed). The ferromagnetic
grains classified as single domain (SD), pseudo single domain (PSD), andmultidomain (MD) based on its grain
size varying from smallest to largest (Tarling & Hrouda, 1993). The MD and PSD magnetite display “normal
AMS” (the shape of themagnetic ellipsoid resembles the grain shape), while the SDmagnetite display “inverse
AMS” (Ferré, 2002). Generally, the most abundant, high susceptibility, and strongly anisotropic minerals
control the whole-rock AMS fabrics (Borradaile & Jackson, 2004, 2010). Magnetostatic interactions between
ferromagnetic grains also influence the AMS that depends on the spatial distribution and concentration of
the ferromagnetic grains (Hargraves et al., 1991; Muxworthy et al., 2004; Stephenson, 1994).

The corrected degree of anisotropy describes eccentric extent of the AMS ellipsoid from a sphere (Pj = 1) to an
ellipsoid (Pj > 1) (Jelinek, 1981).

Pj ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X

lnKi � lnKmð Þ2
q

: (1)

Ki refers to the three susceptibility axes, K1, K2, and K3. The shape parameter T defines the shape of the
magnetic ellipsoid ranging from prolate (T = � 1) through neutral (T = 0) to oblate (T = + 1) (Jelinek, 1981).

T ¼ ln Fð Þ � ln Lð Þ
ln Fð Þ þ ln Lð Þ where L ¼ K1

K2
and F ¼ K2

K3
: (2)

4.1. Methods of AMS Analysis

A sampling of 299 oriented cores from 36 sites regularly covering the southern Pengguan complex with an
interval of 1.5 km has been carried out along the main N-S and W-E trending valleys and several small valleys
inside the complex, and also at its periphery (Table 1 and Figure 7). Due to the high topography and access
difficulty, the sampling coverage in the northeastern part is relatively low. Approximately six cores about 4 to
6 cm in length and 2.5 cm in diameter and separated by nearly 2 m intervals were collected from each site.
Cores were oriented by magnetic compass and, when possible, by solar compass. To avoid the shape effect
on themagnetic anisotropy, all cores were cut into 2.2 cm in length tomimic the spherical shape with respect
to the 2.5 cm diameter.

Magnetic fabric measurements were performed at the Institute of Geology and Geophysics of Chinese
Academy of Sciences. Specimens cut from each sample were analyzed using AGICO Kappabridge (MFK1)
magnetic susceptometer operating in low field (300 A/m) to construct the AMS ellipsoid orientation and
corresponding magnetic fabric parameters. Measurements include (1) thermomagnetic experiments, (2)
isothermal remanent magnetization, and (3) hysteresis properties of small rock fragment on the Micro
3900 Vibrating Sample Magnetometer to determine the magnetic carriers that contributed to the
magnetic susceptibility.

4.2. Magnetic Mineralogy

The site magnetic susceptibility value (Km) are given in Table 1, and their related distribution histogram is
presented in Figure 5a. For the Pengguan granitic rocks, Km mostly varies from 30 μ SI to more than
130 m SI, 65% of the sites have Km < 1,000 μ SI that is likely originated from paramagnetic carriers, and
the rest sites present Km > 1,000 μ SI and are controlled by ferromagnetic carriers (Rochette et al., 1992).

The representative magnetic mineralogy measurements, including hysteresis loop, isothermal remanent
magnetization, and thermomagnetic experiments, are presented in Figure 6 (Detailed nine groups of results
are presented in Table S1 and Figure S1 in the supporting information). Most sites display a linear relationship
between the appliedmagnetic field and the inducedmagnetization (Figure 6a); a quick saturation but a weak
intensity of isothermal remanent magnetization (IRM) (Figure 6b) and a sharp drop of Km at about 580°C
(Figure 6c) indicate that paramagnetic minerals are the principal susceptibility carriers with a weak concen-
tration of the ferromagnetic minerals. A few samples representing a small number of sites are characterized
by a nonlinear hysteresis curve (Figure 6d): a quick saturation with a higher intensity of IRM (Figure 6e) and a
sharp drop of the Km at 580°C (Figure 6f) reveal the presence of magnetite as the main susceptibility carrier.
According to the hysteresis curves (Dunlop, 2002), the presence of pseudo single domain (PSD) and multido-
main (MD) magnetite has been estimated (Figure 6b). One site showing Cure temperature of approximately
320°C may actually indicate existence of pyrrhotite or gregite (LM29 in Figure S1).
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In summary, the AMS of most samples of the Pengguan granitic rocks is
controlled by paramagnetic minerals (phyllosilicates). In these samples,
magnetite and Fe-sulfides probably also make minor contribution to
their AMS. In a minority of samples the MD/PSD magnetite forms the
dominant magnetic carrier. Thus, the magnetic susceptibility carriers
of the Pengguan granitic rocks consist of the paramagnetic phyllosili-
cates, the ferromagnetic magnetite, and the Fe-sulfides (Bouchez &
Gleizes, 1995; Bouchez et al., 1997; Kruckenberg et al., 2010; Wei,
Martelet, et al., 2014).

4.3. AMS Results

A lack of consistent correlation between PJ, T, and Km (Figures 5c and
5d) implies that AMS, at least for the paramagnetic susceptibility carrier,
varies independently from the magnetic minerals (Borradaile & Henry,
1997). The sites of LM07 and LM13 with extremely high Pj could be
the result of extremely high susceptibility (Rochette et al., 1992).
These sites may be affected by late stage hydrothermal fluid circulation
and will be ignored in the following discussion.

The equal-area projection of themagnetic principal axes with their con-
fidence ellipses at 95% level is given in Figure 7. Most magnetic princi-
pal axes are well defined with low α95max values (Figure 7 and Table 1).
The sites of LM24 and LM27 display poorly defined magnetic fabric and
will be ruled out in the following discussion. Some fabrics indicate that
K2 and K3 have a girdle distribution on the same plane that reflects a
prolate fabric and corresponds to a negative T value (LM10, 21, 23, 31,
and 33); these sites could be also affected by uniaxial single domain
magnetite which displays inverse fabrics (Table 1) (Ferré, 2002).

The orientation contour diagrams of the magnetic fabrics distinguish a
prevailing group of foliations dipping steeply to the NW (with an
average direction of 53°/76°NW) and lineations plunging steeply to
the NW (with an average direction of 45°/75°NW; Figure 8a). The
orientation diagrams also reveal a subset of sites with moderately north
dipping or steeply east dipping foliations and moderately NE
plunging lineations.

Magnetic structures of the complex in map view display that the stee-
ply NW dipping foliations generally associated with the steeply NW
plunging lineations are mostly distributed in the NW domain of the
complex, while the north dipping foliations and associated moderately
NE plunging lineations and other magnetic fabrics having random
azimuth are mostly distributed in the SE domain of the complex
(Figure 8b). It is worth noting that the AMS fabrics of the NW domain
of the complex is consistent with the tectonic fabrics measured in
the field.

Specimens cut from samples of five representative sites (LM01, 02, 03,
15, and 17) that had well-clustered magnetic fabrics were selected to
evaluate the relationship between the principal AMS directions and
macroscopic fabrics observed in the field. The magnetic foliation in all
five selected samples correspondswell with themylonitic foliationmea-
sured in the field, andwhen the lineation could be observed in the field,
it correspondswell with the orientation of K1 (Figures 7 and 8b). In the XZ
plane thin sections, the magnetic foliation defined by biotite and mag-
netite is parallel to the field observed foliation (Figures S2a and S2b).
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(a) histogram of site meanmagnetic susceptibility (Km). (b) Mrs/Ms versus Hcr/Hc
diagram from selected samples of the Pengguan granitic rocks to define the size
of magnetite. Mrs: remanence of saturation magnetization after removing the
applied field, Ms: saturation magnetization under applied field, Hcr: coercivity of
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4.4. Microstructural Analysis of AMS Samples

Microtextural and microstructural analyses are based on the observation of mineral relationships, subgrains,
and intracrystalline microstructures. This is intended to qualitatively assess the deformation of the granitic
rocks and to distinguish solid-state fabrics from magmatic fabrics by comparison of the mineral structures
with the AMS fabrics (Nédélec & Bouchez, 2015; Paterson et al., 1998, 1989; Sen et al., 2014; Wallis et al.,
2014). Twenty-one thin sections coming from 19 AMS sites and 2 hand samples, cut parallel to the
magnetic/tectonic lineation and perpendicular to the magnetic/tectonic foliation (XZ plane), were observed
under the optical microscope. The systematic examination on these thin sections allowed us to discriminate
four types of microstructures including (i) magmatic, (ii) weak solid-state, (iii) moderate solid-state, and (iv)
strong solid-state microstructures. The samples experienced the strong solid-state deformation will serve
to discuss the kinematics with respect to their spatial distribution in the complex.

1. Magmatic microstructure. The magmatic microstructure does not exhibit visible solid-state deformation.
Despite the plagioclase partially altered to sericite, the rock primary structures are defined by well-
preserved euhedral amphibole, weak undulose extinction in quartz, and euhedral pseudomorphose of
feldspar depicted by sericite aggregates (Figure 9a). The amphiboles with a rhombic shape are randomly
distributed in the groundmass of quartz and feldspar with magmatic microstructures. Biotite grains, with
sharp boundaries, are neither kinked nor bent.

2. Weak solid-state microstructure. The quartz grains have undulose extinction and subgrain walls are
developed (Figure 9b). Quartz-quartz boundaries are lobate or slightly serrated, and small newly formed
grains appear with the same grain shape preferred orientation, arguing for the onset of dynamic recrys-
tallization. Biotite grains are slightly elongated due to glide along their basal plane. Such a microstructure
indicates that some deformation took place during the transition from magmatic to solid state.

3. Moderate solid-state microstructure. Moderate solid-state microstructure is attested by the ubiquitous
serrated grain boundaries and uniform grain size that replace the primary quartz grains with slight
differences in extinction of the quartz. Subgrain rotation becomes the main dynamic recrystallization
mechanism in quartz (Figure 9c). The biotite grains record extensive kinking and the feldspars display
obvious fractures (Figure 9d).
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Figure 6. Magnetic mineralogical measurements of representative specimens from the Pengguan granitic rocks. (a, d)
Magnetic hysteresis loop diagram (small insects are those before removing paramagnetic component), (b, e) measure-
ments of isothermal remanent magnetization, and (c, f) thermomagnetic experiments of the Pengguan granitic rocks.
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4. Strong solid-state microstructure. In the intensive solid-state deformation microstructures, the aggregates
and recrystallized grains display obvious mylonitic characteristics, such as quartz ribbon, sigmoidal mica
aggregates (Figure 9e), fine-grained quartz, and feldspar form tails around residual feldspar phenocrysts
(Figure 9f).

Although merely 21 sites were conducted for microstructural observations for the whole Pengguan complex,
the above defined types of deformation state display a well-defined distribution (Figure 8c). The moderate
and strong solid-state deformed microstructures are exclusively distributed in the NW domain of the com-
plex, while the weak solid-state and magnetic fabrics are distributed in the SE domain.

4.5. Interpretation of AMS and Microstructures of the Pengguan Granitic Rocks

The magnetic susceptibility of the Pengguan granitic rocks mostly arises from paramagnetic biotite and
partly ferromagnetic magnetite (PSD or MD) based on Km, thermomagnetic, hysteresis loop, and isothermal
remanent magnetization measurements. Numerous previous studies have demonstrated that paramagnetic
minerals and ferromagnetic minerals carry comparable magnetic fabrics with the mineral petrofabrics in
terms of orientation (Borradaile & Jackson, 2004; Bouchez & Gleizes, 1995; Bouchez et al., 1997; Parsons,
Ferré, et al., 2016; Rochette et al., 1992]. Stereonet projection and microscopic characteristics indicate that
the well-clustered magnetic fabrics of the mylonitic samples within the Pengguan complex are consistent
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Figure 7. AMS fabrics for each site of Pengguan granitic rocks and compare to the field measured fabrics. K1: magnetic
lineation and K3: pole of magnetic foliation. All projections are equal area lower hemisphere.
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with the field observed fabrics (Figures 7, 8b, S2a, and S2b). Thus, the subfabrics of the biotite and magnetite
of the Pengguan granitic rocks contribute to the normal magnetic fabrics.

The well-grouped magnetic fabrics characterized by steeply NW dipping foliations and steeply NW plunging
lineations, from these rocks with moderate solid-state deformation, are consistent with those from ductilely
deformed fabrics as well as the regional field fabrics, which are mostly distributed in the NW domain of the
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Figure 8. Data analysis after removing the extremely high Km sites of LM07, 13 and poorly defined sites of LM23, 24, and 27.
(a) Orientation contour diagrams of site mean and individual magnetic fabrics. (b) Site mean magnetic and field fabrics of
the Pengguan complex. (c) Deformation intensity zonation based on microstructural study. (d) Orientation contour
diagrams of individual magmatic fabrics partitioning based on deformation zonation. All projections are equal area lower
hemisphere.
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Pengguan complex, while the SE domain of the complex, characterized by magmatic and weak solid-state
microstructures, displays randomly oriented magnetic fabrics (Figure 8d). Thus, it is reasonable to suggest
that most of the magnetic fabrics of the NW domain of the complex arise from ductile deformation.

In addition to the kinematics described in section 3.2, the asymmetric quartz ribbon, the sigmoidal structures
of micas and feldspars on thin sections (perpendicular to the field foliation and parallel to the magnetic
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Figure 9. Microstructures observed in the granitic rocks of the Pengguan complex. (a) Magmatic microstructures with
euhedral amphiboles and altered plagioclase grains (31°16.6610N, 103°28.3220E). (b) Weak solid-state deformation, lobate
quartz boundaries, and a few buldging neograins indicate partial recrystallization (31°05.8120N, 103°33.7630E). Moderate
solid-state deformation: (c) quartz-quartz serrated boundaries and recrystallization with similar grain shape preferred
orientation, subgrain rotation is the dominant recrystallization mechanism (31°16.6610N, 103°28.3210E). (d) Feldspars
flexured like sand clock with biotite and chlorite wrapped around (31°16.6610N, 103°28.3210E). Intensive solid-state
deformation: (e) Recrystallized quartz grains organized into ribbons and mica aggregates form sigmoidal structures that
indicate top-to-the-NW shearing (31°22.3910N, 103°20.8480E). (f) Fine-grained quartz and feldspar forming tails around
residual feldspar phenocrysts that indicate top-to-the-SE shearing (31°03.5360N, 103°30.5880E). X and Z axes are marked on
the figures. Qtz: quartz, Cal: calcite, Bt: biotite, Ms: muscovite, Ser: sericite, Am: amphibole, Chl: chlorite, and Fds: feldspar.
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lineation) indicate both top-to-the-NW and top-to-the-SE shearing in the NW domain of the Pengguan
complex (Figures 8b, 9e, and 9f). The mineral assemblage that defines the foliation includes quartz + feld-
spar + biotite + chlorite; it suggests that the top-to-the-SE shearing occurred under greenschist facies
metamorphism conditions, which is similar in metamorphic grade to the metamorphism in the NW boundary
of the complex (Figures 4 and 9f). Both top-to-the-NW shearing and top-to-the-SE shearing are accommo-
dated with quartz subgrain rotation dynamic recrystallisation, which also support the greenschist facies
metamorphism (Figures 4 and 9f).

5. Gravity Modeling

Gravity modeling has long been used to depict the bulk architecture of deep structures; it is especially well
suited to decipher the geometry of plutonic massifs (e.g., Bolle et al., 2002; Guineberteau et al., 1987; Lin
et al., 2013; Talbot et al., 2005; Turrillot et al., 2011; Wei, Martelet, et al., 2014). In order to complement our field
structural and AMS observations, we applied this approach to constrain the deep structure of the Pengguan
complex and adjacent areas.

5.1. Gravity Map

In the study area, a detailed Bouguer anomaly map (1,200000) was acquired from the Geological Survey of
China, complemented regionally by a lower-resolution (20 × 20) Bouguer grid acquired from the
International Gravimetric Bureau database (Bonvalot et al., 2012). In order to highlight the short wavelengths
gravity signatures of the upper crust, the long wavelengths gravity anomaly were subtracted from the com-
plete Bouguer anomaly at the regional scale. After several trials, the regional component was extracted using
a low-pass Butterworth filter with a 70 km cutoff, which (i) fitted well the gravity trends at the regional scale
and (ii) properly outlined residual anomalies over known outcropping geological structures. In Figure 10,
main geological boundaries are superimposed on the residual gravity anomaly map (BGMRSP, 1991).

The general architecture of the residual gravity map is structured along three main NE-SW trending units: in
the center, the LMTB predominantly outlined by high gravity anomalies, separates the Sichuan foreland basin
to the SE, marked by well-defined low gravity anomalies, and the SGT to the NW, marked by intermediate
gravity signatures. In the residual anomaly, several Mesozoic granites intruded in the SGT display well-
defined negative anomalies due to their low density relative to the country rocks (Figure 10). A significant
positive anomaly appears at the position where the Pengguan complex is located (Figure 10). To the
northwest of the Pengguan complex and nearly parallel to the LMTB, there is a well-defined positive gravity
anomaly belt, which does not associate with any outcrop of high-density material (Figure 10).

5.2. Two-Dimensional Gravity Modeling

To feature the deep geometry of the Pengguan complex and the LMTB, 2-D gravity modeling was performed.
Two NW-SE trending profiles perpendicular to the LMTB were modeled using Geosoft-GM-SYS software
(Figure 10). Density of rocks considered in the modeling is derived partly from laboratory measurements.
We concentrated our density determinations on rocks outcropping in the Pengguan complex and surround-
ing areas (Figure 11) and complemented our data set with densities from a previous study for the more
peripheral or nonoutcropping geological units (Zhang et al., 2009). For nonoutcropping deep units, the den-
sity of the undifferentiated upper crust was chosen at 2.72 g/cm3 following Turrillot et al. (2011), and we con-
sidered the existence of a deep low-density material (density 2.65 g/cm3) imbricated with the Pengguan
rocks that we discuss in a next stage. We also took into account very dense basic/ultrabasic material (density
3.0 g/cm3) intercalated in the Pengguan complex. This is consistent with the NE-SW trending diabase/gabbro
intrusions (circa 195–186 Ma) reported in the Pengguan complex (Figures 2a and 3c) (Chen et al., 2015). Also,
we assumed that the NE-SW trending hidden high-density belt northwest of Pengguan complex share the
same density as the Pengguan complex. In our profiles, the overall tectonic style and structural dips were
made consistent with surface geological observations and information available in nearby seismic profiles.
In particular, the three main listric thrust faults were constrained by the seismic reflection data, two of them
bound the Pengguan complex (Feng et al., 2015; Guo et al., 2013; Jia et al., 2006; Li et al., 2010).

5.3. Interpretation of the Gravity Model

In Figure 11, the two modeled gravity profiles display similar geological architectures that portray the wes-
tern Sichuan foreland basin and the SGT, taking into account the overall strata thicknesses constrained by
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regional geological mapping (BGMRSP, 1991). According to our models, the SGT, intruded by several
Mesozoic plutons, is underlain by dissected basement, while the strata in Sichuan basin are rather flat, as
shown in the seismic profile (Figure 11c) (Feng et al., 2015; Guo et al., 2013). In our models, on both sides
of the Pengguan complex, the significant thickening of certain sedimentary units is interpreted as the
result of folding and thrusting due to the bulk shortening in the LMTB since the Late Triassic. The
simplified density applied in the modeling could also partly contribute to the variations in strata thickness.
The gravity modeling suggests that the Xuelongbao complex is a 2–3 km thick rootless batholith and the
Moutuo complex is even thinner (Figure 11). On the contrary, the Pengguan complex is thick
(approximately 20 km), which is partly due to tectonic stacking, according to the gravity model (Figure 11).

The gravity model suggests that the Pengguan complex is strongly tectonized and the NW domain of the
complex is underlain by low-density materials, likely implying that a thrust fault separates the NW domain
from the SE domain of the complex. This structure is consistent with the zonation of the AMS fabrics and
microstructures (Figures 8b–8d and 11). In accordance with the structural observations, the profiles suggest
that the NW domain of the Pengguan complex is an allochthonous basement slice, thrusted southeastward

Figure 10. Residual Bouguer gravity anomaly of the Pengguan complex and adjacent areas after subtraction of a 70 km
wavelength regional trend from the complete Bouguer anomaly. Gray dashed line represents the location of the seismic
profile processed by Guo et al. (2013). PG: Pengguan complex, XLB: Xuelongbao complex, MT: Moutuo complex, JZD:
Jiaoziding complex, RLG: Rilonguan granite, and LJG: Laojungou granite.
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onto the autochthonous SE domain. Further to the NW, the hidden high-density belt is considered as an
equivalent of the Pengguan complex, but still not outcropping, strongly tectonized and folding the overlying
Paleozoic sediments. The gravity model indicates that this high-density belt is associated with an undulated
residual Bouguer anomaly, and wematch this gravity pattern featuring a series of imbricated basement slices
(Figure 11). Either thrusting or normal movement could form such stacked structure. We favor the thrusting
as a result of compressional tectonics because field observations show exclusively compressional structures
in the study area (Burchfiel et al., 1995; Worley & Wilson, 1996; Xu et al., 1992).

Two possible reasons could account for the low-density material right upon the YBF featured in profile A-A0:
(i) low-density Late Triassic sediments tectonically imbricated with granitic rocks during thrusting (Lu et al.,
2014) and (ii) the indirect effect due to relatively less mafic intrusions inside the northeastern Pengguan
complex compared to its southwestern part (Figure 11).

6. Discussion
6.1. Summary of Our New Results

Our microstructural analysis of the Pengguan complex classified four types of microstructures: magmatic
microstructure, weak solid-state microstructure, moderate solid-state microstructure, and strong solid-state
microstructure. The latter two types of microstructures, indicating of ductile deformation, are mostly devel-
oped in the NW domain of the Pengguan complex and are absent in its SE domain. The AMS fabrics of the
ductilely deformed NW domain display steeply NW dipping foliations associated with steeply NW plunging
lineations, which are consistent with the field-observed fabrics. The SE domain displays north dipping folia-
tions associated with lineations moderately plunging to the NE or randomly oriented magnetic fabrics
(Figures 8b–8d). Thus, the ductile deformation in the NW domain was strong enough to erase the primary
magmatic fabrics. Based on kinematical and petrological studies, top-to-the-NW and top-to-the-SE shearing
during greenschist facies metamorphism occurred along the NW and SE boundary of the NW domain of
the Pengguan complex (Figure 8b). These observations let us suppose that the NW and SE domains of
the complex are separated by a thrust fault. The NW domain of the complex acted as an allochthonous
basement slice that imbricated southeastward and overlaid the autochthonous SE domain (Figures 2b
and 8c).

Two orogen-perpendicular gravity profiles reveal that (i) the imbricated slices of the Pengguan complex are
consistent with the AMS and microstructural study, (ii) the base of the Sichuan foreland basin is rather flat
while the base of the SGT is dissected, and (iii) northwest of the Pengguan complex, high-density material
(basement) concealed by the Paleozoic rocks display the same thrusted/imbricated pattern as the
Pengguan complex (Figure 11). In summary, the data presented in this work document a SE verging
basement-slice-imbricated structure of the Pengguan complex and adjacent areas.

6.2. Lateral Extent of the Basement-Slice-Imbricated Structure

A high-resolution seismic profile across the LMTB has been processed by Guo et al. (2013) (Figures 10 and 11c).
The base of the SGT and of the Sichuan foreland basin interpreted in the seismic profile is consistent with our
gravity profiles. In the seismic profile, an echelon arrangement of reflectors moderately dipping to the NW
corresponds to the place where the hidden high gravity anomaly belt is located (Figures 10 and 11c).
These reflectors were previously interpreted as pop-up and back thrust structures (Guo et al., 2013).
However, the reflectors in the seismic profile can be re-interpreted as southeastward imbrication of basement
slices, in agreement with our gravity profiles (Figure 11d). Furthermore, the relatively flat reflectors of the SGT
are dissected and benched as well.

At the local scale of the Pengguan complex, the top-to-the-NW shearing and the top-to-the-SE shearing
control the southeastward basemen-slice imbrication of the NW domain of Pengguan complex. At the
regional scale, the top-to-the-NW/N shearing that affects the Pengguan complex extends from the north
of Danba dome, across the north of Kangding complex and the Baoxing complex and may extend to the
Jiaoziding complex, totalizing more than 300 km in length (Figure 1a) (Burchfiel et al., 1995; Li, 2009;
Tian et al., 2016 ; Xu et al., 2008). Thus, it is likely that a belt of imbricated basement slices represented
by the orogen-parallel Neoproterozoic complexes is regionally developed along the LMTB. Combining
the gravity anomaly residual and the seismic profile, another belt of imbricated basement slices
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represented by the hidden high-density material that may be regionally developed on the west of the
LMTB as well. These two parallel belts of imbricated basement slices therefore constitute the LMTB and
adjacent areas (Figure 10).

6.3. Geochronological Constraints

Published 39Ar/40Ar agesmeasured along the LMTB, on biotite, muscovite, amphibole, and U-Th-Pb dating on
monazite frommylonites andmicaschists are presented in Figure 12a, and these ages can be roughly divided
into three periods (Figure 12b). The first period from 237 to 200 Ma and the third period from 81 to 47 Ma

Figure 12. (a) Kinematic map of the Pengguan complex and adjacent area with the compilation of previously published
geochronological results. (b) 39Ar/40Ar ages from along the LMTB and zircon age probability diagram of the Mesozoic
igneous rocks in the SGT. Black rectangle represents samples from the top-to-the SE/S shearing domain; white rectangle
represents samples from the top-to-the N/NW shearing domain. Curve represents the zircon age probability diagram
of the Mesozoic igneous rocks in the SGT. (1) Yan et al., 2011, (2) Kirby et al., 2002, (3) Li, 2009, (4) Arne et al., 1997,
(5) Li et al., 2013, (6) Airaghi et al., 2017, (7) Yan et al., 2008, and Dirks et al., 1994, (8) Tian et al., 2016, and (9) Huang, Buick,
et al., 2003, Zhou et al., 2008, and Xu et al., 2008. Symbols and acronyms are the same as in Figure 1.
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correspond, respectively, to the Early Mesozoic and Late Cretaceous-Cenozoic shortening in the LMTB. The
zircon ages of the granites in the SGT reveal one predominant peak at circa 211 Ma that postdates the
Early Mesozoic shortening (Figure 12b) (BGMRSP, 1991; Hu et al., 2005; Roger et al., 2004; Sigoyer et al.,
2014; Xiao et al., 2007; Zhang et al., 2006).

The second group of 39Ar/40Ar ages span over a large time period between 175 and 118 Ma (Figure 12). For
the belt displaying top-to-the-NW/N shearing distributed at the NW/north boundary of the Neoproterozoic
complexes, the recrystallized biotite and muscovite from the NW boundary of the Jiaoziding complex
involved in NW shearing yield an 39Ar/40Ar age of circa 166 Ma (Li, 2009). The ages between 168 and
158 Ma dated by 39Ar/40Ar method on amphibole and U-Th-Pb one on monazite from mylonite and micas-
chists in the north of the Danba dome were interpreted as the timing of top-to-the-N/NW shearing
(Huang, Maas, et al., 2003; Zhou et al., 2008). Younger biotite 39Ar/40Ar dating ages, at circa 120 Ma, have also
been reported at the northwest boundary of the Baoxing complex and the north boundary of the Danba
dome, which were interpreted as cooling ages (Tian et al., 2016; Xu et al., 2008). For the top-to-the-SE shear-
ing, the ages of 166–140 Ma yielded by 39Ar/40Ar dating on muscovite from the Pengguan mylonitic rocks
were interpreted as the age of muscovite recrystallisation during the top-to-the-SE shearing (Airaghi et al.,
2017; Yan et al., 2008). In the west of the Pengguan complex, 39Ar/40Ar dating on the deformed muscovite
from micaschists involved in the top-to-the-SE shearing yields ages between 131 and 119 Ma, which are also
interpreted as the timing of the top-to-the-SE shearing (Arne et al., 1997). The flexural subsidence in the
Sichuan foreland basin occurred during J3-K1 is also interpreted as the consequence of the SE thrusting
and loading of the LMTB (Dirks et al., 1994; Li et al., 2013). Thus, the top-to-the S/SE shearing and the top-
to-the N/NW shearing that control the imbrication of the basement slices occurred during J3-K1.

Detailed geochronology studies on the metamorphic and magmatic rocks of the SGT indicates a slow regio-
nal cooling history during 203–30 Ma (Huang, Buick, et al., 2003; Huang, Maas, et al., 2003; Roger et al., 2011).
Meanwhile, the Mesozoic Laojungou granite (224 ± 5 Ma) in the SGT experienced a rapid exhumation
between 172–140 Ma (Yuan et al., 1991; Zhao, 2007). The Laojungou granite was probably popped up by
the imbrication of the underlying basement slices, resulting in localized fast exhumation (Model B–B0 in
Figure 11). This was contemporary to the localized fast exhumation (168–158 Ma) recorded in the Danba area
(Huang, Maas, et al., 2003).

In Figure 12b, the zircon age distribution of the granites in the SGT also displays two weak peaks at circa 162
and circa 120 Ma, which could be the magmatic response to the imbrication of the basement slices. In
summary, we argue that this basement-slice-imbricated structure formed during the Late Jurassic-Early
Cretaceous times.

6.4. Evolution Model of the LMTB and Its Tectonic Implications

Several models have been invoked to interpret the emplacement of the orogen-parallel Neoproterozoic com-
plexes and associated top-to-the-NW/N shearing (Burchfiel et al., 1995; Li, 2009; Tian et al., 2016; Xu et al.,
2008; Zhou et al., 2008). The crustal wedge extrusion or lower crust flow bounded by a thrust on the foreland
side and a normal fault on the hinterland side has been suggested (Burchfiel et al., 2008; Xu et al., 2008). In the
model of crustal wedge extrusion, an extensional basin would be expected in the hanging wall side of the
normal fault, whereas, no basin has been reported in the hinterland of the LMTB. The lower crust flowmodel,
alike the Himalayan with the Main Boundary Thrust and South Tibetan Detachment, considers that the
partially melted lower crust is driven by the topographic loading and surface denudation (Beaumont et al.,
2001). However, the partially melted material, such as the leucogranitic magmatism in south Tibet, is absent
in the LMTB. Another crust duplex model under contractional tectonics has been proposed to explain the
southwestern LMTB (Tian et al., 2016) but failed to explain the top-to-the-NW shearing and the imbrication
of the Neoproterozoic basement. All three models mentioned above did not incorporate the belt of imbri-
cated basement slices in the SGT.

The imbricated Neoproterozoic complex and the hidden imbricated structure lead us to propose a basement
slice imbrication model. One belt of basement slices is exposed on the surface as the orogen-parallel
Neoproterozoic complexes, while the other belt of basement slices is concealed on the west of the LMTB.
Figure 13 presents a general evolution scenario of the LMTB and adjacent areas. A pre-Middle Triassic rift
was developed along the western boundary of the SCB proposed by Long (1991) and Chen and Wilson (1996),
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and numerous NW dipping normal faulting were developed in accommodation with this extension
(Figure 13a). During T3-J1, the Mesozoic shortening led to large-scale southeastward thrusting and folding
of the Paleozoic-Triassic formation of the SGT, along a regional décollement located in the low-strength
Silurian shale and pelite, and the latter was transported southeastward to the Sichuan foreland basin as
nappes (Burchfiel et al., 1995; Calassou, 1994; Roger et al., 2004; Xu et al., 1992). At the same time, the
early NW dipping normal faulting developed along the passive margin of the South China Block was
inverted and cut the basement of the Longmenshan area into a step-like shape (Figure 13b) (Burchfiel et al.,
1995; Chen & Wilson, 1996; Long, 1991). These crustal thickening and shearing events were responsible for
the widespread intrusion of granites in the SGT and the initiation of the Sichuan foreland basin (Calassou,
1994; Harrowfield & Wilson, 2005; Hu et al., 2005; Roger et al., 2004; Sigoyer et al., 2014).

During J3-K1, the basement was cut into slices by several faults and transported southeastward probably due
to the collision between the Lhasa and Qiangtang Blocks (Figure 13b) (Yin & Harrison, 2000). One belt of
imbricated basement slices represented by the Jiaoziding, Pengguan, Baoxing, Kangding complexes, and
the Danba dome is located in the proximal continental margin of the Yangtze Block, part of the SCB. These
slices accumulated the highest strain and were “squeezed” outward, which formed the contemporaneous
top-to-the-NW shearing and top-to-the-SE shearing along their NW and SE boundaries, respectively
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slice extrusion. The symbols and acronyms are the same as in Figure 1.
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(Figure 13c). The other belt of basement slices underlies and sustains the SGT so that no extensional basin
developed at the hanging wall side of the NW normal fault (Figure 13c).

Coeval top-to-the hinterland shearing and top-to-the foreland thrusting are generally developed in orogens
with thickened crust though their thickening mechanisms are fundamentally in variance, such as in the
southeastern Canadian Cordillera (Price, 1986), the Alpine orogen (e.g., Schmid et al., 2004; Selverstone,
2005; Tavarnelli, 1999), the Late Devonian Appalachians (e.g., Castonguay et al., 2007; Pinet et al., 1996),
the Scandinavian Caledonides (e.g., Grimmer et al., 2015; Hartz & Andresen, 1997), and the central East
Greenland Caledonides (e.g., Johnston et al., 2010; White & Hodges, 2002). It is therefore reasonable to sug-
gest that the Longmenshan crust had reached a significant thickness by the Late Jurassic-Early Cretaceous,
probably due to the imbrication of basement slices. This inference is consistent with the contemporaneous
development of Barrovian metamorphism west of the WMF and migmatization north of the Danba dome
(Arne et al., 1997; Dirks et al., 1994; Huang, Maas, et al., 2003). Inverse multiequilibrium thermodynamic
approach and in situ 39Ar/40Ar dating indicate that the Pengguan complex was exhumed from approximately
20 km depth and overprinted by greenschist facies metamorphism during 135–140 Ma (Airaghi et al., 2017).
On the base of the results illustrated above, the imbrication of basement slices in the Longmenshan belt at
least resulted in the crustal thickening more than 20 km in thickness along the NE Tibet in Late Mesozoic
times, which contradicts to the previously proposed Cenozoic thickening models.

7. Conclusions

Structural analysis, AMS measurements, petrofabric study, and gravity modeling reported in this study reveal
that the bulk architecture of the LMTB and adjacent areas consists of two parallel belts of SE imbricated base-
ment slices. One belt of the basement slices close to the Yangtze Block is bounded by the top-to-the-NW/N
and top-to-the-SE shearing that formed the Pengguan complex and other orogen-parallel Neoproterozoic
complexes. The other belt of imbricated basement slices underlies the SGT and sustains its high topography.

The previously published geochronological data, the localized fast exhumation rate, and lithological charac-
teristics of sediments in the Sichuan foreland basin indicate that the imbrication of the basement slices
occurred during Late Jurassic-Early Cretaceous. We therefore suggest that the LMTB experienced a significant
phase of basement slices imbrication, crustal thickening, and associated exhumation in the Late Mesozoic
times; consequently, this may imply that the importance of deformation and exhumation in the Cenozoic
of this area is often overestimated.
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