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Volcanic eruptions pose a threat to lives and property when volcano flanks and

surroundings are densely populated. The local impact of an eruption depends firstly

on its location, whether it occurs near a volcano summit, or down on the flanks.

Then forecasting, with a defined accuracy, the location of a potential, imminent

eruption would significantly improve the assessment and mitigation of volcanic hazards.

Currently, the conventional volcano monitoring methods based on the analysis of

surface deformation assesses whether a volcano may erupt but are not implemented

to locate imminent eruptions in real time. Here we show how surface deformation

induced by ascending eruptive feeders can be used to forecast the eruption location

through a simple geometrical analysis. Our analysis builds on the results of 33 scaled

laboratory experiments simulating the emplacement of viscous magma intrusions in a

brittle, cohesive Coulomb crust under lithostatic stress conditions. The intrusion-induced

surface deformation was systematically monitored at high spatial and temporal

resolution. In all the experiments, surface deformation preceding the eruptions resulted

in systematic uplift, regardless of the intrusion shape. The analysis of the surface

deformation patterns leads to the definition of a vector between the center of the uplifted

area and the point of maximum uplift, which systematically acted as a precursor to the

eruption’s location. The temporal evolution of this vector indicated the direction in which

the subsequent eruption would occur and ultimately the location itself, irrespective of

the feeder shapes. Our findings represent a new approach on how surface deformation

on active volcanoes that are not in active rifts could be analysed and used prior to an

eruption with a real potential to improve hazard mitigation.
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KEY POINTS

• We quantitatively analyse pre-eruptive intrusion-induced surface deformation from 33 scaled
laboratory experiments resulting in eruptions.

• A robust proxy extracted from surface deformation geometry enables systematic predictions of
the locations of a subsurface intrusion and imminent eruption.

• Forecasting an eruption location is possible without geodetic modeling but requires volcano
monitoring at high spatiotemporal resolution.
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INTRODUCTION

Preceding any potential volcanic eruption, the propagation of
magma at shallow depth induces deformation of the Earth’s
surface (Dzurisin, 2007). During the last decade, geodetic
measurements of ground deformation due to such magmatic
intrusions have become a standard tool in monitoring active
volcanic systems (Amelung et al., 2000; Wright et al., 2006;
Sigmundsson et al., 2010, 2015). These tools commonly
include tiltmeters (Toutain et al., 1992), Global Navigation
Satellite Systems (GNSS; Bonforte and Guglielmino, 2015; Lee
et al., 2015), Interferometry Synthetic Aperture Radar (InSAR;
Massonnet et al., 1995; Lanari et al., 1998; Fukushima et al., 2005),
and photogrammetry (Cayol and Cornet, 1998; Hollingsworth
et al., 2013; Hibert et al., 2015).

Surface deformation is one of the several routinely monitored
observables from active volcanic regions that are used to assess
the volcano’s behavior and eruption probability. However, pre-
eruptive geodetic data from active volcanoes that were acquired
at high frequency suggest that they contain some precursory
signals useful to track the pre-eruptive propagation of volcanic
feeders (e.g., Toutain et al., 1992; Cannavò et al., 2015). Thus,
they may have the potential to be used to forecast the location
of subsurface magma in real time. Nevertheless, systematic and
robust surface deformation precursors for volcanic eruption
locations have not been identified yet.

Here we present results from 33 scaled laboratory models
of shallow intrusions that ultimately fed eruptions (Figure 1).
During each experiment we periodically monitored the surface
deformation caused by the subsurface propagation of the
feeder. A simple geometrical analysis of the surface deformation
data reveals that the eruption locations were systematically
forecastable without performing any geodetic modeling. We
also observe that distinct shapes of the eruptive feeders, here
dykes and cone sheets, exhibit distinct, characteristic surface
deformation signatures. We conclude that geodetic surface
deformation data, if acquired at high enough spatial and temporal
resolutions, do have the potential to be used to follow magma
pathways at shallow depth and to forecast the locations of
imminent volcanic eruptions without any modeling.

METHOD

Experimental Protocol
All the experiments were performed in the experimental
apparatus of, and using the experimental protocol described by
Galland et al. (2009), Galland (2012), Galland et al. (2014), and
Guldstrand et al. (2017). Galland et al. (2006) describe in detail
the mechanical properties of the model materials and the scaling
of the models. Below, we briefly summarize the experimental
materials and protocol.

The model materials are fine-grained silica flour and molten
vegetable oil, to simulate brittle rocks and magma, respectively.
The flour consists of fine (∼15µm), angular grains of crystalline
silica flour. It has a cohesive strength of 369 ± 44 Pa, a friction
coefficient of 0.81 ± 0.06 (corresponding to an angle of internal
friction of ∼39◦) and a tensile strength of 100 Pa (Galland et al.,

2006, 2009). As 1 cm in the models represents 100–1,000m in
nature, the resulting stress ratio indicates that the model crust
should be 13 × 103-250 × 103 times weaker than its geological
prototype (Abdelmalak et al., 2016). The silica flour fulfills this
criterion. It reproduces the brittle Coulomb behavior of the
Earth’s crust (Abdelmalak et al., 2016). Additionally, the flour is
cohesive and has the ability to stand non-negligible elastic stresses
along stable vertical walls (Abdelmalak et al., 2016). However,
the elastic properties of silica flour remain poorly constrained,
as is the case for granular materials in general. It is therefore
challenging to address how the elastic stresses in our models scale
with those in geological systems (Galland et al., 2017).

The model magma consists of a vegetable oil that is solid at
room temperature and melts at ∼31◦C (Galland et al., 2006).
Molten, it is a Newtonian fluid with a weak temperature-
dependent viscosity (Galland et al., 2006). Using these materials,
a generic experiment consists in injecting hot oil into the flour
at room temperature to generate an intrusion. At the injection
temperature of∼50◦C, the oil exhibits a viscosity of 2× 10−2 Pa
s and a density of 890 kg m−3. Oil percolation within the flour
during injection is inhibited as silica is chemically incompatible
with the oil and an oil intrusion is dominantly accommodated
by deformation of the flour (Galland et al., 2006). During an
experiment, the effects of cooling of the oil against the flour can
be neglected, as intrusion durations are shorter than conductive
cooling timescales. Our model scales through assuming that the
ratio of viscous stresses in the oil/magma to the cohesion of the
flour/host rock are identical in the model and nature (Galland
et al., 2014). In nature, magma velocities can be of the order of
1–10−2 m s−1 (Toutain et al., 1992). The experimental device
allows for oil velocities of 10−3-10−1 m s−1. As magma viscosities
cover a wide range (10–107 Pa s), relevant model viscosities fall
in the range 4 × 10−9-75 Pa s, which the oil fulfills. To simplify,
the oil at 50◦C dominantly represents a rather viscous magma of
intermediate to felsic composition.

For a generic experiment, the experimental setup consists
of a 40 cm wide square box with a circular inlet pipe at its
center, into which a known mass of silica flour is poured. Then
a high-frequency vibrator shakes the box to compact the flour
until a bulk density of 1,050 kg m−3 is reached. A flat metal
plate is placed onto the model surface during compaction to
ensure repeatable experiment preparation and an initial flat and
horizontal surface of the models; the metal plate is removed
after compaction. A volumetric pump injects the molten oil at
constant flow rate through the circular inlet. With such a setup, it
is possible to vary, among other parameters, the injection depth,
the diameter of the inlet, and the flow rate. Depending on these
parameter settings, the models systematically produce various
geometries of intrusions, such as vertical sheet intrusions (dykes)
and cone sheets (Figure 2; Galland et al., 2014). The vertical sheet
intrusions initiated at the inlet and propagated to the surface.
They often split to form a hull-shaped termination or turned into
inclined sheets before reaching the surface (Galland et al., 2014).

Surface Data
The surface deformation data used in the present study were
acquired during 33 out of the 51 experiments from Galland et al.
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FIGURE 1 | Experimental device used to simulate shallow intrusions of oil into silica flour (adapted from (Galland, 2012) with permission, Galland et al., 2006, 2014),

which induced uplift of the surface of the models that were periodically monitored (1.5 s time steps) using a moiré projection system (Bréque et al., 2004; Galland,

2012), and fed eruptions (black star). At each time step of a given experiment, simple geometrical parameters (see legend box) were calculated from the surface uplift

map. This study shows that their evolution with time represents a precursor for the location of the next eruption.

(2014). Note that although surface deformation was monitored
during all their experiments, Galland et al. (2014) focused on the
dynamics of the intrusion processes at depth and on the resulting
intrusion shapes, only. The resulting surface deformation dataset
has subsequently been analyzed by Guldstrand et al. (2017),
who focused on mechanical interpretations associated with
the intrusion mechanisms at depth. The present analysis of
the dataset is different and discusses the implications for
volcanic hazards assessment. The 33 experiments considered here
correspond to those for which enough surface deformation data
were available during the entire duration of the experiments.
They are representative of the full ranges of the parameters
explored by Galland et al. (2014).

During the experiments, surface data were monitored using
a moiré projection apparatus. The moiré monitoring (Bréque
et al., 2004; Galland, 2012) was performed through projecting
sets of illuminated straight fringes onto the model surface.
The fringes remain straight on a flat surface but deform when
projected on a surface with topography, producing curved fringe
patterns. A video camera perpendicular to the surface captured
the evolving fringe patterns on the model surface periodically (by
successive scans starting at time step intervals of 1.5 s), which
were subsequently analyzed to compute time series of digital
elevation models (DEMs; Bréque et al., 2004). The duration of
a scan for the acquisition of an individual DEM was ∼1 s and we
chose to set the time of each DEM at the beginning of each scan.
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FIGURE 2 | Typical intrusions produced using our experimental setup, (A) vertical sheet intrusion classified as dyke and (B) cone sheet (reprinted with permission

from Guldstrand et al., 2017).

Focussing on surface deformation induced by the intrusions,
we have analyzed differential digital elevation models (1DEMs)
obtained from the difference between the DEMs at given time
steps and the DEM of the initial model surface. To limit noise
effects, 1DEM data were smoothed. The lateral resolution of the
1DEMs is <1mm, and the vertical precision of the smoothed
1DEMs is ∼0.1mm (Guldstrand et al., 2017). As only uplifts
were observed for both dyke and cone sheet experiments, for
each 1DEM we have defined the group of pixels corresponding
to the uplifted area using an uplift threshold criterion of 0.1mm.
We have then calculated the location of the mean center (C) of
the uplifted area by averaging the positions of each pixel in the
uplifted area, giving the same weight to each pixel (Figure 1). The
locations of the centers of the uplifted areas were then known
for each time step of each experiment in a consistent way. The
uplifted areas never extended further than about 15 cm from the
box walls, so that sidewall effects are assumed to be negligible.
This is confirmed by the random location of the eruption sites in
our experimental series.

The experiments lasted between a few seconds up to about
1min, from the time at which the injection started up to the
time at which the oil erupted. The second and the last scans
of moiré projections started at about the same times, within
errors of 1.5 s, as the injection started and the eruption occurred,
respectively. To compare experiments of varying durations, we
have normalized the time t at a given time step by the experiment
duration, te. Therefore, for each experiment, the dimensionless
time, t/te, which varied from 0 to 1, approximately represents the
relative duration of the intrusion up to the eruption.

RESULTS

The 33 experiments that produced suitable surface deformation
data lasted from ∼6 to ∼53 s. They produced 16 dykes and 17
cone sheets depending on the values of depth and diameter of the
injection inlet, as well as the injection velocity of the oil (Galland
et al., 2014; Guldstrand et al., 2017).

All the experiments, i.e., both those producing dykes and cone
sheets, displayed an initial symmetrical bell-shaped uplift of the

surface followed by the development of an uplift asymmetry that
grew until the oil erupted in the immediate vicinity of the point
of maximum uplift (Figure 3; Guldstrand et al., 2017). The dykes
systematically triggered uplift, regardless of their final shapes, i.e.,
vertical sheets with or without, split or inclined terminations. To
quantify the uplift asymmetry, we have calculated the positions of
(1) the center of the uplifted area and (2) the point of maximum
uplift at each time step (points C and M, respectively, Figure 1).

We defined a vector,
−→
V MC, connecting these points.

During the early stages of uplift, in all the experiments,
points C and M closely clustered, as illustrated by the short

vectors
−→
V MC (Figures 4C,D), the orientation of which strongly

varied with time. The points of maximum uplift (M) then
migrated away from the center (C), as shown by the lengthening

of
−→
V MC (Figures 4C,D). Concomitantly, the orientation of

−→
V MC focused and stabilized in azimuth with time. Importantly,

in all the experiments,
−→
V MC ultimately pointed toward the

subsequent eruption location (Figures 4C,D). The eruptions
systematically initiated at the intersection between the ultimate
−→
V MC direction and the marginal border-zone of the uplifted
area.

We also calculated (1) the evolution of |
−→
V MC| scaled by the

injection depth (d) and (2) the rotation angle (θMC) of the vectors
−→
V MC between two successive time steps (Figures 5, 6). For each

experiment, the evolution of
∣

∣

∣

−→
V MC

∣

∣

∣

/d quantifies how point

M moved away from C, and θMC indicates the stability of the
direction of VMC. We arbitrarily consider that θMC was stable
once it remained <20◦.

There are systematic differences in the evolution of
∣

∣

∣

−→
V MC

∣

∣

∣

/d

and θMC for dykes and cone sheets (Figures 5, 6). During

dyke experiments, on average,
∣

∣

∣

−→
V MC

∣

∣

∣

/d remained small

until t/te∼0.4, from which
∣

∣

∣

−→
V MC

∣

∣

∣

/d increased rapidly before

stabilizing again at t/te∼0.8 (Figure 5A), displaying an overall
stepwise or two-phase evolution. In detail for each individual

experiment, the rapid
∣

∣

∣

−→
V MC

∣

∣

∣

/d increase started at different

times (t/te∼0.2 to 0.8; Figure 5A) andwas often relatively short in
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FIGURE 3 | Differential digital elevation models (1DEMs) at early (A), intermediate (B) and ultimate (C) time steps measured during a representative dyke experiment.

1DEM is displayed as fringes, each fringe series corresponding to an uplift of 0.5mm.

FIGURE 4 | (A,B) 1DEM before eruption for a representative dyke (A) and cone sheet (B) experiment (uplift in mm). White and black crosses show the successive

locations of the centers (C) of the uplifted area, and of the maximum uplifts (M), respectively. (C,D) Plots of the successive vectors
−→
V MC computed from the

respective maps, (A,B), from the early (dark blue) to the final stages (dark red). A black star locates the eruption points. Final points of maximum uplifts almost locate

the eruptions.

time. In contrast, for cone sheets,
∣

∣

∣

−→
V MC

∣

∣

∣

/d exhibited a gradual,

progressive, quasi-linear increase (Figure 5B). In addition, for
most of the dykes, θMC was highly variable for more than half
of the experiment durations (up to t/te∼0.6; Figure 6A) before
decreasing and stabilizing, whereas for cone sheets, θMC generally
stabilized earlier (t/te ∼ 0.3; Figure 6B).

INTERPRETATION AND DISCUSSION

During the 33 experiments, the vector
−→
V MC systematically

pointed toward the location of the subsequent eruption once
approximately stabilized in azimuth (± 20◦; Figures 4, 6). As
−→
V MC is a parameter that was directly extracted from surface
deformation data using only minimal calculations, real-time
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FIGURE 5 | Plots of |
−→
V MC| scaled by the injection depth (d) against dimensionless time, t/te for dyke (A) and cone sheet (B) experiments. Black lines mark the

respective moving averages.

FIGURE 6 | Plots of the rotation angles θMC between two successive vectors VMC as a function of dimensionless time, t/te, for the dyke (A) and cone sheet (B)

experiments. Each graph displays the corresponding θMC moving mean (black line) and standard deviation (gray area). For cone sheets, the orientation of the vector

generally stabilizes (θMC decreases below 20◦, gray dashed line) earlier (t/te ∼0.3) than for dykes (t/te∼0.6).

measurements of
−→
V MC are potentially achievable in natural

systems. Therefore, the evolution of
−→
V MC represents a robust

geometrical precursor that could be useful in forecasting where
a real eruption should occur, with substantial implications for
hazard mitigation in active volcanic areas.

Consistent with our observations, previous two-dimensional
(Abdelmalak et al., 2012) and three-dimensional (Galland, 2012)
experiments, as well as theoretical models of surface uplift due
to sheet intrusions (Pollard and Holzhausen, 1979; Okada, 1985),
have also shown that the points of maximum uplift roughly locate
the shallowest parts of intrusive feeders, such as dyke tips, at
depth. Hence, the migration of a point of maximum uplift at
the Earth’s surface in volcanic areas likely represents a relevant
geometric proxy to locate where magma is the shallowest and is
ascending underground.

The distinct surface deformation signatures associated with
the experimental dykes and cone sheets likely reflect contrasting
emplacement dynamics (cf. Guldstrand et al., 2017). The

progressive increase of
∣

∣

∣

−→
V MC

∣

∣

∣

/d from the earliest stages

of subsurface propagation reflects the gradual asymmetrical
propagation of a cone sheet (Figure 5B). Conversely, the stepwise

or two-phase increase of
∣

∣

∣

−→
V MC

∣

∣

∣

/d is interpreted to indicate a

two-stage evolution with (1) an initial vertical ascent of a dyke
at depth, followed by (2) the interaction with the free surface
and possible splitting of the dyke tip or oblique propagation
toward the surface from a shallower depth (Mathieu et al., 2008;
Abdelmalak et al., 2012; Galland et al., 2014). The stabilization
of the orientation of

−→
V MC (Figure 6B) may coincide with

this second phase. In addition, the contrasting signatures of
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the experimental dykes and cone sheets suggest that real-time
analysis of the deformation of natural surfaces can be useful
to infer the geometry of a propagating intrusion prior to an
eruption.

Our model uses an initial flat surface and does not include
the effect of an initial topography or slope, often relevant
for volcanic systems. Additionally, our model crust material
is homogeneous and does not account for any heterogeneity
that may also influence surface deformation signatures due to
intrusions. Whether or not our method applies for shallow
intrusions that develop elsewhere than under flat volcanic fields
or calderas and in stratified and/or fractured crusts has not been
tested. However, we expect that any magma-induced surface
deformation will reflect the underlying developing asymmetry of
the intrusion, in which case themethod proposed here should still
be applicable from a non-flat initial surface and a heterogeneous
crust.

The surface deformation above our experimental dykes differs
from that associated with dykes emplaced in rifts (e.g., Wright
et al., 2006; Biggs et al., 2009; Sigmundsson et al., 2015) and the
expected deformation predicted by static elastic analytical models
of dykes (e.g., Okada, 1985). The latter display two prominent
lobes of uplift separated by a trough aligned above the dyke apex.
In contrast, our experimental dykes only triggered surface uplift,
regardless of whether the intrusions propagated vertically up to
the surface or deviated into inclined sheets. Guldstrand et al.
(2017) attributed the difference with the static elastic models
to the use of a weakly elastic, cohesive Mohr-Coulomb flour,
in which the experimental dykes likely propagated as viscous
indenters instead of resulting in pure elastic tensile fractures. In
addition, the experiments account for magma flow and intrusion
propagation, whereas elastic models are static. They are thus
likely relevant for volcanic systems where the shallow crust is
weak (e.g., Thun et al., 2016) and/or in which the intruding
magma is relatively viscous (Galland et al., 2014; Guldstrand
et al., 2017). Guldstrand et al. (2017) also attributed the difference
with surface deformation measured in rifts to the absence of far-
field tectonic extension in the experiments, thus making them
relevant for volcanic systems that are not located in rifts.

Uplifting in the form of doming is commonly measured
in active volcanic areas and models of inflating/pressurized
spherical sources or horizontal sheet-intrusions generally fits
such uplifts (e.g., Pedersen and Sigmundsson, 2006; Walter and
Motagh, 2014). From our results, an alternative interpretation
may consist in propagating vertical sheet intrusions through
a Mohr-Coulomb crust (Guldstrand et al., 2017). Moreover,
as our experiments produced inclined sheets on top of some
vertical dykes, and cone sheets, our analysis may also be relevant
for interpreting surface deformation in volcanic areas prone to
forming inclined sheets and cone sheets (e.g., Bagnardi et al.,
2013).

As mentioned above, the relevance of using points of
maximumuplift has been proposed earlier. Such points have been
recorded among geodetic datameasured on active volcanoes, e.g.,
at Piton de la Fournaise, Réunion Island (Toutain et al., 1992).
The data and interpretation of Toutain et al. (1992) satisfactorily
compare to those from our experiments. Indeed, the correlation

between the zone of maximum uplift and the eruption location,
as well as the two-stage behavior of the surface deformation
due to an intrusive feeder that was interpreted as a dyke,
exhibit encouraging similarities with our experimental results.
Another famous example was the prominent asymmetrical
bulging preceding the 1980 eruption of Mount Saint Helens
(Dzurisin, 2007, and references therein). The bulging flank of
the volcano happened to be the location of the 1980 explosion,
and laboratory experiments demonstrated that the asymmetry
of the bulging reflected the asymmetrical shallow growth of the
underlying cryptodome (Donnadieu and Merle, 1998; Merle and
Donnadieu, 2000). These examples suggest that the precursors
identified in the laboratory may also be applied to active
volcanoes. Consequently, monitoring surface deformation on
active volcanoes with both high temporal and spatial resolution
has the potential to constrain, in real-time, simple geometrical

parameters, such as |
−→
V MC| and θMC, to forecast the location

of both shallow intrusions and imminent eruptions. To make
such forecasts possible requires implementing high frequency
monitoring methods, such as GNSS and/or tiltmeter, and fast
data processing. However, the lack in spatial resolution does not
ensure accurate identification of the locations of uplift center and
maximum, which conversely can easily be identified using InSAR
data.

Notably, our results show that the location of most of the
experimental eruptions could have been accurately predicted to
occur within an angular sector of about 20◦ from approximately
half of the experiment duration (Figure 6). Transposed to nature,
where enough time is required to take suitable societal measures
before an eruption occurs, such a forecast could be achieved up
to several weeks to days before the eruptions. Indeed, the very
first signs of pre-eruptive deformation on volcanoes have been
documented to occur approximately up to 3 months prior to
the eruptions (Froger et al., 2004; Peltier et al., 2006; Poland
et al., 2008; Chadwick et al., 2012; Langmann et al., 2012). As
some intrusions may also propagate underground over shorter
timescales (dykes may propagate as fast as several tens of cm/s;
Toutain et al., 1992), the predictions would be accurate enough
within just a few hours before a potential eruption, which may
be inadequate for hazard mitigation. Nonetheless, in adequate
situations, our results indicate that the accuracy in predicting the
location of an imminent eruption increases as time proceeds and
that the first predictions could be given earlier when the feeder
is a cone sheet. Moreover, our analysis allows for excluding a
large part of the deforming area depending on the early direction
−→
V MC. Efforts can then be made to focus analysis on the area

highlighted by
−→
V MC.

Our modeling approach and results highlight the dynamic
nature of surface deformation associated with shallow magma
emplacement. Resolving surface deformation both at high spatial
and temporal resolutions is relevant to follow the evolution of
simple geometric parameters, such as the point of maximum
uplift, which constitute proxies for the location of on-going
magma ascent. In addition, as long as changes in the evolution
of parameters, such as the focus in azimuth of the points of
maximum uplift, develop a significant time prior to an eruption,
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they have the potential to be used as precursors, indicative of
the approximate location of an imminent volcanic eruption.
Extracted only from the direct observation of surface data, these
precursors are purely geometrical and are not derived from
any mechanical criteria or hypothesis. Yet they are relevant
for various magma feeder geometries. Our analysis illustrates
that time-consuming computational surface data modeling, as
commonly used to analyse geodetic data, may not be necessary
for the purpose of forecasting eruption locations.

CONCLUSION

In this study, we analyse the surface deformation monitored
during 33 scaled laboratory experiments simulating magma
emplacement in a brittle crust under lithostatic stress conditions,
i.e., not subjected to regional or local extensional tectonic stresses.
Depending on the parameter sets, the experiments simulated
the emplacement of dykes or cone sheets (Galland et al., 2014);
the associated surface deformation systematically exhibit surface
uplift. Our main results are the following:

• We define a vector
−→
V MC joining the center of the uplifted area

to the point of maximum uplift.

• During the experiments, the final vectors
−→
V MC systematically

point toward the locations of the forthcoming eruptions,
regardless of whether the feeder is a dyke or a cone sheet.

This result shows that the vector
−→
V MC is a robust geometric

precursor for forecasting imminent volcanic eruptions.
• The surface deformation patterns and associated vectors are

drastically different for dykes and cone sheets; for cone sheet
intrusions the surface vectors elongate gradually and stabilize
in direction within angular sectors of about 20◦ as early as
less than half of the intrusion duration; in contrast, when
dykes intrude, the surface vectors exhibit a two-stage evolution
with sudden elongation and direction stabilization at about
half of the intrusion duration. This result shows that the time

evolution of the vector
−→
V MC is a good proxy for identifying

the nature of the sub-surface volcanic feeder.
• The real-time tracking and identification surface vector

evolution could be used on active volcanic systems as robust
proxies for determining the shape and location of the sub-
surface propagating feeders and locating the area of imminent
volcanic eruptions.

• Our study shows that forecasting eruption locations using
surface deformation data may be achievable without using
geodeticmodeling, assuming that the surface data are captured
at both high spatial and temporal resolution.
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